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Abstract

In this paper we examine a queueing model with Poisson arrivals, random processing batches,
and vacations is examined. is interrupted service process along the lines of the Queue-Cart model
of Coffman and Gilbert [7] and we extend their results to the case where the cart’s capacity varies
stochastically and customers arrive in batches. We also examine processing batch distributions with
unbounded support and provide a solution via Wiener-Hopf techniques. In all cases care is taken in
the analysis in order to obtain the steady state distribution without the assumption that the service
and cart delivery time distributions are light-tailed. If fact, our results are obtained under the natural
conditions of finite first moments, together with the stability condition which gurantees the existence
of a stationary version of the process. We finally provide further results regarding waiting time dis-
tributions using the distributional version of Little’s law.

KEYWORDS: QUEUEING, MANUFACTURING, BULK SERVICE QUEUES, MATERIALS HANDLING .

1 Model description

We analyze a model which consists of an M/G/1 queue with vacations in the service mechanism. Cus-
tomers arrive according to a Poisson process with rateλ > 0 to the system and have i.i.d. service
requirements which we will denote by{σn}∞n=1. These are assumed to be independent of the arrival
process and their common distribution will be denoted byB(x) := P (σ ≤ x) with finite meanEσ. The
capacity of the queue is assumed to be infinite. At specific time epochs the server initiates a “vacation
period” during which it is unavailable to serve customers, while arriving customers accumulate in the
waiting area. Successive vacation times form a sequence of i.i.d. random variables, independent of the
arrival process and service requirements, denoted by{Gn}∞n=1, with common distribution,G(x), and
finite mean,EG. The server’s operation alternates thus betweenservice phasesandvacation phases.

At the beginning of each service phase a processing batch the size of the processing batch is set.
Processing batches are assumed to be i.i.d. random variables, independent of the arrival process, service
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requirements, and vacation lengths, and will be denoted by{Θm}. Their common distribution will be
denoted byθk = P (Θ = k), k = 1, 2, . . . , and will be assumed to have finite meanEΘ =

∑∞
k=1 kθk <

∞. During the service phase customers are served in a FIFO fashion until either the number of customers
served in the phase becomes equal to the processing batch size,Θm or the queue empties, whichever
happens first. In both cases the server initiates a new vacation phase. We shall call this thepartial batch
policy, since it is possible that fewer customers than required by the processing batch are served in the
phase. When the server returns from the vacation an new processing batch is set and a new service phase
begins. If, upon returning from a vacation, the server finds the queue empty then we will assume that he
immediately takes a new vacation (Thus we allow service phases to have zero duration.) Variations in
the behavior of the server when, upon returning from a vacation, finds the queue empty are possible. For
instance we may suppose that in such cases the server waits for a fixed period of time before and only if
this elapses without arrivals he leaves again or that he waits until a fixed number of customers arrives etc.
Such variations do not burden the analysis but, since they have been studied extensively in the vacations
literature, they will not be considered here.

We will also consider the “complete batch”policy according to which, when a service phase is
initiated and a production batch is set the server remains available, waiting for a customer to arrive if
necessary, and works until the production batch is complete. After this, the vacation phase begins during
which the server is unavailable. At the end of the vacation a new cycle begins with a new production
batch determined at random from the given distribution.

The system described above is a type of an M/G/1 queue in a random environment. Under the
assumption that the production batch has fixed size, sayΘm = N with probability 1, this system has
been studied in Coffman and Gilbert [7]. There, the fixed production batch is interpreted as the capacity
of a cart placed next to the processing station. Finished parts are placed in the cart and when the cart
is full the server takes the cart to its destination. Thus, server vacations in that model correspond to the
time it takes the server to deliver the cart. If we suppose that the same cart is used to store the output of
two or more stations served by the same server then the need for a cart with stochastic capacity arrises
naturally.

The model we propose has also applications to queueing systems with unreliable servers. Suppose
that the server is subject to failures. These failures are assumed to manifest themselves at the initialization
phase of service and to be independent of the service requirement of the customer. Under these conditions
the random processing batch model proposed constitutes an accurate model. Vacation periods correspond
then to down time for the system while the server is being repaired. In this context the complete batch
policy described above is more appropriate. The partial batch policy may be appropriate if we assume
that idle periods are used for preventive maintenance. In this case a model with vacations whose duration
distribution depends on whether the preceding processing batch has been completed or not may be more
appropriate. The analysis of such models will be sketched in section 4.4.

Throughout the paper the analysis is carried out by distinguishing two cases, according to whether
the production batch distribution has bounded or unbounded support. In the first case, where the support
of the production batch size distribution is bounded above by a constantN (this could be the cart’s ca-
pacity in the first model mentioned above) the analysis is based on an argument using Rouché’s theorem
which is typical of the analysis of queues with batch service (see [4]). In this respect attention has been
paid in order to establish our results under the natural conditions for the existence of a stationary version
of the process i.e.the finiteness of first momentsplus the stability condition of the system.
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The second case, where the distribution of the production batch size has unbounded support, is in
general harder and can only be dealt with by Wiener-Hopf techniques. We indicate how to carry out this
procedure and we also provide explicit solutions for the case of production batches whose distribution is
either geometric or a combination of geometric factors. In a variation of the above model, we will also
consider briefly the case where customers do not arrive singly but in i.i.d. batches.

