
Chapter 5

Mixed-Effects Polynomial Regression

Models for Continuous Outcomes

5.1 Introduction

In many situations, it is too simplistic to assume that the change across time is linear.

For example, it may be that the outcome changes cross time in a curvilinear manner. A

curvilinear trend would allow a leveling off or accelerating of the change across time. This is

clearly plausible in many situations, but especially for rating scale data, like that considered

in the last chapter, where ceiling and floor effects can easily occur. In this chapter we

will explore the use of polynomial trend models, illustrating how they can be used to model

particular kinds of non-linear relationships across time both at the individual and population

levels.
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5.2 Curvilinear Trend Model

To begin, consider the following curvilinear trend model that is obtained by adding a

quadratic, or squared, term to the level-1 model:

yij = b0i + b1itij + b2it
2
ij + εij . (5.1)

Here, b0i is the intercept for subject i, b1i is the linear trend component for subject i, and b2i

is the quadratic trend component for subject i. Notice that this model can also be written

as

yij = b0i + (b1i + b2itij)tij + εij

to point out that the “time effect” varies as a function of time. The level-2, between-subjects,

model is now

b0i = β0 + υ0i

b1i = β1 + υ1i

b2i = β2 + υ2i (5.2)

where β0 is the intercept, β1 is the average linear trend component, and β2 is the average

quadratic trend component. Similarly, υ0i is the individual deviation from average intercept,

and υ1i and υ2i represent the individual deviation the from average linear and quadratic trend

components, respectively. Thus, this model allows curvilinearity at both the population (β2)

and individual (υ2i) levels. In some situations it may be reasonable to restrict the curvilinear
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part to the level-1 model only, in which case the final component of the level-2 model would

simply be b2i = β2.

Figure 5.1 gives a sense of some of the possible time-trends that can be fit using curvilinear

trend models.

Figure 5.1. Various curvilinear models: (a) decelerating positive slope; (b) accelerating

positive slope; (c) decelerating negative slope; (d) accelerating negative slope

In the top two graphs, positive trends are either decelerating (a) or accelerating (b). The

linear component β1 equals 2 for both, while the quadratic component β2 is -.25 and .25,

respectively. Similarly for the negative trends on the bottom, the linear component equals

-2 for both, while the quadratic component is either .25 (decelerating negative) or -.25

(accelerating negative).
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Notice that the decelerating positive trend in (a) is flat as time increases. Similarly, the

negative trend in (c) flattens out. One can easily calculate the point at which a curvilinear

trend “flattens out.” For this, note that the derivative is

∂y

∂t
= β1 + 2β2t , (5.3)

which equals 0 for t = −β1/(2β2). So for our decelerating positive trend in (a) the flattening

out point is when time equals 4. Similarly, the decelerating negative trend flattens out when

time is 4. For proper interpretation of curvilinear models, it is very helpful to figure out

where the flattening out point occurs, since beyond that point the trend reverses sign. That

is, for (a) beyond week 4 the trend goes from being a positive one to a negative one.

This changing of signs can be useful in areas were the relationship across time is thought

to be J- or U-shaped. Figure 5.2 presents some examples of curves of these types. As can be

seen, a wide variety of relationships are possible simply by adding in the squared term for

time in the model.
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Figure 5.2. More curvilinear models:

(a) positive to negative slope (β0 = 2, β1 = 8, β2 = −1.2);

(b) inverted U-shaped slope (β0 = 2, β1 = 11, β2 = −2.2);

(c) negative to positive slope (β0 = 14, β1 = −8, β2 = 1.2);

(d) U-shaped slope (β0 = 14, β1 = −11, β2 = 2.2)
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5.2.1 Curvilinear Trend Example

Turning again to the Reisby dataset, we will add a quadratic time trend to both the popu-

lation and individual trends. Fitting this model yields the results given in Table 5.1.

Table 5.1

MRM results for level-1 model (5.1) and level-2 model (5.2).

