
Chapter 3

MANOVA Approaches to

Longitudinal Data

As discussed in the previous chapter, there are two classical approaches to the

analysis of longitudinal data, the first, called variously univariate mixed-model,

split-plot, or repeated-measures ANOVA, and the second based on multivari-

ate ANOVA (MANOVA). In this chapter, we discuss the general multivariate

growth curve model. The primary advantage of the MANOVA approach ver-

sus the ANOVA approach is that the MANOVA assumes a general form for the

correlation of repeated measurements over time, whereas the ANOVA assumes

the much more restrictive compound-symmetric form. The disadvantage of the
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MANOVA model is that it requires complete data. Subjects with incomplete

data must be removed from the analysis, leading to potential bias. In addition,

both MANOVA and ANOVA models focus on comparison of group means and

provide no information regarding subject-specific growth curves. Finally, both

ANOVA and MANOVA models require that the time-points are fixed across

subjects (either evenly or unevenly spaced) and are treated as a classification

variable in the ANOVA or MANOVA model. This precludes analysis of unbal-

anced designs in which different subjects are measured on different occasions.

In the following sections, we describe the MANOVA model in detail. While

it is no longer recommended for routine application (if at all), it is important in

that it helps to fix ideas for the development of the more modern and advanced

methods that are the primary focus of this book.

3.1 MANOVA for Repeated Measurements

In the MANOVA approach to analysis of repeated measurements, the n re-

peated measures are treated as a n × 1 response vector yi. Due to the multi-

variate nature of the analysis, subjects with any missing yij (across time) are

omitted from the analysis. This is the “Achilles heel” of the MANOVA model
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for repeated measurements and why it is largely of only limited use in many

research fields. The MANOVA model is given by,

yi = µ + εi , (3.1)

where µ = n × 1 mean vector for timepoints, and εi = n × 1 vector of errors,

distributed ∼ N(0,Σ) in the population. Notice, that under univariate model

assumptions:

• Σ = σ2
π1n1

′
n + σ2

eIn

• µ = µ + τ (i.e., grand mean and time effects)

• ⇒ univariate results can be extracted from the multivariate model (and

calculations).

For the one-sample case, we can characterize the timepoint vector µ and choose

contrasts depending on structure and hypotheses of interest.

3.1.1 Growth Curve Analysis - polynomial representa-

tion

The polynomial growth-curve model is generally described as
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where t1, t2, . . . , tn represent time-point values, and q ≤ n represents the degree

of the polynomial. It is generally advantageous to orthogonalize T as µ = P ′θ

where P is q×n matrix of orthogonal polynomials. The first row of P is for the

constant term, and the remaining rows correspond sequentially to the linear,

quadratic, etc. polynominal terms.

• P = S−1T and SS′ = (TT ′) Cholesky factorization

• S is a q × q lower triangular matrix
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The orthogonal polynomial trend model for q = n = 4 is given by

P 4 =




1 1 1 1
... ÷√

4

−3 −1 1 3
... ÷√

20

1 −1 −1 1
... ÷√

4

−1 3 −3 1
... ÷√

20




p0

p1

p2

p3 ,

(3.2)

or equivalently as

Pyi = Pµ + Pεi

= θ + ε∗
i

where

• θ = n× 1 vector of transformed population means with its least squares

estimate given by the transformed sample mean vector, namely θ̂ = P ȳ.,

and

• ε∗
i ∼ N(0,Σ∗ = PΣP ′).

