
Chapter 1

Introduction

1.1 Advantages of Longitudinal Studies

There are numerous advantages of longitudinal studies over cross-sectional

studies. First, to the extent that repeated measurements from the same subject

are not perfectly correlated, longitudinal studies are more powerful than cross-

sectional studies for a fixed number of subjects. Stated in another way, to

achieve a similar level of statistical power, fewer subjects are required in a

longitudinal study. The reason for this is that repeated observations from the

same subject, while correlated, are rarely if ever perfectly correlated. The net

result is that the repeated measurements from a single subject provide more
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independent information than a single measurement obtained from a single

subject.

Second, in a longitudinal study, each subject can serve as his/her own

control. For example, in a cross-over study, each subject can receive both

experimental and control conditions. In general, intra-subject variability is

substantially less than inter-subject variability, so a more sensitive or statis-

tically powerful test is the result. As previously mentioned, in naturalistic or

observational studies, the primary intervention of interest may also be time

varying, so that naturalistic intra-subject changes in the intervention can be

related to changes in the outcome of interest within individuals. Again, the

net result is an exclusion of between subject variability from measurement er-

ror which results in more efficient estimators of treatment related effects than

corresponding cross-sectional designs with the same number and pattern of

observations.

Third, longitudinal studies allow an investigator to separate aging effects

(i.e., changes over time within individuals), from cohort effects (i.e., differ-

ences between subjects at baseline). Such cohort effects are often mistaken for

changes occurring within individuals. Without longitudinal data, one cannot

differentiate these two competing alternatives.
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Finally, longitudinal data can provide information about individual change,

whereas cross-sectional data cannot. Statistical estimates of individual trends

can be used to better understand heterogeneity in the population and the

determinants of growth and change at the level of the individual.

1.2 Challenges of Longitudinal Data Analysis

Despite their advantages, longitudinal data are not without their challenges.

Observations are not, by definition, independent and we must account for the

dependency in data using more sophisticated statistical methods. The ap-

propriate analytical methods are not as well developed, especially for more

sophisticated models that permit more general forms of correlation among the

repeated measurements. Often, there is a lack of available computer soft-

ware for application of these more complex statistical models, or the level of

statistical sophistication required of the user is beyond the typical level of the

practitioner. In certain cases, for example nonlinear models for binary, ordinal,

or nominal endpoints, parameter estimation can be computationally intensive

due to the need for numerical or Monte Carlo simulation methods to evaluate

the likelihood of nonlinear mixed-effects regression models.
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An added complication that arises in the context of analysis of longitudinal

data is the invariable presence of missing data. In some cases, a subject may be

missing one of several measurement occasions; however, it is more likely that

there are missing data due to attrition. Attrition, sometimes referred to as

“drop-out,” refers to a subject removing himself or herself from the study, prior

to the end of the study. The data record for this subject therefore prematurely

terminates. Several simple approaches to this problem have been proposed,

none of which are statistically satisfactory. The simplest approach, termed a

“completer analysis,” limits the analysis to only those subjects that completed

the study. Unfortunately, the available sample at the end of the study may

have little resemblance to the sample initially randomized. Reasons for not

completing the study may be confounded with the effects that the study was

designed to investigate. For example, in a randomized clinical trial of a new

drug versus placebo, only those subjects that did well on the drug may com-

plete the study, giving the potentially false appearance of superiority of drug

over placebo. The second simple approach is termed “Last Observation Car-

ried Forward” (LOCF) and involves imputing the last available measurement

to all subsequent measurement occasions. While things are somewhat better

in the case of LOCF versus completer analyses, in an LOCF analysis, subjects
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treated in the analysis as if they have had identical exposure to the drug may

have quite different exposures in reality or their experience on the drug may

be complicated by other factors that led to their withdrawal from the study

that are ignored in the analysis. More rigorous statistical alternatives based on

mixed-effects regression models with ignorable and nonignorable nonresponse

are an important focus of this book. Nevertheless, the presence of missing

data, and its treatment in the statistical analysis, is a complicating feature of

longitudinal data, making analysis potentially far more complex than analysis

of cross-sectional data. The advantage, however, is that all available data from

each subject can be used in the analysis, leading to increased statistical power,

the ability to estimate subject-specific effects, and decreased bias due to arbi-

trary exclusion of subjects with incomplete response or the simple imputation

of values for the missing responses.