Parameter Estimate SE z p <

β0 23.76 0.55 43.04 .0001

β1 -2.63 0.48 -5.50 .0001

β2 0.05 0.09 0.58 .56

σ2
υ0

10.44 3.59

συ0υ1 -0.92 2.41

σ2
υ1

6.64 2.76

συ0υ2 -0.11 0.42

συ1υ2 -0.94 0.49

σ2
υ2

0.19 0.09

σ2 10.52 1.11

Note. −2 log L = 2207.64

Comparing this model to one without these quadratic terms (i.e., the model listed in Table

5.5 of the previous chapter with β2 = σ2
υ2

= συ0υ2 = συ1υ2 = 0) yields a deviance of 11.4, which

is statistically significant on 4 degrees of freedom (even without an adjustment to the p-value

for testing of variance terms). This is interesting given that the Wald test for β2 is clearly

non-significant. In fact, comparing the above model to one with σ2
υ2

= συ0υ2 = συ1υ2 = 0

(not shown) yields a deviance of 11.0. Nearly all of the improvement in model fit is through

the inclusion of the quadratic term as a random effect, and not as a fixed effect. This

suggests that although the trend across time is essentially linear at the population level, it is
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curvilinear at the individual level. How is this possible? Consider Figure 5.3 which plots a

hypothetical example with an average linear trend and curvilinear trends for two individuals.

Figure 5.3. Average linear and individual quadratic trends.

Here, one individual has an accelerating positive trend (subject 2) and the other has a

decelerating positive trend (subject 1). These two “cancel out” to yield an average positive

trend that is strictly linear.

For the Reisby data, though the quadratic term is non-significant at the population level,

it is instructive to calculate the point at which the decelerating negative trend flattens out.

This yields:
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t̂ = −β̂1/(2β̂2) = 1/2(2.63/0.05) = 26.3 ,

which is well beyond the time-frame of the study. Thus, the curvilinear component is clearly

very slight (at the population level).

Figure 5.4 contains a plot of the individual trend estimates from this model. These are

obtained by calculating ŷij = b̂0i + b̂1itij + b̂2it
2
ij for t = 0, 1, . . . , 5, and then connecting the

timepoint estimates for each individual. The plot makes apparent the wide heterogenity

in trends across time, as well as the increasing variance in HD scores across time. Some

individuals have accelerating downward trends suggesting a delay in the drug effect. Alter-

natively, others have decelerating downward trends, which are consistent with a leveling off

of the drug effect. Some individuals even have positive trends indicating a worsening of their

depressive symptoms across time. This is not too surprising given that antidepressants, like

imipramine, are known to be ineffective for some patients. The figure is also interesting in

showing that many of the individual trend lines are approximately linear. Thus, the im-

provement that the curvilinear model provides in describing change across time is perhaps

modest.



Mixed-Effects Polynomial Regression Models 167

Figure 5.4. Reisby data: estimated curvilinear trends.

The model fit of the observed variance-covariance matrix of the repeated measures is

obtained as:

V̂ (y) = ZΣ̂υZ
′ + σ̂2I
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=




20.96

9.41 23.86

8.16 15.57 31.07

6.68 16.08 23.11 38.31

4.98 14.88 23.26 30.12 45.98

3.06 11.97 20.98 30.09 39.29 59.11




,

where

Z ′ =




1 1 1 1 1 1

0 1 2 3 4 5

0 1 4 9 16 25




, Σ̂υ =




10.44 −0.92 −0.11

−0.92 6.64 −0.94

−0.11 −0.94 0.19




,

and σ̂2 = 10.52. By comparing this matrix with the observed variance-covariance matrix,

presented in the previous chapter, one can see that the estimated variances are close to the

observed, and the model is clearly picking up the pattern of diminishing covariance away

from the diagonal and at the earlier timepoints. We will return to this issue regarding the

the relative model fit of the observed (co)variances later in this chapter.

5.3 Orthogonal Polynomials

For trend models, it is often beneficial to represent the polynomials in orthogonal form

[Bock, 1975]. One advantage is that it avoids collinearity problems that can result from

using multiples of t (t2, t3, etc.) as regressors. To see this, consider a curvilinear trend

model with three timepoints. Then t = 0, 1, and 2, while t2 = 0, 1, and 4; these two

variables are nearly perfectly correlated. To counter this, time is sometimes expressed in

centered form, for example (t− t̄) = -1, 0, and 1, and (t− t̄)2 = 1, 0, and 1. If there are the
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same number of observations at the three timepoints, this centering removes the correlation

between the linear and quadratic trend components entirely. In the more usual situation

of non-equal numbers of observations across time, this greatly diminishes the correlation

between the polynomials. Another aspect of centering time is that the meaning of the model

intercept changes. In the previous raw form of time, the intercept represented differences at

the first timepoint (i.e., when time = 0). Alternatively, in centered form, the model intercept

represents differences at the midpoint of time.