In all cases the analysis of the system proceeds by first analyzing an embedded Markov chain by
means of generating functions and then using standard results from semi-regenerative processes in order
to obtain the stationary distribution of the number of customers in the system.

2 The stability condition

Here we sketch the argument that gives the stability condition for this system both for the “partial batch”
and for the “complete batch” policy. While the argument is expressed in a heuristic fashion it can easily
be turned into a rigorous proof.

Let us consider first the partial batch policy. The queueing process can be thought of as consisting
of cycles, each cycle comprising a vacation phase and the following service phase. (The service phase
may have zero duration with positive probability corresponding to the case where a returning server finds
the queue empty.) LetA be a random variable distributed according to the total number of customers
who arrive during the a typical cycle andL a random variable distributed according to the number of
customersservedduring a typical cycle. If a stationary version of the system exists then the expected
number of customers who arrive during a cycle must be equal to the expected number of customers served
during that cycle, i.e.EA = EL. The number of arrivals during the cycle can be distinguished into
arrivals during the vacation phase and arrivals during the service phase. The expected number of arrivals
during the vacation phase is equal toλEG. During the service phase these customers are to be served,
together with all the customers who arrive duringtheir service time (this of course holding only on the
average). However, each one of the customers who arrives during the vacation phase generates a busy
period which contains on the average1

1−λEσ customers, including himself. Thus we haveEA = λEG
1−λEσ .

In order for the balance to be maintained, a total ofEL = EA customers must be served during the
service phase. However, the number served during the service phase cannot exceed the “service capacity”
of the cycle i.e. the expected production batch size which isEΘ. In fact, since under the partial batch
policy the cart leaves with a partial batch with positive probability,EΘ > EL. Thus the necessary and
sufficient condition for stability is

EΘ >
λEG

1− λEσ
. (1)

We now turn to the complete batch policy. Here the number served in each cycle is equal to the
production batch size and henceEL = EΘ. For the same reasons as above,EL = EA. However, the
expected number of customers arriving within a cycle will be greater thanλEG

1−λEσ since, with positive
probability the queue empties before the production batch is complete and the server has to wait for new
arrivals. The above heuristic derivation echoes that of Coffman and Gilbert [7] and can be justified by
the detailed analysis in the following section. We included it here because we believe that it adds insight
into the operation of the system.
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Figure 1: Sample path of the queue.

3 Analysis of the embedded Markov chain of the system under apartial
batchpolicy

3.1 Notation

We consider the embedded point process of the epochs when the server returns to the queue at the end
of a vacation phase, i.e. at the end of a vacation. We denote these points by{Tm; m ∈ Z}. Let us
also denote by{Sm; m ∈ Z} the corresponding epochs when the server leaves the queue to deliver the
cart, i.e. the beginnings of vacations. We shall think of the sample path of the process as consisting of
cycles. Each cycle comprises aservice phasewhere the server is present and serving customers, and a
vacation phaseduring which the server is away, delivering the cart to its destination. The number of
customers in the system at timet is denoted byXt and the process{Xt; t ∈ R} is assumed to have
right–continuous sample paths. Themth cycle starts atTm with the end of a vacation. We denote by
Φm the number of customers in the system at epochTm, (i.e. Φm = XTm). This means that at the start
of the mth cycle, i.e. at the moment when the server returns with the cart to the queue, he findsΦm

customers waiting for service. Clearly,(Tm, Φm), m ∈ Z, is a Markov–renewal process and{Xt; t ∈
R} is asemi–regenerative processwith respect to it. Also denote byΨm the number of customers left
behind in the queue at epochSm when the server leaves the system to deliver the cart, i.e.Ψm = XSm .
Finally we will denote byLm the number of services in themth cycle which is equal to the contents of
the cart when it leaves. Clearly we haveLm ≤ Θm, andΨm = 0 if Lm < Θm since we assume that
a partial batch policy is used. Also recall that, according to this policy, ifΦm = 0 then the server does
not stay in the queue at all but immediately takes another vacation. Hence, in that caseSm = Tm, and
Ψm = Φm = 0 = Lm. Figure 1 illustrates these definitions.

Following the approach of Coffman and Gilbert [7] we letdm
k be the epoch of thekth service

completion during themth cycle. We will agree to setdm
0 = Tm. Clearly, in themth cycle we have

Tm = dm
0 < dm

1 < dm
2 < · · · < dm

Lm
. Let Xdm

k
be the number of customers left behind at thekth epoch

of themth cycle and in particular note thatXdm
0

= Φm. We will assume that the system is stationary
and we will analyze its behavior over “a typical cycle”. Therefore, without risk of confusion, we will
drop the subscriptm referring to a particular cycle in what follows. Suppose that the system has been
operating in stationarity and that timet = 0 coincides withdm

0 = Tm (in other words consider the Palm
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version of the process with respect to the point process{Tm}). Note that, under the partial batch policy,

{L ≥ k} = {Xd0 > 0, Xd1 > 0, . . . , Xdk−1
> 0} ∩ {Θ ≥ k} (2)

and

{L = k} = {Xd0 > 0, Xd1 > 0, . . . , Xdk−1
> 0} ∩ ({Θ = k} ∪ {Xdk

= 0}) , k = 1, 2, . . . .

