
Chapter 2

ANOVA Approaches to

Longitudinal Data

There are two classical approaches to the analysis of longitudinal data, the

first, called variously univariate mixed-model, split-plot, or repeated-measures

ANOVA, and the second based on multivariate ANOVA (MANOVA). Both

models assume interval measurement and normally distributed errors that

are homogeneous across groups. In some cases, normality and homogene-

ity of variance can be brought about through transformation (e.g., natural

log transformation). For both models, the primary focus is on comparison of

group means, and neither model is informative about individual growth curves
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40 Longitudinal Data Analysis

(i.e., subject-specific trends). Furthermore, the time-points are assumed to be

fixed across subjects (either evenly or unevenly spaced) and are treated as

a classification variable in the ANOVA or MANOVA model. This precludes

analysis of unbalanced designs in which different subjects are measured on dif-

ferent occasions. Both models are based on least squares estimation and are

therefore adversely affected by outliers and missing data. While the ANOVA

model can handle some missing data (i.e., there are methods for unbalanced

ANOVA), the MANOVA model cannot handle any missing data. In terms of

the variance-covariance structure for the responses (yi), the ANOVA model

assumes compound symmetry (i.e., equal variances and covariances over time),

whereas the MANOVA model makes no assumption regarding the specific form

of the variance-covariance structure. While this is an important advantage of

MANOVA over ANOVA, it is tempered by the larger limitation of requiring

complete data for all subjects in the MANOVA model. As such, application of

MANOVA must follow deletion of all subjects without complete data, which

is essentially a completer analysis, and is prone to substantial bias in that the

composition of subjects that complete the study can be quite different from

the composition of the subjects at the time of randomization.

In the following sections of this chapter, we describe the univariate ANOVA
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model for within-subject designs in detail. In chapter 3, we present the alter-

native multivariate approach. While these approaches are no longer recom-

mended for routine application (if at all), they are important in that they fix

ideas for the development of the more modern and advanced methods that are

the primary focus of this book.

2.1 Single-sample Repeated Measures ANOVA

In the single-sample case, the model is referred to as the randomized block

ANOVA. In this case, we have no intervention or group effects, but are simply

using the model to characterize rates of change over time. In the multiple-

sample case, the model is referred to as a split-blocks or split-plot ANOVA. In

the social and behavioral sciences literature, the model is often referred to as

a “Repeated Measures ANOVA.” Returning to the single-sample case, where

we have i = 1, . . . , N subjects and j = 1, . . . , n measurement occasions, the

randomized blocks ANOVA is given by the linear model,

yij = µ+ πi + τj + eij , (2.1)

where

• µ = the grand mean,
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• πi = the individual difference component for subject i, which is assumed

to be constant over time,

• τj = the effect of time, assumed to be the same for all subjects,

• and eij = the error for subject i on occasion j

For the purpose of parameter estimation and hypothesis testing, we assume

that the random components are distributed

• πi ∼ N(0, σ2
π) between-subjects variance

• eij ∼ N(0, σ2
e) within-subjects variance
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2.1.1 Data layout

Consider the following design:

timepoint

subject 1 2 . . . n

1 y11 y12 . . . y1n

2 y21 y22 . . . y2n

. . . . . . .

. . . . . . .

N yN1 yN2 . . . yNn

In this design there is one observation per cell. The design is similar to a

randomized block design with subjects as blocks. In the simple case of n = 2,

it is identical to paired-t test. In terms of model assumptions, we assume that
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n∑
j=1

τj = 0

E(yij) = µ+ τj

V (yij) = V (µ+ τj + πi + eij) = σ2
π + σ2

e

C(yij, yi′j) = 0 for i �= i′

C(yij, yij′) = σ2
π for j �= j′

The magnitude of the within-subject association is described by the intra-class

correlation.