An additional advantage of using orthogonal polynomials, over simply centering time, is

that the polynomials are put on the same scale. Thus, their estimated coefficients can be

compared in terms of their magnitude in the same way as standardized beta coefficients in

ordinary regression analysis. Also, in the original scale it gets increasingly difficult to estimate

the regression coefficients of higher-degree polynomial terms because the coefficients (and

their standard errors) get smaller and smaller. This computational problem is removed by

putting the polynomials on the same scale.

For equal time intervals, tables of orthogonal polynomials can be found in several statistics

texts, for example in Pearson and Hartley [1976]. For example, for a study with six equally-

spaced timepoints the orthogonal polynomials for the constant, linear, and quadratic trend

components are given as:



1 1 1 1 1 1

−5 −3 −1 1 3 5

5 −1 −4 −4 −1 5




/
√

6

/
√

70

/
√

84

.

The rows here represent the three orthogonal polynomials (constant, linear, and quadratic)

and the columns are the six timepoints. Notice that these row vectors are independent of each
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other, since the sum of inner products equals 0 in all cases (e.g., −5×5+−3×−1+. . .+5×5 =

0). Also, by dividing the values by the square-root of the quantities on the right, which are

simply the sum of squared values in a row, these polynomials have the same scale. Thus,

these terms are simultaneously made independent of each other and standardized to the

same (unit) scale. This holds exactly when the number of observations at each timepoint

are equal, and approximately so in the more usual situation when they are unequal.

To use orthogonal polynomials in a MRM, variables representing the trend components

must be created. This can be done using a series of IF statements in any statistical software

program. For example, below is SAS code that can be used to create the orthogonal trend

component variables for the first two timepoints, weeks 0 and 1, of this example with 6

timepoints (assuming a variable named WEEK that takes on values 0 to 5 in the dataset).

IF WEEK = 0 THEN DO;

CONS = 1 / SQRT(6);

LIN = -5 / SQRT(70);

QUAD = 5 / SQRT(84);

END;

IF WEEK = 1 THEN DO;

CONS = 1 / SQRT(6);

LIN = -3 / SQRT(70);

QUAD = -1 / SQRT(84);

END;
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The above statements assign the orthogonal polynomial values that are in the first two

columns of the matrix. Similar IF statements would be used to produce the orthogonal

polynomial values for the remaning study timepoints (i.e., the rightmost four columns of the

matrix). The new variables CONS, LIN, and QUAD would then be entered into MRM analysis

as regressors and random effects, with the caveat that an intercept should not be included

since the CONS term has taken its place.

While looking up the values of orthogonal polynomials in statistical tables can be in-

teresting (and possibly cure insomnia!), these can also be calculated directly. Bock [1975]

describes a method for doing this utilizing the Cholesky factorization (i.e., matrix square

root) of a symmetric matrix. This factorization has many uses in statistical computing and

so it is worth briefly going over. Specifically, the symmetric matrix A is factored as

A = SS′ ,

where S is the lower triangular Cholesky factor, and S′ is its upper triangular counterpart

(i.e., the transpose of the lower triangular matrix, since ′ denotes the transpose of a matrix).

Continuing with our quest of directly obtaining orthogonal polynomials, denote the time

matrix, including the intercept, as T . For example, in our case of 6 timepoints and up to

quadratic trend, we have:

T ′ =




1 1 1 1 1 1

0 1 2 3 4 5

0 1 4 9 16 25




.

Then, the steps one takes to obtain the orthogonal polynomial matix are:
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1. compute T ′T , which yields a symmetric matrix.

T ′T =




6 15 55

15 55 225

55 225 979




.

2. obtain the Cholesky factor S of T ′T , and express it in transpose form (i.e., upper

triangular).

S′ =




2.4495 6.1237 22.4537

0 4.1833 20.9165

0 0 6.1101




.

3. obtain the inverse (S ′)−1.

(S ′)−1 =




0.4082 −0.5976 0.5455

0 0.2390 −0.8183

0 0 0.1637




.

4. multiply T by this inverse (S′)−1.

T (S′)−1 =




0.4082 −0.5976 0.5455

0.4082 −0.3586 −0.1091

0.4082 −0.1195 −0.4364

0.4082 0.1195 −0.4364

0.4082 0.3586 −0.1091

0.4082 0.5976 0.5455




=




1/
√

6 −5/
√

70 5/
√

84

1/
√

6 −3/
√

70 −1/
√

84

1/
√

6 −1/
√

70 −4/
√

84

1/
√

6 1/
√

70 −4/
√

84

1/
√

6 3/
√

70 −1/
√

84

1/
√

6 5/
√

70 5/
√

84




,
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which yields the same orthogonal polynomial values as before.