whereas{L = 0} = {Xd0 = 0}. We define the generating functions

Qk(z) = E[zXdk ; L ≥ k] (3)

and set

Fk = Qk(0) = P (Xdk
= 0;L ≥ k) = P (Xdk

= 0;L = k) = P (Xdk
= 0;L = k; Θ ≥ k)

= P
(
Xd0 > 0, Xd1 > 0, . . . , Xdk−1

> 0, Xdk
= 0; Θ ≥ k

)
. (4)

Note thatFk is the probability that the typical service phase consists of preciselyk services and that the
next vacation phase starts with an empty queue. In section 9 their role in determining the statistics on the
cart contents is examined in detail. We also point out that, in view of (2) and (3)

Qk(z) = E[zXdk ;L ≥ k | Θ ≥ k] = E[zXdk ; L ≥ k | Θ = n] for n = k, k + 1, k + 1, . . . . (5)

Furthermore, withB denoting the service time distribution andB∗ the corresponding Laplace transform,

U(z) := B∗(λ(1− z)),

is the p.g.f. (probability generating function) of the number of arrivals during a service time. Similarly,
with G andG∗ denoting the distribution and Laplace transform respectively of the vacation period for
the server,

D(z) := G∗(λ(1− z))

is the p.g.f. of the number of arrivals during a server vacation time. We also define for convenience the
quantities

α(z) := U(z)z−1, y(z) := α−1(z). (6)

3.2 Random production batch size with finite support

The “dynamics” of the process during a service period (i.e. during intervals of the form(Sm, Tm+1), m ∈
Z) are described by the following basic recursive relationship which involves the generating functions
defined in (3) and (6)

Qk+1(z) = (Qk(z)− Fk) α(z), k = 0, 1, . . . , N − 1. (7)

This recursion expresses the fact that the number of customers left behind at the end of the(k + 1)th
service completion are equal to the number left behind at thekth service completion minus one plus
the number that arrived during this service time,provided that the queue has not emptiedand that the
production batch size is at least equal tok + 1 or greater. From it we readily obtain

Qn(z) = α(z)nQ0(z)−
n−1∑

k=0

Fkα(z)n−k, (8)
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n = 1, 2, . . . , N. By definition

Q0(z) = E
[
zXd0 ; L ≥ 0

]
= E

[
zXd0

]
= E[zΦ] (9)

is the p.g.f. of the number of customers in the queue at an epoch when the service phase begins. (Of
courseP (L ≥ 0) = 1). Also, the p.g.f. of the number of customers left behind in the queue after the
server leaves in order to deliver the cart is given by

Π(z) := E[zΨ] =
N∑

n=1

θn

(
Qn(z) +

n−1∑

k=0

Fk

)
. (10)

Indeed, conditioning on the production batch size to be equal ton, for the typical cycle in stationarity,
Fk, k = 0, 1, . . . , n − 1, is the probability that the server leaves behind an empty queue and the cart
containsk customers, i.e. a partial production batch, whileFn = Qn(0) is the probability that the
server leaves behind an empty queue and the cart leaves with a complete batch ofn customers. Thus
E[zΨ | Θ = n] = Qn(z)+

∑n−1
k=0 Fk and (10) follows by taking expectation overΘ. Taking into account

(8) we obtain

Π(z) =
N∑

n=1

θn

(
α(z)nQ0(z) +

n−1∑

k=0

Fk

(
1− α(z)n−k

))
. (11)

On the other hand the number of customers in the system at the beginning of the typical service
phase is equal to the number left behind at the end of the previous service phase plus the number of
customers who arrived during the intervening vacation phase. The p.g.f. of these latter isD(z) and thus
we have, under stationarity,

Π(z)D(z) = Q0(z). (12)

We also note thatP (Ψ = 0 | Θ = n) =
∑n

k=0 Fk and thus (11) is established with

Q0(z) =
N∑

n=1

θn

(
α(z)nQ0(z) +

n−1∑

k=0

Fk

(
1− α(z)n−k

))
D(z). (13)

Before proceeding we point out that in the sequel we will occasionally bedropping the dependence
of some generating functions onz for notational convenience. Thus we will be writingy instead ofy(z),
D instead ofD(z), and so forth. From (8), (13), and (6), we conclude that

Q0

(
yN −D

N∑

n=1

θnyN−n

)
= D

N∑

n=1

θn

n−1∑

k=0

Fk

(
yN − yN−n+k

)
(14)

or equivalently

Π(z) =
∑N−1

k=0 Fk
∑N

n=k+1 θn

(
yN − yN−n+k

)

yN −D
∑N

n=1 θnyN−n
. (15)

The above can also be written as

Π(z) =
∑N−1

k=0 Fk
∑N

n=k+1 θn

(
zN − zN−n+kUn−k

)

zN −D
∑N

n=1 θnzN−nUn
. (16)
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TheN constants,F0, F1, . . . , FN−1, can be obtained from Rouché’s theorem as follows. It is shown in
the Appendix (cf. [7]) that the equation

zN −D(z)
N∑

n=1

θnzN−nU(z)n = 0 (17)

hasN complex roots,z0, z1, . . . , zN , wherez0 = 1 and the remainingN − 1 roots are within the unit
circle, i.e. |zi| < 1 for i = 1, 2, . . . , N − 1, provided that the stability condition holds. We thus know
that equation (17) has preciselyN zeros that satisfy|z| ≤ 1. One of them isz = 1 which obviously
satisfieszN − D(z)

∑N
n=1 θnzN−nU(z)n = 0 and is a single root. Thus there remainN − 1 roots of

the denominator in the unit disk which we shall callzi, i = 1, 2, . . . , N − 1. SinceQ0(z) does not have
any singularities within the unit disk these must also be zeros of the numerator of (16). Hence theN
unknown constants,F0, F1, . . . , FN−1 must satisfy theN − 1 equations

N−1∑

k=0

Fk

N∑

n=k+1

θn

(
zN
i − zN−n+k

i U(zi)n−k
)

= 0, i = 1, 2, . . . , N − 1.