Corr(yij, yij′) =
σ2

π

σ2
π + σ2

e

. (2.2)

The intra-class correlation is the same correlation for all longitudinal pairs and

represents the average correlation of y from any two timepoints. The intra-

class correlation ranges from 0 to 1, so it can be interpreted as a proportion of
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the total variance that is attributable to subjects. Given these assumptions,

the variance covariance matrix has the “compound symmetric” structure:

Σyi
=




σ2
e + σ2

π σ2
π σ2

π . . . σ2
π

σ2
π σ2

e + σ2
π σ2

π . . . σ2
π

. . . . . . . . . . . . . . .

σ2
π . . . σ2

π σ2
e + σ2

π σ2
π

σ2
π σ2

π . . . σ2
π σ2

e + σ2
π




(2.3)

where the variance is homogeneous across time: σ2
e + σ2

π, the covariances are

homogeneous across time: σ2
π, and the correlation is given by σ2

π/(σ2
e + σ2

π).

Unfortunately, compound symmetry is not very realistic for longitudinal data.

First, variances often change over time, where subjects are generally more

similar at the start of the trial than at the end of the trial where some have

responded to treatment and others have not. Second, covariances close in time

are usually greater than covariances that are further separated in time.

In the balanced case (i.e., no missing data and all subjects measured on

the same occasions), the ANOVA table for a model with random subjects and
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fixed time is of the following form:

Source df SS MS E(MS)

Subjects N − 1 SSS = n
∑N

i=1(ȳi. − ȳ..)
2 SSS

N−1
σ2

e + nσ2
π

Time n − 1 SST = N
∑n

j=1(ȳ.j − ȳ..)
2 SST

n−1
σ2

e +

N
∑
(τj − τ.)

2

Residual (N − 1) SSR =
∑N

i=1

∑n
j=1 yij

SSR

(N−1)(n−1)
σ2

e

×(n − 1) −ȳi. − ȳ.j + ȳ..)
2

total Nn − 1 SSy =
∑N

i=1

∑n
j=1(yij − ȳ..)

2

where

• ȳ.. = grand mean (averaged over time and subjects)

• ȳi. = subject mean (i = 1, . . . , N)

• ȳ.j = timepoint mean (j = 1, . . . , n)
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Tests of hypothesis are constructed as follows:

HS : σ2
π = 0 FS =

MSS

MSR

HS∼ FN−1,(N−1)(n−1)

HT : τ1 = τ2 = ... = τn = 0 FT =
MST

MSR

HT∼ Fn−1,(N−1)(n−1)

(2.4)

The intra-class correlation for this design describes the relative magnitude of

σ2
π. In general, we assume that σ2

π > 0, and we want to quantify the magnitude

of the within-subject effect as,

r =
σ̂2

π

σ̂2
π + σ̂2

e

. (2.5)

where

σ̂2
π = ( MSS − MSR) / n (2.6)

and

σ̂2
e = MSR (2.7)

When MSS ≤ MSR, then σ̂2
π = 0. Notice that the ICC is akin to an R2 statis-

tic; it represents the proportion of (unexplained) variation due to subjects. As

subjects’ data are highly correlated, r becomes large. The value of r can
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vary depending on model covariates. As more and more of the within-subject

variability is explained by model covariates, the value of r decreases.

The overall test of the null hypothesis of no difference over time,

HT : τ1 = τ2 = ... = τn = 0 (2.8)

is a very global test. We can construct contrasts to address more specific

time-related comparisons as follows:

Lj′ =
n∑

j=1

cj′j ȳ.j j′ = 1, . . . , n − 1
n∑

j=1

cj′j = 0 (2.9)

then

MSj′ = SSj′ =
NL2

j′∑n
j=1 c2

j′j
(2.10)

and

Hj′ : Lj′ = 0 Fj′ =
MSj′

MSR

Hj′∼ F1,(N−1)(n−1)

tj′ =
Lj′√

MSR

[∑n
j=1

c2
j′j
N

] Hj′∼ t(N−1)(n−1)
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If the set of n − 1 contrasts are orthogonal, then

SST =
n−1∑
j′=1

SSj′ , (2.11)

and we have an independent partitioning of the variation due to time.