Besides replicating the results found in statistical tables, this method has an important

advantage in that it can be used to create orthogonal polynomials for cases of unequal time

intervals simply by modifying the original T matrix. Notice also that to add a cubic term,

a row containing the t3 values would simply be added to the T ′ matrix. While it might

seem difficult to implement, use of matrix algebra routines in statistical packages makes this

procedure relatively easy. For instance, the SAS statements below can be used to perform

the above calculations.

TITLE ’producing orthogonal polynomial matrix’;

PROC IML;

time = { 1 0 0 ,

1 1 1 ,

1 2 4 ,

1 3 9 ,

1 4 16 ,

1 5 25 } ;

orthpoly = time∗INV(ROOT(T(time)∗time));

PRINT ’time matrix’, time [FORMAT=8.4];

PRINT ‘orthogonalized time matrix’, orthpoly [FORMAT=8.4];

This code uses two built-in SAS matrix routines: INV which performs matrix inversion and

ROOT which yields the transpose of the Cholesky factor (i.e., the upper triangular matrix

S′). Additionally, matrix multiplication is performed using the ∗ operator, which is also the

ordinary scalar multiplication operator. As can be seen, SAS allows these operations to be
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performed all on one line, so that there is no need to save intermediate results.

5.3.1 Model Representations

To distinguish between the two representations of the MRM, the original time metric T and

the orthogonal polynomial time metric T (S′)−1, it is helpful to modify the notation for the

latter. Consider first the matrix representation of the MRM:

yi = X iβ + Ziυi + εi , (5.4)

where time is expressed (in X and Z) in its original metric. The mean of the normally-

distributed random effects υi is 0 and the variance-covariance matrix is Συ. Also, the errors

εi are normally and independently distributed with 0 mean and variance σ2Ini
. Thus, the

dependent variable vector yi has mean X iβ and variance-covariance matrix ZiΣυZ
′
i+σ2Ini

.

Now for the model with orthogonal polynomials for time (in both X and Z), this requires

a simple replacement of X with X(S′)−1 and Z with Z(S ′)−1. Denote the parameters in

the orthogonal polynomial metric as γ and θi for the fixed and random effects parameters,

respectively. Then, the reparameterized model is given as:

yi = X i(S
′)−1γ + Zi(S

′)−1θi + εi . (5.5)

The random effects θi are distributed normally with mean vector 0 and variance-covariance

matrix Σθ. As a result, the dependent variable vector yi has its mean given as X i(S
′)−1γ
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and variance-covariance as:

V (yi) = (Zi(S
′)−1)Σγ(Zi(S

′)−1)′ + σ2Ini

Zi

[
(S′)−1ΣγS

−1
]
Z ′

i + σ2Ini
(5.6)

in the transformed metric.

5.3.2 Orthogonal Polynomial Trend Example

Here we refit the model presented in Table 5.1, except that orthogonal polynomials are used.

The results of this analysis are given in Table 5.2.

Table 5.2

MRM results for orthogonal polynomial version of

level-1 model (5.1) and level-2 model (5.2).

Parameter Estimate SE z p <

γ0 43.24 1.37 31.61 .0001

γ1 -9.94 0.86 -11.50 .0001

γ2 0.31 0.54 0.58 .56

σ2
θ0

111.91 21.60

σθ0θ1 37.99 10.92

σ2
θ1

37.04 8.90

σθ0θ2 -10.14 6.19

σθ1θ2 -0.82 3.80

σ2
θ2

7.23 3.50

σ2 10.52 1.11

Note. −2 log L = 2207.64

First, notice that the log-likelihood value is identical in Tables 5.1 and 5.2. Thus, the
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two solutions are equivalent, one is simply a re-expressed version of the other. Comparing

the regression coefficients, as before, we see that only the constant and linear terms are

significant. These terms also dominate in terms of magnitude; not only is the quadratic

term non-significant, it is negligible. Thus, at the population average level, the trend is

essentially linear.

Turning to the variance estimates, we see that the estimated constant variance (σ̂2
θ0

) is

much larger than the estimated linear trend component (σ̂2
θ1

), which is much larger than the

estimated quadratic trend component (σ̂2
θ2

). In terms of relative percentages, these three

represent 71.7, 23.7, and 4.6, respectively, of the sum of the estimated individual variance

terms. Thus, at the individual level there is heterogeneity in terms of all three components,

but with diminishing return as the order of the polynomial increases. This analysis then

quantifies what the plot of the empiricaly Bayes trends in Figure 5.4 depicts.