Let
yi :=

zi

U(zi)
, i = 1, 2, . . . , N − 1. (18)

ConsideringQ0 as a function ofy, theyi ’s must also be zeros of the numerator of (15), or equivalently,
taking into account (18), together with the fact that thezi’s satisfy (17), andU(zi) 6= 0 we have

N−1∑

k=0

Fk

N∑

n=k+1

θn

(
yN

i − yN−n+k
i

)
= 0, i = 1, 2, . . . , N − 1.

The polynomial iny

P (y) :=
N−1∑

k=0

Fk

N∑

n=k+1

θn

(
yN − yN−n+k

)

has degreeN and itsN roots are1, y1, y2, . . . , yN−1. Thus

P (y) = C(y − 1)
N−1∏

i=1

(y − yi) . (19)

The constantC can be determined by noting that

C

N−1∏

i=1

(1− yi) = lim
y→1

∑N−1
k=0 Fk

∑N
n=k+1 θn

(
yN − yN−n+k

)

y − 1
(20)

=
N−1∑

k=0

Fk

N∑

n=k+1

θn (n− k) , (21)

where in the last equation we have used de l’ Hospital’s rule. The quantity on the right hand side of (20)
is obtained by determining the value ofQ0(z) whenz = 1 as follows. Lettingz → 1 (or equivalently
y → 1) and applying de l’Hospital’s rule in (16), we obtain

N−1∑

k=0

Fk

N∑

n=k+1

θn (n− k) = EΘ− λEG

1− ρ
. (22)
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From (19), (21), and (22) we obtain the value of the constant in (19)

C =
EΘ− λEG

1−λEσ∏N−1
i=1 (1− yi)

.

We have thus established the following

Theorem 1. The number of customers left behind at the end of a typical service phase in steady state is
given by

Π(z) =
EΘ− λEG

1−λEσ

yN −D
∑N

n=1 θnyN−n
(y − 1)

N−1∏

i=1

y − yi

1− yi
(23)

wherey is given by (6) and theyi’s by (18).

As we saw above, the explicit determination of theN constants,F0, . . . , FN−1, is not necessary
for the determination ofΠ(z). Nonetheless, these constants are useful in order to obtain, among other
things, statistics for the cart contents when it is delivered. Their computation is given in the appendix.
The detailed analysis of the statistics of the cart’s contents is undertaken in section 9. Here we confine
ourselves to the observation that the probability that a production batch is delivered incomplete is equal
to pe :=

∑N
n=1 θn

∑n−1
k=0 Fk. Changing the order of summation and using the above equations we have

pe =
N−1∑

k=0

Fk

N∑

n=k+1

θn =
EΘ− λEG

1−λEσ∏N−1
i=1 (yi − 1)

N−1∑

i=1

yi.

The expected number of customers in the cart when it is delivered can be computed by first conditioning
on the size of the production batch:

E [L | Θ = n] =
n−1∑

k=0

kFk + n

(
1−

n−1∑

k=0

Fk

)
= n−

n−1∑

k=0

Fk(n− k).

Taking expectation over the size of the production batch, we then have

EL = EΘ−
N∑

n=1

θn

n−1∑

k=0

Fk(n− k) = EΘ−
N−1∑

k=0

Fk

N∑

n=k+1

θn(n− k)

=
λEG

1− ρ
. (24)

where in the last equation we have made use of (22). Note that the expected contents of the cart i.e.
the expected “actual production batch size” is of course less thanEΘ (because of the occurrence of
incomplete production batches when the queue empties) and does not depend on the production batch
size distribution{θn}, provided that the stability condition (1) holds.

4 Production batch size with unbounded support

The analysis of the previous section depended on the assumption that the production batch size had a
distribution with finite support. As it will readily become clear, no conceptual difficulties are involved
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in dropping this assumption. However, from a computational point of view, new difficulties arise as the
argument based on Rouché’s theorem can no longer be used.

Suppose that the cart capacity is, from transfer to transfer, a random variable with distribution

P (Θ = n) = θn, n = 1, 2, . . .

and corresponding generating function

Θ(z) :=
∞∑

n=1

θnzn.

(We no longer assume the existence of an integerN such thatθn = 0 for n > N .) We again apply the
analysis of the previous section with the same notation as before. Once more the epochs when the server
returns after delivering the cart back to queue for themth time is denoted byTm while the epoch right
afterTm when the server takes the cart (together with any customers that it contains) to be delivered and
starts a vacation is denoted bySm. Here a typical cycle starts, say atTm, the server servesLm customers
(whereLm ≤ Θm andΘm is the size of the cart during themth cycle) and then departs to deliver
the cart at timeSm. Let, as in the previous section,Q0(z) = E

[
zΦm

]
, Qn(z) = E

[
zXdn ;L ≥ n

]
,

Fn = Qn(0), andΠ(z) = E
[
zΨm

]
be the p.g.f. of the number of customers left behind when the cart

leaves the queue. The fundamental relationship becomes

Π(z) =
∞∑

n=1

(
Qn(z) +

n−1∑

k=0

Fk

)
θn. (25)

The basic recursion (7) still holds and thus we have (8) forn = 1, 2, . . . .Thus

∞∑

n=1

(
α(z)nQ0(z) +

n−1∑

k=0

Fk

(
1− α(z)n−k

))
θn = Π(z).