Trend Analysis - Orthogonal Polynomials

One approach to testing specific time-related contrasts is to characterize n−1

time effects as n − 1 orthogonal polynomials (see Bock (1975), Pearson &

Hartley (1970), Draper & Smith (1981), and Fleiss (1986)). For example, the

n − 1 × n contrast matrix for n = 4 is

C =




−3 −1 1 3
... ÷√

20

1 −1 −1 1
... ÷√

4

−1 3 −3 1
... ÷√

20




linear

quad

cubic

(2.12)

for linear, quadratic, and cubic trend components. Some advantages of or-

thogonal polynomial are that:

• they are orthogonal (and orthonormal with ÷),

• they can be generalized for unequally spaced timepoints,

• they are useful for determining “degree” of change across time,

• they can specify fewer than n − 1 contrasts.
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Change Relative to Baseline

In some cases, we are less concerned with the form of the growth curves, and

more concerned about testing whether any change has occurred whatsoever.

In this case, we can construct contrasts for each time-point relative to the first

time-point, presumably baseline, as follows:

C =




−1 1 0 0

−1 0 1 0

−1 0 0 1




(2.13)

These contrasts are for T2-T1, T3-T1, T4-T1, respectively. These contrasts

are,

• not orthogonal,

• are sometimes called simple contrasts,

• can use any cell as the reference cell (e.g., the last time-point).

Consecutive Time Comparisons - Profile Contrasts

In other cases, we may have interest in determining whether each consecutive

time-point is significantly different from the immediately previous time-point.
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These contrasts are sometimes referred to as “profile contrasts,” and are con-

structed as follows:

C =




−1 1 0 0

0 −1 1 0

0 0 −1 1




(2.14)

to test T2-T1, T3-T2, T4-T3, respectively. Profile contrasts are:

• not orthogonal,

• useful for identifying when change begins (and ends),

Contrasting Time-point to Mean of Subsequent Time-points - Helmert

Contrasts

When interest is in contrasting each time-point to the mean of all subsequent

time-points, we can construct Helmert contrasts (Bock, 1975) as follows:

C =




1 −1/3 −1/3 −1/3

0 1 −1/2 −1/2

0 0 1 −1




(2.15)

for T1 versus average of T2, T3, T4; T2 versus average of T3, T4; T3 versus

T4. Helmert contrasts are:
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• orthogonal,

• and are useful for “ordered” tests.

Contrasting Each Time-point to the Mean of Others - Deviation

Contrasts

When there is interest in contrasting each time-point to the mean of all other

time-points, deviation contrasts can be computed as:

C =




1 −1/3 −1/3 −1/3

−1/3 1 −1/3 −1/3

−1/3 −1/3 1 −1/3




(2.16)

for T1 versus the average of T2, T3, T4; T2 versus the average of T1, T3, T4;

and T3 versus the average of T1, T2, T4. Deviation contrasts are:

• not orthogonal,

• are useful for situations in which there is “vague prior knowledge”,

• and the omitted time-point can be other than last.

Multiple Comparisons

Although n − 1 multiple comparisons can often be specified a-priori, we are

nevertheless faced with making multiple comparisons that will potentially lead
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to elevated experiment-wise Type I error rates. The most conservative solution

is to use the so-called Bonferroni corrected α level, which is given as

α∗ = α/(n − 1) . (2.17)

A far less conservative alternative is to apply the so-called Fisher protected

test logic, in which each individual test is conducted at the α level, but the

individual tests are only applied when the global test HT : τ1 = τ2 = ... =

τn = 0 is rejected. For the special case of orthogonal polynomials, we can

start with the highest-order polynomial and eliminate each degree polynomial

until we encounter the first significant one. Hummel & Sligo (1971) support

Fisher protected test if n is not too large. Also, from Rosner (1995, p. 319):