Yet another complicating feature of longitudinal data is that not only does

the outcome measure change over time, but the values of the predictors or

independent variables can also change over time. For example, in the mea-

surement of the relationship between plasma level of a drug and health status,

both plasma level (the predictor) and health status (the outcome) change over

time. The goal here is to estimate the dynamic relationship between these
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two variables over time. Note that this is a relationship that occurs within

individuals, and may vary from individual to individual as well. While our

overall objective may be to determine if a relationship exists between drug

plasma level and health status in the population, we must be able to model

this dynamic relationship within individuals, and reach an overall conclusion

regarding whether such a relationship exists in the population. The treat-

ment of time-varying covariates in analysis of longitudinal data permits much

stronger statistical inferences about dynamical relationships than can be ob-

tained using cross-sectional data. The price, however, is considerable added

complexity to the statistical model.

Finally, in some cases, the repeated measurements involve different condi-

tions that the same subjects are exposed to. A classic example is a cross-over

design in which two or more treatments are given to the same subject in dif-

ferent orders. In these cases, the statistical inferences may be compromised

by order or carry-over effects in which response to a one treatment may be

conditional on exposure to a previous treatment. Dealing with carry-over or

sequence effects is far from trivial, and is the statistical price paid for the

stronger statistical inferences permitted by within-subject experimentation.
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1.3 Some General Notation

To set the stage for the statistical discussion to follow, it is helpful to present

a unified notation for the various aspects of the longitudinal design. We index

the N subjects in the longitudinal study as

i = 1, . . . , N subjects .

For a balanced design in which all subjects have complete data, and are mea-

sured on the same occasions, we index the measurement occasions as

j = 1, . . . , n observations .

or in the unbalanced case of unequal numbers of measurements or different

time-points for different subjects

j = 1, . . . , ni observations for subject i .

The total number of observations are given by

N∑
i

ni .

The repeated responses, or outcomes, or dependent measures for subject i are

denoted as the vector

yi = ni × 1 .
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The values of the p predictors, or covariates, or independent variables for

subject i on occasion j are denoted as (including an intercept term):

xij = p × 1 .

For time-invariant predictors (between subject, e.g., sex), the values of xij are

constant for j = 1, . . . , ni. For time-varying predictors (within-subject, e.g.,

age), the xij can take on subject and time-point specific values. To describe

the entire matrix of predictors for subject i, we use the notation

X i = ni × p .

It should be noted that not all of the statistical literature on analysis of

longitudinal data uses this notation. Sometimes, in other sources, the notation

• i = 1, . . . , n subjects

• j = 1, . . . , ti observations

• total number of observations =
∑n

i ti

is used.
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1.4 Data Layout

In fixing ideas for the statistical development to follow, it is also useful to

apply this previously described notation to describe a longitudinal dataset as

follows.

subject observation response covariates

1 1 y11 x111 . . . x11p

1 2 y12 x121 . . . x12p

. . . . . .

1 n1 y1n1 x1n11 . . . x1n1p

. . . . . .

. . . . . .

. . . . . .

. . . . . .

N 1 yN1 xN11 . . . xN1p

N 2 yN2 xN21 . . . xN2p

. . . . . .

N nN yNnN
xNnN1 . . . xNnN p

In this univariate design, ni varies by subject, and if xr is time-invariant
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(between-subjects) then, for a given subject i, the covariate values are the

same across time, namely, xi1r = xi2r = xi3r = . . . = xinir.

1.5 Analysis Considerations

There are several different features of longitudinal studies that must be con-

sidered when selecting an appropriate longitudinal analysis. First, is the form

of the outcome or response measure. If the outcome of interest is continuous

and normally distributed, much simpler analyses are usually possible (e.g., a

mixed-effects linear regression model). By contrast, if the outcome is contin-

uous, but does not have a normal distribution (e.g., a count) then alternative

non-linear models (e.g., a mixed-effects Poisson regression model) can be con-

sidered. For qualitative outcomes, such as binary (yes or no), ordinal (e.g., sad,

neutral, happy), nominal (republican, democrat, independent), more complex

non-linear models are also typically required.

Second, the number of subjects N is an important consideration for se-

lecting a longitudinal analysis method. The more advanced models (e.g., gen-

eralized mixed-effects regression models) that are appropriate for analysis of

unbalanced longitudinal data, are based on large sample theory and may be
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inappropriate for analysis of small N studies (e.g., N < 50).

Third, the number of observations per subject ni is also an important con-

sideration when selecting an analytic method. For ni = 2 for all subjects,

a simple change score can be computed and the data can be analyzed using

methods for cross-sectional data, such as ANCOVA. When ni = n for all sub-

jects, the design is said to be balanced, and traditional ANOVA or MANOVA

models for repeated measurements (i.e., traditional mixed-effects models or

multivariate growth curve models) can be used. In the most general case

where ni varies from subject to subject, more general methods are required

(e.g., generalized mixed-effects regression models), which are the primary focus

of this book.