Also, (12) still holds as before and using Fubini’s theorem to change the order of summation we can
rewrite the above expression as

Π(z)D(z)Θ(α(z)) +
∞∑

k=0

Fk

∞∑

n=1

θn+k (1− α(z)n) = Π(z)

or

Π(z) =
∑∞

k=0 Fk
∑∞

n=1 θn+k (1− α(z)n)
1−D(z)Θ(α(z))

. (26)

The above equation is the counterpart of equation (16) of the previous section. Note however that the nu-
merator depends on a whole sequence of unknown constantsFk, k = 0, 1, 2, . . . . Clearly the techniques
of the previous section cannot be applied here. In fact in this general case a solution can be obtained, at
least in principle, using the Wiener-Hopf decomposition technique as described in the sequel.

4.1 Wiener-Hopf decomposition

From equation (6) we have
z = yU(z). (27)
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Using Lagrange’s series expansion (e.g. see Copson [6]) ifD is an analytic function in a domain con-
taining the origin thenD(z(y)) is an analytic function ofy with series expansion around the origin given
by

D(z(y)) =
∞∑

n=0

ynκn

where

κ0 = D(0) = G∗(λ) and κn =
1
n!

dn−1

dtn−1

(
D′(t)U(t)

)∣∣∣∣
t=0

, n = 1, 2, . . . . (28)

In particular, whenD(z) = z the above expression gives

z(y) =
∞∑

n=1

yn

n!
dn−1

dtn−1
U(t)

∣∣∣∣
t=0

.

With the change of variables fromz to y and setting̃Π(y) := Π(z(y)) equation (26) becomes

Π̃(y) =
∑∞

k=0 Fk
∑∞

n=1 θn+k (1− y−n)
1−D(z(y))Θ(y−1)

. (29)

Note from (28) thatκn ≥ 0 and also from (27) that wheny = 1 then z = 1. Thus, D(z(1)) =∑∞
n=0 κn = 1 and henceκn, n = 0, 1, 2, . . . , is a probability distribution on the natural numbers.

Setting

K(y) :=
∞∑

n=0

ynκn,

we see thatK(y) is the p.g.f. of this distribution. Then, we can use the standard Wiener-Hopf decom-
position argument as follows. Let us denote byκ∗n then–fold convolution of the sequence{κm; m =
0, 1, 2, . . .} with itself, i.e. κ∗1m = κm for all m = 0, 1, 2, . . . , and κ∗nm =

∑m
l=0 κ

∗(n−1)
m−l κl, m =

0, 1, 2, . . . , and similarlyθ∗n will denote then–fold convolution of{θm} with itself. Then we can write

1
1−K(y)Θ(y−1)

= exp

( ∞∑

n=1

1
n

Kn(y)Θn(y−1)

)

= exp

( ∞∑

n=1

1
n

∞∑

m=0

κ∗nm ym
∞∑

l=0

θ∗nl y−l

)

= exp




∞∑
r=−∞

yr
∞∑

n=1

1
n

∑

{m−l=r}
κ∗nm θ∗nl




= exp

( ∞∑

r=1

yr
∞∑

n=1

1
n

∞∑

l=1

κ∗nl+rθ
∗n
l

)
exp

( ∞∑

r=0

y−r
∞∑

n=1

1
n

∞∑

m=0

κ∗nm θ∗nm+r

)

and thus
1

1−K(y)Θ(y−1)
=

J−(y−1)
J+(y)

(30)
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where, of course,

J+(ζ) := exp

(
−

∞∑

r=1

ζr
∞∑

n=1

1
n

∞∑

l=1

κ∗nl+rθ
∗n
l

)
, J−(ζ) := exp

( ∞∑

r=0

ζr
∞∑

n=1

1
n

∞∑

m=0

κ∗nm θ∗nm+r

)
,

are two functions that are analytic at least within the unit disk,|ζ| ≤ 1. Then from (29) and (30) we have

Π̃(y)J+(y) = J−(y−1)
∞∑

k=0

Fk

∞∑

n=1

θn+k

(
1− y−n

)
. (31)

Since the left hand side is obviously bounded for|y| ≤ 1 and the right hand side is bounded for
∣∣y−1

∣∣ ≤ 1
or |y| ≥ 1 it follows from Liouville’s theorem that both sides of (31) are equal to a constant, sayΛ. Thus

P (y) =
Λ

J+(y)

and

Π(z) =
Λ

J+(z/U(z))
= Λ exp

( ∞∑

r=1

zrU−r(z)
∞∑

n=1

1
n

∞∑

l=1

κ∗nl+rθ
∗n
l

)
.

Settingz = 1 in the above expression we readily determine the value ofB from the requirement that
Π(1) = 1. Thus we have

Π(z) = exp

( ∞∑

r=1

(
zrU−r(z)− 1

) ∞∑

n=1

1
n

∞∑

l=1

κ∗nl+rθ
∗n
l

)
. (32)

The above analysis parallels the analysis of M/G/1 queues with bulk service when the batch size has not
bounded support. We refer the reader to Prabhu [22, p. 164]. (See also Kemperman [20] and Keilson
[15], [16].)