“If a few linear contrasts, which have been specified in advance,

are to be tested, then it may not be necessary to use a multiple-

comparisons procedure, since if such procedures are used, there

will be less power to detect differences for linear contrasts whose

means are truly different from zero. Conversely, if many contrasts

are to be tested, which have not been specified before looking at

the data, then multiple-comparisons procedures may be useful in

protecting against declaring too many significant differences.”
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2.2 Multiple-sample Repeated Measures ANOVA

In the multiple-sample case, the ANOVA model for repeated measurements is

referred to as a “split-plots” ANOVA model. An example data layout is:

timepoint

group subject 1 2 . . . n

1 1 y111 y112 . . . y11n

1 2 y121 y122 . . . y12n

1 . . . . . . .

1 . . . . . . .

1 N1 y1N11 y1N12 . . . y1N1n

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

s 1 ys11 ys12 . . . ys1n

s 2 ys21 ys22 . . . ys2n

s . . . . . . .

s . . . . . . .

s Ns ysNs1 ysNs2 . . . ysNsn

where
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• h = 1, . . . , s groups

• i = 1, . . . , Nh subjects in group h (with N =
∑s

h=1 Nh)

• j = 1, . . . , n timepoints

The ANOVA model is:

yhij = µ+ γh + τj + (γτ)hj + πi(h) + ehij (2.18)

where

• µ = grand mean

• γh = effect of group h (
∑

h γh = 0)

• τj = effect of time j (
∑

j τj = 0)

• (γτ)hj = interaction effect of time j and group h

[
∑

h

∑
j(γτ)hj = 0]

• πi(h) = individual difference component for subject i in group h

• ehij = error for subject i in group h at time j

Distributional assumptions include

• πi(h) ∼ N(0, σ2
π)
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• ehij ∼ N(0, σ2
e)

which imply a compound symmetry structure for V (yi). In this design, sub-

jects are considered random effects and group and time are considered fixed

effects. The data are assumed to be balanced in terms of n (i.e., time-points),
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but not in terms Nh, (i.e., group sample sizes). The ANOVA table is as follows:

Source df SS MS E(MS)

Group s − 1 SSG = n
∑s

h=1 Nh (ȳh.. − ȳ...)
2 SSG

s−1
σ2

e + nσ2
π +DG

Time n − 1 SST = N
∑n

j=1(ȳ..j − ȳ...)
2 SST

n−1
σ2

e +DT

Group (s − 1) SSGT =
∑s

h=1

∑n
j=1 Nh (ȳh.j

SSGT

(s−1)(n−1)
σ2

e +DGT

× Time ×(n − 1) −ȳh.. − ȳ..j + ȳ...)
2

Subjects N − s SSS(G) = n
∑s

h=1

∑Nh
i=1(ȳhi. − ȳh..)

2 SSS(G)

N−s
σ2

e + nσ2
π

in Grps

Residual (N − s) SSR =
∑s

h=1

∑Nh
i=1

∑n
j=1 (yhij

SSR

(N−s)(n−1)
σ2

e

×(n − 1) −ȳh.j − ȳhi. + ȳh..)
2

total Nn − 1 SSy =
∑s

h=1

∑Nh
i=1

∑n
j=1(yhij − ȳ...)

2

where
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• h = 1, . . . , s groups

• i = 1, . . . , Nh subjects in group h (with N =
∑s

h=1 Nh)

• j = 1, . . . , n timepoints

and DG, DT , and DGT represent differences among groups, timepoints, and

group × time interaction, respectively.