Inspection of the covariance terms reveals a strong positive association between the con-

stant and linear terms (σ̂2
θ1θ0

= 37.99, expressed as a correlation = .59). This seems to be

in contrast with the results for this term from the previous analysis in Table 5.1, where

there was a slight negative association between the intercept and linear terms (σ̂2
υ1υ0

= −.92,

expressed as a correlation = -.11). The reason for this apparent discrepancy is that in Ta-

ble 5.1, the intercept represents the first timepoint, whereas the constant term in Table 5.2

represents the average across time. Thus, an individual’s linear trend is both negatively

associated with their baseline depression level and positively associated with their average

depression level. Subjects with higher initial depression levels have more negative linear

slopes, and as a result, lower average depression values.
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5.3.3 Translating parameters

The parameters from a model using orthogonal polynomials can be directly related to those

in the corresponding model that uses the original metric for time. One is simply a re-

expressed or translated version of the other, with the matrix S′ or (S′)−1 serving as the

translator, depending on the direction of the translation. To see the connection between the

two, consider again the matrix representation of the MRM:

yi = X iβ + Ziυi + εi (5.7)

in the original metric, and

yi = X i(S
′)−1γ + Zi(S

′)−1θi + εi (5.8)

in the orthogonal metric. Thus, the two sets of model parameters are related according to:

β = (S′)−1γ (5.9)

υi = (S′)−1θi (5.10)

The two representations of the variance-covariance matrix of the random effects are re-

lated in a similar way. From before, we have that

V (yi) = ZiΣυZ
′
i + σ2Ini

(5.11)

in the original MRM, and

V (yi) = Zi

[
(S′)−1ΣγS

−1
]
Z ′

i + σ2Ini
(5.12)
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in the transformed metric. The relationship between the two versions of the variance-

covariance matrix of the random effects is therefore:

Συ = (S′)−1ΣγS
−1 . (5.13)

As can be seen, (S ′)−1 is the matrix translating the orthogonal polynomial parameters

to those in the original metric of time, and similarly S′ translates the parameters from the

original metric to the orthogonal polynomial metric, namely:

γ = S′β (5.14)

θi = S′υi (5.15)

Σγ = S′ΣυS (5.16)

These equations can be used to translate the estimates from one version of the model to

the other simply by plugging in the parameter estimates that are obtained from an analysis.

For example, one can derive the results from Table 5.1 (original time) based on those from

Table 5.2 (orthogonal time) according to:

β̂ = (S′)−1γ̂

=




0.4082 −0.5976 0.5455

0 0.2390 −0.8183

0 0 0.1637







43.24

−9.94

0.31




=




23.76

−2.63

0.05




(5.17)

To get standard errors of the parameter estimates a bit more work is required. For this,

one must obtain the variance-covariance matrix of the parameter estimates. Note that the

standard errors for a set of parameter estimates are equal to the square root of the diagonal
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entries of this matrix. For the regression coefficients, denote these as V (β̂) and V (γ̂) for our

two versions of the model. Both of these are symmetric p×p matrices, where p is the number

of polynomial trend components (including the intercept). Then, the following relationships

hold:

V (β̂) = (S′)−1 V (γ̂) S−1 (5.18)

V (γ̂) = S′ V (β̂) S (5.19)

Taking the square root of the diagonal elements of these matrices then provide the standard

errors for these two versions of the regression coefficients.

From our orthogonal analysis in Table 5.2, we have

V (γ̂) =




1.8708 0.5823 −0.1402

0.5823 0.7470 0.0214

−0.1402 0.0214 0.2914




and so,

V (β̂) =




0.4082 −0.5976 0.5455

0 0.2390 −0.8183

0 0 0.1637







1.8708 0.5823 −0.1402

0.5823 0.7470 0.0214

−0.1402 0.0214 0.2914




×




0.4082 0 0

−0.5976 0.2390 0

0.5455 −0.8183 0.1637




=




0.3048 −0.1199 0.0146

−0.1199 0.2294 −0.0382

0.0146 −0.0382 0.0078




.