While the above expression gives the p.g.f. in explicit form, in practice even computation of the first
moment would be very arduous. The situation however becomes much simpler if we assume that the
production batch size is geometric or a combination of geometric factors. These cases will be examined
in the following subsections.

Finally we compute the expected “actual production batch size” i.e. the expected contents of the
cart each time it is delivered. The argument is the same as in the finite support case and thusEL =
EΘ − ∑∞

k=0 Fk
∑∞

n=k+1 θn(n − k). This expectation is can be explicitly computed from (26) since
Π(1) = 1 by an application of de l’Hospital’s rule. Again,EL = λEG

1−ρ regardless of the production
batch distribution, provided that the stability condition holds.

4.2 Geometric production batch size

As we saw in the previous subsection, the determination ofΠ(z) for general production batch distribution
is computationally difficult. However, when the production batch size is geometrically distributed, one
can obtain an explicit, computationally tractable solution. One can start in this case with the factorization
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problem (30) which has a simple solution. Alternatively one could determine the unknown constantsFk,
k = 0, 1, 2, . . . in (26) directly as follows. Suppose that

θn = (1− γ)γn−1, n = 1, 2, . . . (33)

and thusΘ(z) = (1−γ)z
1−γz . Then

Π(z) =
(1− γ)

∑∞
k=0 Fk

∑∞
n=1 γn+k−1 (1− α(z)n)

1−D(z) (1−γ)α(z)
1−γα(z)

=
(z − U(z))F (γ)

z − γU(z)− (1− γ)D(z)U(z)
(34)

where, in the above equation we have used the generating function

F (z) =
∞∑

k=0

Fkz
k. (35)

To determine the unknown quantityF (γ) in (34) we use de l’Hospital’s rule and the fact thatΠ(1) = 1
to obtain

F (γ) = 1− (1− γ)
λEG

1− ρ
. (36)

OnceΠ(z) has been determined, it is straightforward to evaluate the steady state distribution for
the number of customers in the system as we will see in the sequel. We point out that the above model
corresponds to the situation where, after each service completion the server “flips a coin” and with
probabilityγ he decides to serve another customer, if one is available or take a vacation if a customer
is not available. With probability1 − γ the server takes a vacation regardless of whether there are
customers waiting in line or not. At the end of each vacation the server returns to the queue and, if
empty, he immediately takes another vacation whereas if not then the “coin-flipping procedure” begins
again. This is the Bernoulli vacation model (see Keilson and Servi [17] and Doshi [8]).

4.3 Linear combination of geometric factors

More generally, we may assume that the production batch size is a linear combination of geometric
factors, i.e.

θn =
S∑

s=1

cs(1− γs)γn−1
s , n = 1, 2, . . . ,

where0 < γs < 1, theγs’s are assumed to be different from each other, and thecs’s are such thatcs 6= 0,∑S
s=1 cs = 1, andθn ≥ 0, ∀n ∈ N. Then

Θ(z) =
S∑

s=1

cs
(1− γs)z
1− γsz

12



and thus, using again (35),

Π(z) =
∑∞

k=0 Fk
∑∞

n=1

∑S
s=1 cs(1− γs)γn+k−1

s (1− α(z)n)

1−D(z)
∑S

s=1 cs
(1−γs)α(z)
1−γsα(z)

=
(z − U(z))

∑S
s=1 F (γs) cs

z−γsU(z)

1−D(z)
∑S

s=1 cs
(1−γs)U(z)
z−γsU(z)

=
(z − U(z))

S∑
s=1

F (γs)cs
∏

r 6=s(z − γrU(z))

S∏
s=1

(z − γsU(z)) − D(z)U(z)
S∑

s=1
cs(1− γs)

∏
r 6=s(z − γrU(z))

. (37)

TheS unknown constants,F (γs), s = 1, 2, . . . , S, can be determined from a standard argument using
Rouch́e’s theorem as follows. If we setf(z) :=

∏S
s=1(z−γsU(z)) andg(z) := − D(z)U(z)

∑S
s=1 cs(1−

γs)
∏

r 6=s(z − γrU(z)) = −D(z)U(z)Θ(z)f(z) then, it is easy to see that the functionf has precisely
S roots within the disc|z| < 1. Indeed, the equationz = γsU(z) has a unique, real solutionrs ∈ (γs, 1)
whenγs ∈ (0, 1). On the circle|z| = 1 − ε (whereε is chosen so small that the contour contains
r1, . . . , rS) |g(z)| ≤ |D(z)| |U(z)| |Θ(z)| |f(z)| ≤ (1 − ε)3 |f(z)| < |f(z)| , thus Rouch́e’s theorem
applies. Hence the denominator has preciselyS roots within the circle|z| = 1 − ε, sayz1, z2, . . . , zS .
These must also be roots of the numerator. The equationz = U(z) has precisely two roots,1, and a real
root greater than 1, whenU ′(1) = ρ < 1. Thus the factor(z − U(z)) cannot vanish for inside the circle
|z| = 1− ε. Furthermore,

S∏

s=1

(zt − γsU(zt)) 6= 0 for t = 1, 2, . . . , S. (38)

Indeed, if
∏S

s=1(zt1 − γsU(zt1)) = 0 then zt1 − γs1U(zt1) = 0 for somes1. Sincezt1 is a root
of the denominator,D(zt1)U(zt1)

∑S
s=1 cs(1 − γs)

∏
r 6=s(zt1 − γrU(z)) = 0 and hence,cs1(1 −

γs1)
∏

r 6=s1
(zt1 − γrU(zt1)) = 0. This implies in turn thatzt1 − γs2U(zt1) = 0 for somes2 6= s1.