2.2.1 Testing for Group by Time interaction

The group by time interaction, which is typically the test of primary interest,

is constructed as:

HGT : DGT = 0 FGT =
MSGT

MSR

HGT∼ F(s−1)(n−1),(N−s)(n−1) . (2.19)

If rejected,

• group differences are not the same across time,

• group curves across time are not parallel,

• group and time effects are confounded with the interaction and cannot

be separately tested (or estimated).
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If accepted,

HT : τ1 = τ2 = . . . = τn = 0 FT =
MST

MSR

HT∼ Fn−1,(N−s)(n−1) (2.20)

HG : γ1 = γ2 = . . . = γs = 0 FG =
MSG

MSS(G)

HG∼ Fs−1,N−s (2.21)

HT and HG are separately and independently testable

2.2.2 Testing for Subject effect

To test for the significance of random subject effects, we construct the following

statistic:

HS(G) : σ
2
π = 0 FS(G) =

MSS(G)

MSR

HS(G)∼ FN−s,(N−s)(n−1) . (2.22)

In general, we assume that σ2
π > 0, and estimate the intra-class correlation as

r = σ̂2
π/(σ̂2

π + σ̂2
e) (2.23)

The intra-class correlation represents the proportion of (unexplained) variation

due to subjects.
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2.2.3 Contrasts for time effects

As in the single-group case, it is advantageous to characterize time and group

by time effects using time-related contrasts. These include the same sets of

contrasts described earlier for single-group designs, namely, orthogonal polyno-

mials, profile contrasts, Helmert contrasts etc., As before, it may be necessary

to consider the multiple comparisons issue and utilize Fisher protected tests

or Bonferroni correction for the (n − 1)(s − 1) group by time contrasts (and

for the n − 1 time contrasts).

Orthogonal Polynomial Partition of SS

An example orthogonal polynomial decomposition of the time effect for a four

time-point design is given by

C4 =




−3 −1 1 3
... ÷√

20

1 −1 −1 1
... ÷√

4

−1 3 −3 1
... ÷√

20




c1

c2

c3 .

(2.24)
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The decomposition of the Time sum of squares is given by:

Time df SS

linear 1 SST1 = N c1 ȳ..j ȳ′
..j c′

1

quadratic 1 SST2 = N c2 ȳ..j ȳ′
..j c′

2

. . .

(n − 1)th 1 SSTn−1 = N cn−1 ȳ..j ȳ′
..j c′

n−1

n − 1 SST

where ȳ..j = n×1 is the vector of timepoint means, and cj = 1×n is the vector

of contrasts of order j. Corresponding F-statistics for each trend component

are:

FTn−1 = SSTn−1 / MSR

. . .

FT1 = SST1 / MSR .

Typically, we determine the polynomial of least degree by working backwards.

Similarly, the Group by Time sum of squares is decomposed as:
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G × T df SS

linear s − 1 SSGT1 =
∑

h Nh c1 ȳh.j ȳ′
h.j c′

1 − SST1

quadratic s − 1 SSGT2 =
∑

h Nh c2 ȳh.j ȳ′
h.j c′

2 − SST2

. . .

(n − 1)th s − 1 SSGTn−1 =
∑

h Nh cn−1 ȳh.j ȳ′
h.j c′

n−1

− SSTn−1

(s − 1) SSGT

×(n − 1)

where ȳh.j = n×1 is the vector of timepoint means for group h, and cj = 1×n

is the vector of contrasts of order j. F-statistics are given by:

FGTn−1 =
SSGTn−1 / (s − 1)

MSR

. . .

. . .

FGT1 =
SSGT1 / (s − 1)

MSR

Again, the order of the polynomial of least degree for the Group by Time

interaction is determined working backwards.
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2.2.4 Compound Symmetry and Sphericity

For both univariate RB and SP ANOVA models

V (yi) = σ2
π1n1

′
n + σ2

eIn (2.25)

Compound symmetry (CS) structure is given by

V (yij) = σ2
π + σ2

e ∀ j

C(yij, yij′) = σ2
π ∀ j and j′ (j �= j′) .