Taking the square root of the diagonal entries of this matrix yields 0.5521, 0.4790, and 0.0883,

which agree with the reported standard errors for the fixed effects in Table 5.1.
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To obtain the standard errors for the variance-covariance parameter estimates, it is some-

what more difficult though the logic is the same. Notice that the regression coefficients are

p × 1 parameter vectors, whereas Συ and Σθ are r × r symmetric matrices of parameters

(where r is the number of random effects). The first step is then to vectorize these param-

eter matrices. This can be done using results from McCulloch [1982]. Specifically, we can

vectorize the relationship Σθ = S ′ΣυS as

vecΣθ = vec(S′ΣυS)

= (S′ ⊗ S′)vecΣυ

where vecΣθ is the r2 × 1 vector that is obtained by stacking the r column vectors of

the matrix Σθ on top of each other (similarly for vecΣυ), and ⊗ represents the Kronecker

product. For example, for a 3 × 3 matrix Σ the vec would be (using σ to represent either a

variance or covariance parameter):

vecΣ = (σ11 σ21 σ31 σ12 σ22 σ32 σ13 σ23 σ33)
′

Since Συ and Σθ are symmetric matrices, not all of the r2 elements in vecΣθ or vecΣυ

are unique; instead, each have r × (r + 1)/2 unique parameters. For this, McCulloch [1982]

defines the “vech” as the r∗ × 1 vector containing only the unique elements of a symmetric

matrix, where r∗ = r × (r + 1)/2. The vech stacks the on or above diagonal elements of a

square matrix on top of each other to form one column vector. Thus, for the same 3 × 3

matrix Σ considered above, the vech would be:

vechΣ = (σ11 σ12 σ22 σ13 σ23 σ33)
′
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Furthermore, G is the r2 × r∗ transformation matrix that carries the vech into the vec, i.e.,

vecΣ = GvechΣ. For example, with r = 3, the form of the G matrix is:

G =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




(5.20)

As a result, we can write:

GvechΣθ = (S ′ ⊗ S′)GvechΣυ

so that

vechΣθ = G+(S′ ⊗ S′)GvechΣυ (5.21)

where G+ is the Moore-Penrose inverse of G with the property that vechΣ = G+vecΣ

[Magnus, 1988]. For r = 3, the G+ matrix is:

G+ =




1 0 0 0 0 0 0 0 0

0 1
2

0 1
2

0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 1
2

0 0 0 1
2

0 0

0 0 0 0 0 1
2

0 1
2

0

0 0 0 0 0 0 0 0 1




(5.22)
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One can verify that pre-multiplying the vec by G+ does yield the vech, and that that pre-

multiplying the vech by G yields the vec for this 3 × 3 case.

Now we have the vector of r∗ unique parameters in Σθ expressed as a function of the r∗

unique parameters in Συ, pre-multiplied by the matrix product G+(S′⊗S ′)G. While this is

a more complicated expression than that relating the regression coefficients (i.e., γ = S ′β),

it has the same basic form. As a result, to obtain the variance-covariance matrix of the r∗

estimates in Σ̂θ, we get

V (vechΣ̂θ) = G+(S′ ⊗ S ′)G V (vechΣ̂υ) G′(S ⊗ S)G+′
. (5.23)

Notice that V (vechΣ̂θ) is a r∗ × r∗ matrix, and that taking the square root of the diagonal

elements of this matrix yields the standard errors for the r∗ unique elements of Σ̂θ. In a

similar way, we can obtain

V (vechΣ̂υ) = G+((S ′)−1 ⊗ (S′)−1)G V (vechΣ̂θ) G′(S−1 ⊗ S−1)G+′
, (5.24)

which again is a r∗ × r∗ matrix, which yields the standard errors for the r∗ unique elements

of Σ̂υ by taking the square root of the diagonal elements of this matrix.

5.3.4 Higher-order Polynomial Models

Thus far we have only considered curvilinear or quadratic trend models. Adding higher

order polynomials is sometimes of interest. In general if there are n timepoints than one can

consider n− 1 polynomials in terms of the mean structure, where the first-order polynomial

is the linear, the second-order is the quadratic, etc. For example, for the Reisby dataset
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with six timepoints, a model with up to the 5th-order polynomial could be fit in terms of

the fixed effects. With equal numbers of observations per timepoint, such a model would

fit the marginal timepoint means exactly because as many parameters (intercept plus n − 1

polynomial terms) are estimated as timepoints (n). In the unbalanced case, the fit would be

approximately equal.

How many polynomials can be fit in the random-effects part depends on the variation

in the data and its correlational structure. The maximum would also be n− 1 polynomials,

though in this case it is not possible to also estimate the error variance. This is because

the variance-covariance matrix of y is n × n, and so a maximum of n(n − 1)/2 variance-

covariance parameters are estimable. Thus, a model with a random intercept plus n − 1

random polynomial terms would represent a saturated model for the variance-covariance

structure.