But thenzt1 − γs1U(zt1) = 0 = zt1 − γs2U(zt1) which impliesγs1 = γs2 which is impossible. Thus,
dividing the numerator with the left hand side of (38) we have

S∑

s=1

F (γs)
cs

zt − γsU(zt)
= 0, t = 1, 2, . . . , S.

One of the above equations is in fact redundant and has to be replaced by the condition obtained by the
requirement thatΠ(1) = 1 which, applying de l’Hospital’s rule gives

S∑

s=1

F (γs)
cs

1− γs
= EΘ− λEG

1− ρ
.

4.4 Vacation length depending on whether the production batch is complete

Here we examine a variation of the above model according to which the distribution of the vacation
length depends on whether the server completed the production batch that preceded it or whether it was
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incomplete. In the context of the server failure model we suppose that, ifLm = Θm then a failure has
occured and therefore the subsequent vacation period has distributionG (corresponding to full repair)
whereas ifLm < Θm this means that the subsequent vacation period will have distributionG̃. One easily
sees that (25) still holds while now

Q0(z) =
∞∑

n=1

θn

(
D̃(z)

n−1∑

k=1

Fk + D(z)Qn(z)

)
. (39)

which we can also write as

Q0(z) =
(
D̃(z)−D(z)

) ∞∑

n=1

θn

n−1∑

k=1

Fk + D(z)Π(z)

Thus we have
∞∑

n=1

(
α(z)nQ0(z) +

n−1∑

k=0

Fk

(
1− α(z)n−k

))
θn = Π(z).

((
D̃(z)−D(z)

) ∞∑

n=1

θn

n−1∑

k=1

Fk + D(z)Π(z)

)
Θ(α(z)) +

∞∑

n=1

n−1∑

k=0

Fk

(
1− α(z)n−k

)
θn = Π(z)

or

Π(z) =
Θ(α(z))

(
D̃(z)−D(z)

)∑∞
n=1 θn

∑n−1
k=1 Fk +

∑∞
n=1

∑n−1
k=0 Fk

(
1− α(z)n−k

)
θn

1−Θ(α(z))D(z)
.

In the case of geometric production batches (i.e. constant probability of failure) whereθn is given
by (33) we obtain

Π(z) =
((1− γ)U(z)(D̃(z)−D(z)) + z − U(z))F (γ)

z − γU(z)− (1− γ)D(z)U(z)
.

The unknownF (γ) is again determined by de l’Hospital’s rule and is seen to be equal toF (γ) =
1−ρ−(1−γ)λEG

1−ρ+(1−γ)λ(EG̃−EG) . Of course, in a reliability context, preventive maintenance would be useless in this

case and hencẽD(z) = 1 andEG̃ = 0. The case of combination of geometric batches as well as the
general approach via the Wiener-Hopf decomposition can be treated by adopting the analysis of sections
4.3 and 4.1mutatis mutandis.

5 Time-stationary distribution of the number of customers in the queue
and sojourn times

As we saw in the previous section(Tm, Φm), m ∈ Z, is a Markov–renewal process and that the pro-
cess{Xt; t ∈ R} is semi–regenerative with respect to this Markov–renewal process. Furthermore, it
is possible to see that, under the stability condition (1), the Markov chain{Φm;m ∈ Z} is positive
recurrent.
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Consider the basic epochs{Tm} when the server leaves the queue in order to deliver the cart and a
vacation period begins. Under the stability condition, it is clear that there exists a steady–state regime
since this is a semi–regenerative system. (Alternatively, we could identify ordinary regeneration cycles
corresponding to the epochs when the server leaves the queueemptyto deliver the cart.) It is also
possible to show that these regenerative cycles have finite mean and thus there exists a steady state

random variable, sayX∞, such thatXt
d→ X∞ where

d→ denotes convergence in distribution. We shall
establish the following

Theorem 2. The stationary number of customers in the system when the server uses a partial batch
policy has p.g.f. given by

EzX∞ = Π(z)G∗
I(λ(1− z))

(1− ρ)B∗(λ(1− z))
1− ρB∗

I (λ(1− z))
, (40)

whereΠ(z) is the p.g.f. of the number of customers present in the system at the beginning of a typi-
cal vacation. Depending on whether the production batch size distribution has bounded or unbounded
support,Π(z) is given by (23) or by (32).

Proof: We will establish the theorem assuming that the production batch size distribution does not
necessarily have bounded support. We begin with a version of the process which satisfies the following
conditions:(i) The time origin coincides with the beginning of a ”typical” cycle, i.e.· · · < T−2 < T−1 <
T0 = 0 < T1 < T2 < · · · and(ii) Φ0 = XT0 = X0 is distributed according to the (jump) stationary
distribution of the Markov Chain{Φm;m ∈ Z}. If we denote byλ∗ the rate of the process{Tm} we
then have the following formula connecting the distribution ofX∞ to that of{Xt; t ∈ [T0, T1)}: For any
bounded functionf : N → R,

Ef(X∞) = λ∗E
∫ T1

T0

f(Xs)ds.