Note that the univariate ANOVA assumes that PΣP ′ is diagonal with equal
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values below the first element (since P , as defined above, includes the zero-

order term, i.e., the grand mean). The corresponding MANOVA table is

source df SSCP (n × n) E(SSCP)

Time 1 SST∗ = NP ȳ.ȳ
′
.P

′ P [Σ+ Nµµ′]P ′

Residual N − 1 SSR∗ = P SSR P ′ (N − 1)PΣP ′

= P (Y ′Y − N ȳ.ȳ
′
.)P

′

where Y is the N × n matrix of all data, ȳ. is the n × 1 vector of timepoint

means, SST∗ has as its first diagonal element Nnȳ2
.. which is a function of

the grand mean, and the other n − 1 diagonal elements are the orthogonal

polynomial decomposition of Time SS = N
∑n

j=1(ȳ.j − ȳ..)
2, and SSR∗ has its

first diagonal element n
∑N

i=1(ȳi. − ȳ..)
2, and other n− 1 diagonal elements are

the orthogonal polynomial decomposition of Error (i.e., Subject by Time) SS.

The orthogonal polynomial partition of sum of squares and products in the
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one-sample case is given by

diag element

Time: df = 1

SST∗ =




sst0

sst1

sst2

. . .

sstn−1




constant

linear time

quad time

. . .

(n − 1)th time

Residual: df = N − 1

SSR∗ =




ssr0

ssr1

ssr2

. . .

ssrn−1




subjects

subj × lin

subj × quad

. . .

subj × (n − 1)

(3.3)

Note that these are symmetric matrices, however the diagonals contain all of
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the information of interest in SS calculations.

3.1.2 Extracting Univariate Repeated Measures ANOVA

Results

Univariate repeated measures results can be extracted directly from the MANOVA

results as follows:

Source df SS MS E(MS)

Subjects N − 1 SSS = n
∑N

i=1(ȳi. − ȳ..)
2 SSS

N−1
σ2

e + nσ2
π

Time n − 1 SST = N
∑n

j=1(ȳ.j − ȳ..)
2 SST

n−1
σ2

e +

N
∑

(τj − τ.)
2

Residual (N − 1) SSR =
∑N

i=1

∑n
j=1 yij

SSR

(N−1)(n−1)
σ2

e

×(n − 1) −ȳi. − ȳ.j + ȳ..)
2

total Nn − 1 SSy =
∑N

i=1

∑n
j=1(yij − ȳ..)

2

where
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• SSS = ssr0 from SSR∗ matrix,

• SST =
∑

lower n − 1 SST∗ diagonal elements ,

• SSR =
∑

lower n − 1 SSR∗ diagonal elements .

Notice that,

MSR =

∑
lower n − 1 SSR∗ diagonal elements

(N − 1)(n − 1)

=
average n − 1 SSR∗ diagonal elements

(N − 1)
.

These are sometimes referred to as “averaged” tests.

3.1.3 Multivariate Test of the Time Effect

In order to test the null hypothesis of no effect of time, i.e., H0 : µ elements are

all equal such that H0 : τ = 0, we must extract and compare the (n−1)×(n−1)

submatrices of SST∗ and SSR∗. To do this requires solution of the two-matrix

eigen problem:

| SST∗
(n−1) − λ SSR∗

(n−1)| = 0 (3.4)
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Note that λ = 1 if SST∗
(n−1) = SSR∗

(n−1). To simplify the problem, we

use the Cholesky factorization SSR∗
(n−1) = EE′ to yield a 1-matrix eigen

problem,

|E−1 SST∗
(n−1)(E

−1)′ − λI(n−1)| = 0 . (3.5)

Overall test statistics for the null hypothesis of no time-effects include Roy’s

largest root statistic (eigenvalue of λ), and Wilk’s Lambda (Λ = 1/(1 + λ)).

Functions of these test statistics approximately follow an F -distribution (under

the null hypothesis), though sometimes interpolation is necessary, giving rise

to fractional df in some cases. Other multivariate test statistics include the

Hotelling-Lawley trace and the Pillai-Bartlett trace.