Often, interpretation of higher-order polynomials beyond say quadratic and cubic trends

is complicated and there may be insufficient rationale to expect such trends anyway. Of

course this depends on the problem, but often models with linear, quadratic, and possibly

cubic polynomial trends do a reasonable job of balancing model fit and interpretation.

To augment our quadratic trend model to include a cubic trend, the t3 (original or

othogonal metric) is added to the within-subjects (level-1) model, namely,

yij = b0i + b1itij + b2it
2
ij + b3it

3
ij + εij . (5.25)

Here, the additional term b3i represents the subject’s cubic trend component. The level-2,
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between-subjects, model is now

b0i = β0 + υ0i

b1i = β1 + υ1i

b2i = β2 + υ2i

b3i = β3 + υ2i (5.26)

where β3 represents the average cubic change and υ3i is the individual deviation from average

cubic change. As in the quadratic trend model, in some cases it may be reasonable to restrict

the cubic part to the level-1 model only (in which case the final component of the level-2

model would simply be b3i = β3).

Figure 5.5 illustrates some cubic curves, where the general trend is positive across time.

Figure 5.5. Cubic models of generally positive change across time:
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(a) y = 1 + 5.5t − 1.75t2 + 0.25t3 (b) y = 5 − 4.5t + 3.15t2 − 0.40t3

(c) y = 0 − 0.5t + 2.30t2 − 0.325t3 (d) y = 1 + 10.5t − 3.25t2 + 0.35t3
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As can be seen, a wide variety of curves are possible. One shape that is particularly useful

is the s-shaped curve akin to Figure 5.5c. In this type of curve the response is first relatively

flat, then rises, and finally levels off. Though such a non-linear relationship across time

may be fitted best using a logistic response curve, the cubic model does a reasonable job

of approximating this type of trend in some cases. Of course, one must keep in mind that

these curves can yield nonsensical values of y if extrapolated in the x direction. Figure 5.6

illustrates these same cubic curves, except that now two extra weeks are added on to each

side for time, so that now the range is -2 to 7 (the dashed lines in these figures represent the

original timeframe of 0 to 5).

Figure 5.6. Extrapolation of cubic models across time:

(a) y = 1 + 5.5t − 1.75t2 + 0.25t3 (b) y = 5 − 4.5t + 3.15t2 − 0.40t3

(c) y = 0 − 0.5t + 2.30t2 − 0.325t3 (d) y = 1 + 10.5t − 3.25t2 + 0.35t3
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Notice that these cubic trends don’t level off at weeks 0 or 5, but instead keep going and

going, yielding values of y that are (eventually) “off the map.” Thus, it is a good idea to

plot the estimated curve(s) from an analysis using higher-order polynomials to ensure that

the interpretation is reasonable. Alternatively, though we won’t consider them here, more

general polynomial models with asymptotes are possible, and have recently been described

in an MRM context by Jones [1996].
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5.3.5 Cubic Trend Example

The Reisby dataset is fit using a orthogonal cubic trend model and the results of this analysis

are given in Table 5.3.

Table 5.3

MRM results for orthogonal polynomial version of

level-1 model (5.25) and level-2 model (5.26).

Parameter Estimate SE z p <

intercept γ0 43.24 1.35 31.95 .0001

linear trend γ1 -9.88 0.84 -11.70 .0001

quadratic trend γ2 0.33 0.55 0.60 .55

cubic trend γ3 0.62 0.48 1.29 .20

σ2
θ0

110.91 21.08

σθ0θ1 34.92 10.25

σ2
θ1

36.25 8.25

σθ0θ2 -11.14 6.12

σθ1θ2 0.26 3.69

σ2
θ2

9.24 3.58

σθ0θ3 7.25 5.31

σθ1θ3 -4.33 3.27

σθ2θ3 4.03 2.16

σ2
θ3

5.04 2.85

σ2 8.92 1.14

Note. −2 log L = 2196.44

Comparing the deviance from this model (2196.44) with that from the quadratic trend model

(2207.64) yields a difference of χ2 = 11.2, which is significant at p < .05, even without an
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adjustment of the p-value for the inclusion of variance terms in this global test of

H0 : γ3 = σ2
θ3

= σθ0θ3 = σθ1θ3 = σθ2θ3 = 0 .

The estimates of the fixed effects again re-affirm the linearity of the response across time

at the average level. Neither the quadratic nor the cubic terms are statistically significant.