Fourth, the number and type of covariates is an important consideration

for model selection for E(yi). In the one sample case, we may only have

interest in characterizing the rate of change in the population over time. Here,

we can use a random-effects regression model, where the parameters of the

growth curve are treated as random effects and allowed to vary from subject

to subject. In the multiple sample case (e.g., comparison of one or more

treatment conditions to control), the model consists of one or more categorical

covariates that contrast the various treatment conditions in the design. In
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the regression case, we may have a mixture of continuous and/or categorical

covariates, such as age, sex, and race. When the covariates take on time-

specific values (i.e., time-varying covariates), the statistical model must be

capable of handling these as well.

Fifth, selection of a plausible variance-covariance structure for the V (yi) is

of critical importance. Different model specifications lead to homogeneous or

heterogeneous variances, and/or homogeneous or heterogeneous covariances of

the repeated measurements over time. Furthermore, residual autocorrelation

among the responses may also play a role in modeling the variance-covariance

structure of the data.

Each of these factors is important for selecting an appropriate analytical

model for analysis of a particular set of longitudinal data. In the following

chapters, greater detail on the specifics of these choices will be presented.

1.6 General Approaches

There are several different general approaches to the analysis of longitudinal

data. To provide an overview, and to fix ideas for further discussion and more

detailed presentation, we present the following outline.
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The first approach, which we refer to as the “derived variable” approach,

involves the reduction of the repeated measurements into a summary variable.

In fact, once reduced, this approach is strictly not longitudinal, since there is

only a single measurement per subject. Perhaps the earliest example of the

analysis of longitudinal data was presented by Student (1908) in his illustration

of the t-test. The objective of the study (Cushny and Peebles, 1905) was to

determine changes in sleep as a function of treatment with the hypnotic drug

scopolomine. Although hours of sleep were carefully measured by the investi-

gators, day to day variability presented statistical challenges in detecting the

drug effect using large sample methods available at the time. Student (Gos-

sett) proposed the one sample t-test to test if the average difference between

experimental and control conditions was zero.

Examples of derived variables include (a) average across time, (b) linear

trend across time, (c) carrying the last observation forward, (d) computing a

change score, and (e) computing the area under the curve. A critical problem

with all of these approaches is that our uncertainty in the derived variable

is proportional to the number of measurements for which it was computed.

In the unbalanced case (e.g., drop-outs), different subjects will have different

numbers of measurements and hence different uncertainties, therefore violat-
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ing the commonly made assumption of homoscedasticity. Furthermore, by

reducing multiple repeated measurements to a single summary measurement,

there is typically, a substantial loss of statistical power. Finally, use of time-

varying covariates is not possible when the temporal aspect of the data has

been removed.

Second, perhaps the simplest, but most restrictive model is the ANOVA

for repeated measurements (Winer, 1971). The model assumes compound

symmetry which implies constant variances and covariances over time. Clearly

such an assumption has little, if any validity for longitudinal data. Typically,

variances increase with time because some subjects respond and others do not,

and covariances for proximal occasions are larger than covariances for distal

occasions. The model allows each subject to have his or her own trend line,

however, the trend lines can only differ in terms of their intercepts, which

implies that subjects deviate at baseline, but are consistent thereafter. It is

more likely, of course, that subjects will deviate systematically from the overall

trend both at baseline and in terms of the rate that they change over time (i.e.,

their slope).

Third, MANOVA models have also been proposed for analysis of longi-

tudinal data (see Bock, 1975). In the multivariate case, the repeated obser-
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vations are generally transformed to orthogonal polynomial coefficients, and

these coefficients (e.g., constant, linear, quadratic growth rates) are then used

as multivariate responses in a MANOVA. The principle disadvantages of this

approach is that it does not permit missing data, or different measurement

occasions for different subjects.

Fourth, generalized mixed-effects regression models, which form the pri-

mary emphasis of this book, are now quite widely used for analysis of lon-

gitudinal data. These models can be applied to both normally distributed

continuous outcomes as well as categorical outcomes and other nonnormally

distributed outcomes such as counts that have a Poisson distribution. Mixed-

effects regression models are quite robust to missing data, irregularly spaced

measurement occasions, and can easily handle both time-invariant and time-

varying covariates. As such, they are among the most general of the methods

for analysis of longitudinal data. They are sometimes called “full-likelihood”

methods, because they make full use of all available data from each subject.