(2.26)

The correlation between responses across time-points is given by the intra-class

correlation

ρ(yij , yij′) = σ2
π / (σ2

π + σ2
e) . (2.27)

The CS assumption is highly restrictive, and often unrealistic (especially as

n gets large). CS is a special case of the more general situation, sphericity,

under which F -tests for time-related terms from ANOVA models are valid. If

sphericity holds, then F -tests are valid, otherwise, if sphericity doesn’t hold,

then F -tests are generally too liberal.
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Sphericity

Sphericity, sometimes called circularity can be expressed in different ways. The

most general is that all variances of all pair-wise differences between variables

are equal

V (yij − yij′) = V (yij) + V (yij′)− 2C(yij, yij′)

= constant ∀ j and j′ .

CS is a special case of sphericity, i.e.,

V (yij) = σ2
π + σ2

e constant

C(yij, yij′) = σ2
π constant .

(2.28)

More generally, Crowder and Hand (1990, page 50) note:

“MS ratios derived by the univariate approach follow exact F -

distributions if and only if the covariance matrix of the orthonormal

contrasts has equal variances and zero covariances.”

This statement is equivalent to:

C

(n−1)×n

V (yi)

n×n

C ′

(n−1)×n

= constant I t−1

(n−1)×(n−1)

(2.29)
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where C is a matrix of orthonormal polynomials.

As noted by Mauchly (1940), sphericity tests have low statistical power

for small sample sizes. For large samples, the test is likely to be significant

even though the effect on the F -test may be negligible. Sphericity tests are

sensitive to departures from normality and to the presence of outliers. As such,

sphericity tests should be used as a guide and not as a rule.

If the sphericity assumption is rejected, or deemed implausible, one can

use a multivariate repeated measures analysis (MANOVA), which allows for

general V (yi) but does not allow for any missing data across time. Other clas-

sical statistical alternatives include adjusted univariate F -tests as described by

Greenhouse and Geisser (1959), and Huynh and Feldt (1976), both of which

are generally overly conservative.

2.2.5 Running Univariate Repeated-measures ANOVA

via Multivariate Setup

The univariate problem is described as:



66 Longitudinal Data Analysis

• univariate setup:

group subject time y

1 1 1 y111

1 1 2 y112

1 1 3 y113

whereas the multivariate problem can be described as:

• multivariate setup:
group subject y1 y2 y3

1 1 y111 y112 y113

The differences between the two approaches are:

• Subjects with missing data on any timepoint are deleted from the anal-

ysis (unlike in the univariate setup).

• For the time-related contrasts, though SS and MS are the same, the

F -tests are not.

• We only get a test of the sphericity assumption via the multivariate

setup.

• The denominator degrees of freedom are greater for the univariate repeated-

measures tests, which generally results in greater power for the univariate

tests.
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• The sphericity test is for the pooled subjects-within-groups variance-

covariance matrix.

• We get different results from sphericity tests if the contrast matrix C is

not orthonormal.

• The overall F -tests of main effects and interactions do not change if

different contrasts are used.

In the following chapter we discuss the MANOVA approach to analysis of

longitudinal data in detail.

2.3 Illustration

Bock (1975) presents data on vocabulary growth measured in a cohort of 64

students at the University of Chicago Laboratory school. The longitudinal

data consist of repeated measurements of the vocabulary section of the cooper-

ative reading test (Davis, 1950). Alternate forms of the test were administered

in eighth through eleventh grade. Since this age range marks the period of

time that physical growth begins to decelerate, he hypothesized that a similar

deceleration might be observed in the acquisition of new vocabulary as well.
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Figure 2.1 displays a plot of the average scores versus grade and visually sug-

gests that the rate of change is indeed decelerating.

Summary statistics (means, standard deviations, and correlations) are pre-

sented in Table 2.1.
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Table 2.1

Means, Standard Deviations, and Correlations

for the Vocabulary-Growth Data

Grade Mean SD Correlations

8 1.137 1.889 1.000

9 2.542 2.085 .810 1.000

10 2.988 2.169 .868 .785 1.000

11 3.472 1.925 .785 .757 .811 1.000

Inspection of Table 2.1, reveals that the variances and covariances are reason-

ably homogeneous over time, supporting the assumption of compound sym-

metry underlying the mixed-model ANOVA.