Relative to the model with only quadratic trend in Table 5.2, notice how little the estimates

for the intercept, linear trend, and quadratice trend have changed. Again, if the data were

complete across time these would not change at all, but because the data are not complete

across time these trend components are not exactly independent of each other and so there

are slight changes when an additional polynomial is added to the model.

Turning to the variance estimates, we see that these clearly diminish as the order of

the polynomial is increased. In terms of relative percentages, the four trend components

represent 68.7, 22.5, 5.7, and 3.1, respectively, of the sum of the estimated individual variance

terms. Thus, over 90% of the individual heterogeneity is in terms of the constant (i.e., average

across time) and the linear trend component. Though statistically significant, the quadratic

and cubic terms do not account for a great deal of the individual differences in trends across

time.

This can also be seen from Figure 5.7 which presents the observed means, estimated

means, and estimated individual trends based on the cubic model.
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Figure 5.7. Reisby data: observed means (solid circles), estimated means (solid line), and

estimated individual trends (dotted)

As has been seen before with this dataset, the observed means clearly descend linearly across

time. Though the plot is a bit busy, one can discern a few individuals displaying non-linear

trend across time, though the extent of the non-linearity does not appear to be that great.

To zoom in on this a little more, Figure 5.8 presents the data for the ten subjects with largest

estimates (in absolute value) of the cubic trend component γ̂3 + θ̂i3.
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Figure 5.8. Reisby data: observed means (solid circles), estimated means (solid line), and

estimated individual trends (dotted) for 10 subjects with largest cubic trend components

This plot does show a backwards S-shaped curve for at least a subset of individuals. For

these subjects, the decrease in depression scores is initially not strong, then grows in the

middle timepoints, and finally tapers off or increases slightly at the end. One subject even

has increased depression scores following an elongated S-shaped curve. Thus, the cubic trend

component does play a role in explaining some of the individual heterogeneity in trends across

time, albeit a relatively modest role.

Finally, Table 5.4 presents the observed standard deviations across time, along with the
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model-based estimates for the various MRMs fit to these data.

Table 5.4

Observed and estimated standard deviations across time

week 0 week 1 week 2 week 3 week 4 week 5

observed 4.53 4.70 5.49 6.41 6.97 7.22

model-based estimates

random intercept 5.93 5.93 5.93 5.93 5.93 5.93

random linear trend 4.98 4.91 5.24 5.92 6.84 7.91

random quadratic trend 4.58 4.88 5.57 6.19 6.78 7.69

random cubic trend 4.50 4.73 5.31 6.37 7.06 7.32

One can see that the fit of the observed standard deviations is incrementally better as the

order of the polynomial is increased. In particular, comparing the random quadratic trend to

the random cubic trend, one gets a feel for why the latter is preferred by the likelihood-ratio

test; the cubic trend model does an excellent job of fitting the variation in the observed HD

scores across time. It should be noted that each of these models includes all lower order

polynomials as random effects as well. Thus, for example, the random quadratic model

includes random intercept and linear trend components too.

The improved fit of the cubic model for the variance-covariance structure can also be

seen in the (co)variance plot in Figure 5.9.
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Figure 5.9. Reisby data: (a) observed (co)variances

(b) random linear trend model (co)variance estimates

(c) random quadratic trend model (co)variance estimates

(d) random cubic trend model (co)variance estimates

By comparing the different model estimates to the observed variances and covariances, one

gets a sense of the improvement in model fit provided as the order of the polynomial is

increased.
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5.4 Summary

Polynomial trend models are considered in this chapter, in particular models with quadratic

and cubic trend components. Since trends across time can be non-linear, the use of poly-

nomials is a useful tool for longitudinal data analysis. It is important to remember that

the model is still a linear one, since it is linear in terms of the regression coefficients. The

polynomial regressors are what allow the linear model to fit some types of non-linear rela-

tionships. In some cases, a non-linear regression part is required, for example, for modeling

of human stature across time [Bock and du Toit, 2004]. For interested readers, nonlinear

mixed-effects regression models are considered extensively in Davidian and Giltinan [1995]

and Vonesh and Chinchilli [1997].

Since the orthogonal polynomial representation greatly reduces any collinearity and scale

differences in the regressors, it is computationally easier to obtain. For this reason, in cases

where numerical difficulties are occurring with analyses using raw time values, investigators

might consider using orthogonal polynomials instead. In this chapter we have considered the

use of orthogonal polynomials in MRMs in detail, though they can be applied more generally

in longitudinal data analysis models. For example, in later chapters we will present MRMs

and GEE models for categorical outcomes, and orthogonal polynomials can be effectively

applied within these types of models as well.