The advantage is that missing data are ignorable if the missing responses can

be explained either by covariates in the model, or by the available responses

from a given subject. The disadvantage is that full-likelihood methods are

more computationally complex than quasi-likelihood methods, such as gener-
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alized estimating equations (GEE).

Fifth, covariance pattern models (Jennrich and Schluchter, 1986) can also

be used to analyze longitudinal data. Here, the variance-covariance matrix

of the repeated outcomes is modeled directly, and there is no attempt at dis-

tinguishing within-subjects variance from between-subjects variance, as is the

case with mixed-effects regression models. Typically, the variance-covariance

matrix is modeled in terms of a relatively small number of parameters and

full-likelihood estimation methods are used.

Sixth, GEE models are often used as a very general and computationally

convenient alternative to mixed-effects regression models. They can be used

to fit a wide variety of types of outcome measures, and do not require complex

numerical evaluation of the likelihood for nonlinear models. The disadvantage,

is that missing data are only ignorable if the missing data are explained by

covariates in the model. This is an overly restrictive assumption and therefore,

GEE models have only limited applicability to incomplete longitudinal data.
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1.7 The Simplest Longitudinal Analysis

A paired t-test can be used to determine if there is significant average change

between two timepoints. For this, note that:

• i = 1, . . . , N subjects

• yi1 = pre-test

• yi2 = post-test

• di = yi2 − yi1 = post to pre change score

The null hypothesis can be written as:

H0 : µy1 = µy2 same as H0 : (µy2 − µy1) = 0

The test statistic is computed as:

t = d̄ /
(
sd/

√
N

)

= d̄ /




√√√√[∑
i

d2
i − (

∑
i

di)2/N

]
/(N − 1) /

√
N




H0∼ tN−1

Notice, that we can do the same test using a regression model:

di = β0 + ei ,
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and testing H0 : β0 = 0

1.7.1 Change Score analysis

Suppose there is a grouping variable

• xi = 0 for controls

• xi = 1 for treatment group

A regression model for the change score is given by:

di = β0 + β1xi + ei .

Hypothesis testing is as follows:

• testing H0 : β0 = 0 tests whether the average change is equal to zero for

the control group

• testing H0 : β1 = 0 tests whether the average change is equal for the two

groups

Notice that the change score analysis is equivalent to regressing the post-

treatment measurement on the treatment variable, using the pre-treatment

measurement as a covariate with slope equal to one.
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di = β0 + β1xi + ei

yi2 − yi1 = β0 + β1xi + ei

yi2 = yi1 + β0 + β1xi + ei

1.7.2 Analysis of covariance of post-test scores

When the slope describing the relationship between the pre-test and post-

test score is not one (i.e., β2 �= 1), then we have an ANCOVA model for the

post-test score, i.e.,

yi2 = β0 + β1xi + β2yi1 + ei .

In terms of hypothesis testing we have

• testing H0 : β0 = 0 tests whether the average post-test is equal to zero

for the control group subjects with zero pre-test

• testing H0 : β1 = 0 tests whether the post-test is equal for the two groups,

given the same value on the pre-test (i.e., conditional on pre-test)
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• testing H0 : β2 = 0 tests whether the post-test is related to the pre-test,

conditional on group

Note that change score analysis and ANCOVA answer different questions.

Change score analysis tests if the average change is the same between the

groups, whereas ANCOVA tests if the post-test average is the same between

groups for sub-populations with the same pre-test values (i.e., is the condi-

tional average the same between the groups). The choice of which to use

depends on the question of interest. The two models often yield similar con-

clusions for a test of the group effect. If subjects are randomized to group,

then ANCOVA is more efficient (i.e., more powerful), however, one must be

careful in non-randomized settings, where groups are not necessarily similar

in terms of pre-test scores (Lord’s paradox, see Bock, 1975; Allison, 1990)

1.7.3 ANCOVA of change scores

Many practitioners have argued whether it is better to use the post-treatment

ANCOVA (adjusting for pre-treatment) or to use ANCOVA on change scores

adjusting for pre-treatment. With a bit of algebra, it is easy to show that the

two approaches are identical for testing the null hypothesis of no treatment

effect (i.e., H0 : β1 = 0).
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di = β0 + β1xi + β2yi1 + ei

yi2 − yi1 = β0 + β1xi + β2yi1 + ei

yi2 = β0 + β1xi + (1 + β2)yi1 + ei

1.7.4 Example

The Television School and Family Smoking Prevention and Cessation Project

(Flay, et al., 1988) was designed to increase knowledge of the effects of tobacco

use in school-age children. Characteristics of the sample are as follows:

• sample - 1600 7th-graders - 135 classrooms - 28 LA schools

– between 1 to 13 classrooms per school

– between 2 to 28 students per classroom

• outcome - knowledge of the effects of tobacco use

• timing - students tested at pre and post-intervention
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• design - schools randomized to

– a social-resistance classroom curriculum (CC)

– a media (television) intervention (TV)

– CC combined with TV

– a no-intervention control group

The first hypothesis to be tested was whether there was change across time.