3.1.4 Tests of Specific Time Elements

To test specific components of the time effect, there are two options depending

on whether sphericity is reasonable or not. First, if sphericity is reasonable,

then we can obtain univariate test statistics by extracting the lower n − 1
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diagonal elements of SST∗, using MSR as a denominator, i.e.,

F1 = sst1∑n−1

j=1
ssrj/[(n−1)(N−1)]

linear

F2 = sst2∑n−1

j=1
ssrj/[(n−1)(N−1)]

quadratic

. . . .

Fn−1 = sstn−1∑n−1

j=1
ssrj/[(n−1)(N−1)]

(n − 1)th

(3.6)

Notice, again that the denominator is akin to an averaged estimate of the error

variance across time.
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If sphericity is rejected, then a multivariate test should be used by extract-

ing and comparing the lower n − 1 diagonal elements of SSM∗ and SSR∗

F1 = sst1

ssr1/(N−1)
linear

F2 = sst2

ssr2/(N−1)
quadratic

. . . .

Fn−1 = sstn−1

ssrn−1/(N−1)
(n − 1)th

(3.7)

Here, there is no pooling across time to obtain an averaged error term. Instead,

each component has its own error term. This is why, in general, the univarate

tests, which use the pooled error term, are more powerful than the multivariate

tests.

3.2 MANOVA of Repeated Measures - s Sam-

ple Case

When there are multiple groups, we have
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• h = 1, . . . , s groups

• i = 1, . . . , Nh subjects in group h

• j = 1, . . . , n timepoints

• N =
∑

Nh total number of subjects

The model becomes,

yhi = µ + γh + εhi (3.8)

where

• µ is the n × 1 vector of time-point means,

• γh is the n×1 vector effect for the population from which the hth group

of subjects was drawn,

• εhi is the n × 1 vector of errors ∼ N(0,Σ) in each of the populations

The model assumes homogeneity of variance-covariance across the s groups.

Again, with orthogonal transformation for time effects

Pyhi = Pµ + Pγh + Pεhi
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ε∗
hi ∼ N(0,Σ∗ = PΣP ′) ,

we can test Σ∗ for sphericity and proceed using univariate “averaged” tests.

The resulting MANOVA table is given by

source df SSCP (n × n)

Time 1 SST∗ = P SST P ′ = NP ȳ..ȳ
′
..P

′

Group s − 1 SSG∗ = P SSG P ′ = P (
∑

h Nhȳh.ȳ
′
h. − SST )P ′

Residual N − s SSR∗ = P SSR P ′ = P ( SSY − SSG − SST )P ′

Total N =
∑

Nh SSY∗ = P SSY P ′ = P (
∑

h

∑
i yhiy

′
hi)P

′

The results depend only on the following summary statistics:

• Cross-product matrix from the overall mean vector ȳ..ȳ
′
..

• Sum of cross-product matrices from the group mean vectors
∑

h Nhȳh.ȳ
′
h.

• sum of cross-product matrices from the subject data vectors
∑

h

∑
i yhiy

′
hi

For the case of orthogonal polynomial trend coefficients, we can partition

the sum of squares and products, where the diagonal elements are:
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diag element

Time: df = 1

SST∗ =




sst0

sst1

sst2

. . .

sstn−1




constant

linear time

quad time

. . .

(n − 1)th time

Between groups: df = s − 1

SSG∗ =




ssg0

ssg1

ssg2

. . .

ssgn−1




groups

grps × lin

grps × quad

. . .

grps × (n − 1)

Subjects within groups: df = N − s

SSR∗ =




ssr0

ssr1

ssr2

. . .

ssrn−1




subjects

s(g) × lin

s(g) × quad

. . .

s(g) × (n − 1)

(3.9)
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3.2.1 Extracting Univariate Results

Given the results of the previous section, it is a simple matter to extract the

univariate ANOVA results, as shown in the following.

source

SS Time = sst1 + sst2 + . . .+ sstn−1 SST∗

SS Group = ssg0 SSG∗

SS GT = ssg1 + ssg2 + . . .+ ssgn−1 SSG∗

SS Subj within grps = ssr0 SSR∗

SS Residual = ssr1 + ssr2 + . . .+ ssrn−1 SSR∗

For the denominator we need:

• Time, G by T, & Subj: SS Residual/(N − s)(n − 1)

⇒ average of n − 1 residual terms

• Group: ssr0 /(N − s) .
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3.2.2 Multivariate Tests

For the multivariate model, the overall group test is the same as the univariate

case. In contrast, each time-related term has its own denominator, e.g., after

the overall multivariate test of the Group by Time interaction, individual

components are tested as:

FGT1
=

ssg1/(s−1)

ssr1/(N−s)
group by linear

FGT2
=

ssg2/(s−1)

ssr2/(N−s)
group by quadratic

. . . .

FGTn−1
=

ssgn−1/(s−1)

ssrn−1/(N−s)
group by (n − 1)th

(3.10)

each on s − 1 and N − s degrees of freedom. The multivariate test of the

Group by Time interaction is obtained by extracting the (n − 1) × (n − 1)

submatrices of SSG∗ and SSR∗, and solving the 2-matrix eigen problem for

min(s − 1, n − 1) roots as:

| SSG∗
(n−1) − λ SSR∗

(n−1)| = 0 (3.11)
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Several test statistics are generally provided by standard statistical software

for MANOVA: Roy’s largest root statistic, Wilk’s Lambda, Hotelling-Lawley

Trace, and Pillai’s Trace. Roy’s largest root statistic is given by the first

eigenvalue λ1. Wilk’s Lambda is computed as

Λ =
s−1∏
h=1

1 / (1 + λh) . (3.12)

These same tests can be constructed for n − q − 1 terms if only a q < n

degree trend is considered (e.g., only test for linear and quadratic trends even

if n > 3). If the test is nonsignificant, we may want to pool the Group ×

Time interaction into the Residual for (multivariate) testing of Time effects.

Unfortunately, despite the increase in statistical power, pooling is not easily

accomplished with most MANOVA statistical software.

3.2.3 General Framework

To consider a general framework for the multivariate model, let A and B be two

between-subjects factors (e.g., sex and group), and T be the within-subjects
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factor (e.g., time). The general setup is:

within- between-subjects

subjects I A B AB

(1) (a − 1) (b − 1) (a − 1)(b − 1)

I grand mean sex group sex × group

(1)

T time sex group sex × group

(n − 1) × time × time × time

Note that we may want to test time-related terms with less than (n − 1) df,

especially with orthogonal polynomials, which are difficult to interpret beyond

the cubic term. In other cases, we may have a design on the repeated mea-
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surements. For example, consider the following two-period crossover study:

period 1 period 2

drug placebo drug placebo

drug placebo placebo drug

placebo drug drug placebo

placebo drug placebo drug

The MANOVA table has the following form.

within- between-subjects

subjects I(1) Order (c − 1)

I grand mean order

(1)

Group group order

(a − 1) × group

Period period order

(b − 1) × period

Group × Period grp × period order

(a − 1)(b − 1) × group × period

with n− 1 = (a− 1)+ (b− 1)+ (a− 1)(b− 1), where n is the total number
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of time-points.

3.3 Illustration

To illustrate the multivariate approach, we return to the vocabulary growth

data previously presented in Chapter 2 and in Bock (1975). Summary statis-

tics (vocabulary score means, standard deviations, and correlations between

the grades) are presented in Table 2.1, and are displayed graphically in Figure

2.1. Pre-multiplying the vector mean

ȳ =




1.14

2.54

2.99

3.47




,

by the orthogonal polynomial matrix

P =




.5 .5 .5 .5

−.67082 −.22361 .22361 .67082

.5 −.5 −.5 .5

−.22361 .67082 −.67082 .22361




,
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yields following orthogonal polynomial coefficients.