This example can be used to nicely illustrate the simplest case of a one-

sample mixed-model ANOVA. In the model, subject represents a random ef-

fect, and time represents a fixed effect. The ANOVA is illustrated in Table

2.2, which presents the ANOVA results.
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Table 2.2

Mixed-Model ANOVA Results

for the Vocabulary-Growth Data

Source df SS MS F p

Subjects 63 SSS = 873.60 13.87 16.91 .0001

Grade (i.e., “Time”) 3 SST = 194.34 64.78 79.02 .0001

Residual 189 SSR = 154.94 0.82

Total 255 SSy = 1,222.88

The estimate of the error variance, which equals MSR, is obtained as:

σ̂2
e =

SSR

(N − 1)(n − 1) =
154.94

189
= 0.82

The estimate of the subject variance is gotten as:

σ̂2
π =

MSS −MSR

n
=
13.87− 0.82

4
= 3.26 ,

and so the intraclass correlation equals

r =
σ̂2

π

σ̂2
π + σ̂2

e

=
3.26

3.26 + 0.82
= .80 .

Thus, as one would expect, there is a tremendous effect of subjects on their

vocabulary scores. 80% of the variation in vocabulary, that is not explained

by grade, is attributable to subjects.
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In terms of the grade effect, the ANOVA table reveals that we must reject

the null hypothesis of no grade effect. This is clearly supported by Figure

2.1 which shows that vocabulary generally increases with grade. However,

to obtain a more sensitive analysis, we can examine the significance of the in-

dividual polynomial terms based on the order-4 orthogonal polynomial matrix:

C =




−.67082 −.22361 .22361 .67082

.5 −.5 −.5 .5

−.22361 .67082 −.67082 .22361




.

Premultiplying the 4 × 1 vector of column means

ȳ =




1.14

2.54

2.99

3.47




,

by C, we obtain the following orthogonal estimates:

Linear = 1.67, Quadratic = −0.46, Cubic = 0.22.



72 Longitudinal Data Analysis

Note that the squares of these estimates multiplied by 64 (i.e., the number of

subjects) are the numerators of the F -ratios for linear, quadratic, and cubic

trends shown in Table 2.3. The denominator is σ̂2
e = 0.82 and the denominator

degrees of freedom equals 189 for these F -ratios. Clearly, the positive linear

trend is highly significant. However, the significant quadratic term, coupled

with its negative sign, reveals that the observed deceleration in the growth rate

is statistically significant. Finally, the cubic term is only marginally signifi-

cant suggesting that the deceleration reverses to some extent with increasing

age (see Figure 2.1). Examining the trend estimates, we see that the cu-

bic estimate also pales in comparison with the dominant linear and moderate

quadratic trend components: there is clearly diminishing importance as the

order of the polynomial is increased.

Table 2.3

Orthogonal Polynomial Decomposition of the Grade Effect
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Source df SS F p

Grade

Linear 1 SST1 = 177.58 216.63 .0001

Quadratic 1 SST2 = 13.58 16.56 .0001

Cubic 1 SST3 = 3.17 3.86 .051

Taken together, these results indicate a decelerating positive trend across

grade, supporting the notion that vocabulary acquisition is slowing down as

students approach maturity.

2.4 Summary

In summary, the ANOVA approach to analysis of longitudinal data represents

a well understood and well developed statistical methodology. In addition,

there is considerable available computer software for ANOVA computation.

The results are based on relatively simple and non-iterative calculations. By

contrast, the ANOVA model for repeated measurements assumes sphericity,

which is unrealistic for most applications where variances tend to increase

with time and correlation decreases with increasing intervals in time. Other
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limitations include limited treatment of missing data, and the requirement

that all subjects are measured at on the same occasions.