Summary statistics listed below reveal that there was an overall increase in

knowledge scores of 0.59 units.

Variable N Mean Std Dev Minimum Maximum

PRETHKS 1600 2.06938 1.26018 0 6.00000

POSTHKS 1600 2.66188 1.38293 0 7.00000

THKSdelt 1600 0.59250 1.57932 -5.00000 6.00000

A simple change score analysis revealed that this difference was significant

(t = 15.01, p < .0001). Alternatively, a regression model with intercept and

no regressors, yielded the identical result:
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Parameter Standard

Variable Estimate Error t Value Pr > | t |

Intercept 0.59250 0.03948 15.01 < .0001

Next, we examine the effect of the CC and TV interventions on change in

knowledge. Summary statistics for the 2 x 2 design are given below.

Tobacco and Health Knowledge Scale

Subgroup Descriptive Statistics

Pretest, Post-Intervention, and Difference

CC = no CC = yes

TV = no TV = yes TV = no TV = yes

N 421 416 380 383

Pretest mean 2.152 2.087 2.050 1.979

sd 1.182 1.288 1.285 1.286

Post-Int mean 2.361 2.539 2.968 2.823

sd 1.296 1.437 1.405 1.312

Difference 0.209 0.452 0.918 0.844
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Does change across time vary by CC, TV, or both? To test this hypothesis,

we begin by graphically displaying the changes for each of the four groups in

Figure 1.1.

Next, we compute a regression analysis for Post intervention knowledge scores.

The model with main effects and interaction of CC and TV effects yielded a

significant main effect of CC and a CC by TV interaction. The TV effect

approached significance (p<.06).
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Parameter Standard

Variable Estimate Error t Value Pr > | t |

Intercept 2.36105 0.06646 35.52 <.0001

CC 0.60738 0.09649 6.29 <.0001

TV 0.17742 0.09427 1.88 0.0600

CCTV -0.32338 0.13652 -2.37 0.0180

Adjusting for pre-intervention knowledge scores yielded significant main effects

and interactions.

Parameter Standard

Variable Estimate Error t Value Pr > | t |

Intercept 1.66126 0.08436 19.69 <.0001

PRETHKS 0.32518 0.02585 12.58 <.0001

CC 0.64055 0.09210 6.95 <.0001

TV 0.19871 0.08996 2.21 0.0273

CCTV -0.32162 0.13025 -2.47 0.0136
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Regression on difference scores yielded quite similar results to the baseline

adjusted post-intervention regression model.

Parameter Standard

Variable Estimate Error t Value Pr > | t |

Intercept 0.20903 0.07573 2.76 0.0058

CC 0.70939 0.10995 6.45 <.0001

TV 0.24290 0.10742 2.26 0.0239

CCTV -0.31798 0.15556 -2.04 0.0411

Finally, adding pre-intervention knowledge scores as a covariate, produces

identical intervention effects to the model for post-intervention scores.

Parameter Standard

Variable Estimate Error t Value Pr > | t |

Intercept 1.66126 0.08436 19.69 <.0001

PRETHKS -0.67482 0.02585 -26.10 <.0001

CC 0.64055 0.09210 6.95 <.0001

TV 0.19871 0.08996 2.21 0.0273

CCTV -0.32162 0.13025 -2.47 0.0136
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1.8 Summary

Longitudinal studies represent enormous advantages over cross-sectional stud-

ies in terms of providing foundations for causal inference. It is not surprising

that the required level of statistical sophistication required for the analysis of

longitudinal data is more advanced as well. Despite their advantages, longi-

tudinal data are not without their challenges. The treatment of missing data

plays a far greater role in longitudinal studies than it does in cross-sectional

studies and analysis of naturalistic or observational longitudinal data is com-

plicated by numerous sources of bias due to selection effects. In the following

chapters, we provide a variety of approaches to the analysis of different types of

longitudinal data, present their strengths and limitations, and illustrate their

use with real examples.