Constant 5.0694

Linear 1.6658

Quadratic -0.4606

Cubic 0.2224

The polynomial SST∗ matrix, presented in Table 3.1, is obtained by multi-

plying the squares and cross products of these coefficients by the number of

subjects (N = 64). Similarly, the residual SSR∗ matrix in Table 3.1 is obtained

by the matrix calculation:

SSR∗ = P (Y ′Y − N ȳ.ȳ
′
.)P

′ .

These are referred to as sums of squares and cross product (SSCP) matrices.

In the present case, the SSR∗ matrix conforms to mixed-model assumptions

in that the off-diagonal elements (of the lower three by three portion of this

matrix) are small relative to their corresponding diagonal elements, and the

last three diagonal elements are of the same magnitude. A test of this as-

sumption (not shown) does not reject sphericity. However, for illustration, we

will interpret the multivariate results for these data and compare them to the
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univariate results presented in Chapter 2.

To obtain the multivariate test for the grade effect, the eigen problem

|E−1 SST∗
(n−1)(E

−1)′ − λI(n−1)| = 0 , (3.13)

where we use the Cholesky factorization SSR∗
(n−1) = EE′, yields 4.7432 as

Roy’s largest root statistic (eigenvalue of λ). Similarly, Wilks’ Lambda equals

1/(1 + 4.7432) = .17412. It can be shown that these translate to a F -value of

96.45 (see Finn, 1974) with df = 3, 61, which is highly significant p < .0001.

Thus, there is clearly a grade effect on average vocabulary scores.

In terms of the individual trend components, results of the analysis are

quite similar to the univariate results presented in Chapter 2, though the

cubic term is even less significant here. As in the univariate analysis, both the

linear and quadratic trend components are highly significant. Notice that the

multivariate analysis uses separate denominators for forming these F -values

for the trend components (e.g., Linear F = 177.59 / (50.42/63) = 221.88),

whereas the univariate analysis uses the pooled MSE (e.g., Linear F = 177.59

/ (((50.42 + 43.95 + 60.57)/3)/63) = 216.57).

The univariate sums of squares in Tables 2.2 and 2.3, may be obtained

from Table 3.1 as follows: (a) the constant term is the first diagonal element

of SST∗, and the linear, quadratic, and cubic polynomial grade sums of squares
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are the remaining diagonal elements of SST∗; (b) the subject sums of squares

is the first diagonal element of SSR∗, and (c) the residual sums of squares is

the sum of the remaining three diagonal elements of SSR∗.

Table 3.1

Multivariate Analysis of Variance of the

Orthogonal Polynomial Transformed Vocabulary-Growth Data

Source df SSCP F p

Time SST∗ 1

Constant 1644.71

Linear 540.45 177.59 221.88 .0001

Quadratic -149.45 -49.11 13.58 19.46 .0001

Cubic 72.16 23.71 -6.56 3.17 3.29 .075

Residual SSR∗ 63

Between subjects 873.60

Linear error 3.84 50.42

Quadratic error -49.82 12.05 43.95

Cubic error -23.76 -3.36 -4.27 60.57
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3.4 Summary

In summary, ANOVA and MANOVA approaches for analysis of longitudinal

data represent well understood and well developed statistical methodologies.

In addition, there is considerable available computer software for their com-

putation. The results are based on relatively simple and non-iterative calcu-

lations. Both models, unfortunately, have features which limit their usage in

longitudinal data analysis. The ANOVA model for repeated measurements

assumes sphericity, which is unrealistic for many applications where variances

tend to increase with time and correlation decreases with increasing inter-

vals in time. Alternatively, while the MANOVA model allows for a general

variance-covariance structure for the repeated measures, it has the disadvan-

tage of requiring complete data for all subjects and identical measurement

occasions. Unfortunately, this overly stringent requirement is violated in most

cases. Furthermore, software implementations of the multivariate model often

provide only limited ways of handling covariates. In the following chapters, we

consider more general models that overcome the limitations of these traditional

approaches.