In particular, if we takef(x) = zx (where0 ≤ z ≤ 1) we have the following expression for the p.g.f. of
the time stationary distribution of the number of customers in the queue:

EzX∞ = λ∗E
∫ T1

T0

zXsds. (41)

The formulae above can be thought of as consequence of the semi-regenerative nature of the system (see
[?]). Alternatively, if one is willing to use the language of stationary and ergodic processes these are
special cases of the Palm inversion formula (see Baccelli and Brémaud [1]). The integral on the right
hand side of (41) can be split into two parts,

I1 :=
∫ S0

T0

zXsds; and I2 :=
∫ T1

S0

zXsds.

The first term is analyzed by conditioning on the size of the production batch. On the event{Θ = n} it
splits into a sum ofn terms as follows

I1 =
n−1∑

i=0

1(L > i,Θ = n)
∫ di+1

di

zXsds.
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SinceXs = Xdi
+ A(di, s] whereA(di, s] is the number of Poisson arrivals in the interval(di, s], we

can write

EI1 =
∞∑

n=1

n−1∑

i=0

E

[
1(L > i,Θ = n)

∫ di+1

di

zXdi
+A(di,s]ds

]
.

Note that, because of the independent increments property of the Poisson arrival process,

E

[
1(L > i,Θ = n)

∫ di+1

di

zXdi
+A(di,s]ds

]
= E

[
1(L > i,Θ = n)zXdi

∫ di+1

di

e−λ(s−di)(1−z)ds

]

= E

[
1(L > i,Θ = n)zXdi

1− e−λ(di+1−di)(1−z)

λ(1− z)

]

=
1−B∗(λ(1− z))

λ(1− z)
E

[
1(L > i,Θ = n)zXdi

]

where, in the above derivation we have used the fact thatE[e−s(di+1−di) | L > i,Θ = n] = B∗(s) and
di+1 − di is independent ofXdi on{L > i}. Also, taking into account (2), (3), (4), (5), and the fact that
i < n we have that

E
[
1(L > i,Θ = n)zXdi

]
= E

[
1(L ≥ i,Θ = n)zXdi

]− E
[
1(L = i,Θ = n)zXdi

]

= E
[
1(L ≥ i)zXdi

]
P (Θ = n)− FiP (Θ = n)

= (Qi(z)− Fi) θn.

Hence

EI1 =
1−B∗(λ(1− z))

λ(1− z)

∞∑

n=1

θn

n−1∑

i=0

(Qi(z)− Fi) ,

and, using (7) (which as we saw holds regardless of whether the production batch size has bounded
support or not) we obtain

n−1∑

i=0

(Qi(z)− Fi) =
n∑

i=1

Qi(z)y.

Elementary manipulations yield

n∑

i=1

Qi(z) = Qn(z)
yn − 1
y − 1

+
n−1∑

j=1

Fj
yj − 1
y − 1

and thus the first term can be written as

EI1 =
y − z

λ(1− z)(y − 1)

∞∑

n=1

θn


Qn(z) (yn − 1) +

n−1∑

j=1

Fj

(
yj − 1

)

 .

Using (14) in the above expression, we can rewriteEI1 after some algebraic manipulations as

EI1 = (D − 1)
y − z

λ(1− z)(y − 1)

∞∑

n=1

θn


Qn(z) +

n−1∑

j=0

Fj


 =

1−D

λ(1− z)
y − z

1− y
Π(z)

where, in the second equation we have used (25).
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On the other hand, the expectation ofI2, is given by

EI2 = E[zΨ

∫ G

0
zA(0,s]ds] = Π(z)

1−D(z)
λ(1− z)

. (42)

Thus adding the two equations above term by term we have

EI1 + EI2 = Π(z)
1−D(z)
λ(1− z)

(
1 +

y − z

1− y

)
.

From the above, after some elementary manipulations we obtain

EzX∞ = λ∗(EI1 + EI2) = λ∗Π(z)G∗
I(λ(1− z))EG

B∗(λ(1− z))
1− ρB∗

I (λ(1− z))
,

where the rateλ∗ can be computed from the normalization requirement by settingz = 1 in the above
relationship. Indeed,

λ∗ =
1− ρ

EG
(43)

and this completes the proof of the theorem.

Remark: The representation of the p.g.f. of the number of customers in stationarity can be inter-
preted as adecomposition into three partsof the type one should expect in view of the well known prop-
erties of M/G/1 queues with vacations (see [13] and also [8], [12], and [19]). The term(1−ρ)B∗(λ(1−z))

1−ρB∗I (λ(1−z))

is of course the p.g.f. the number of customers in a steady state M/G/1 queue without vacations, the term
G∗

I(λ(1 − z)) is the p.g.f. of the number of Poisson arrivals during the forward recurrence time of a
typical vacation, and finallyΠ(z) is the p.g.f. of the number of customers present in the system at the
beginning of a typical vacation. Of course, this decomposition holds because of the partial batch policy
used.

Corollary 1. In particular, when the production batch size is geometric, i.e.θn = (1 − γ)γn−1, n =
1, 2, 3, . . . , the p.g.f. of the number of customers in the system in steady state is given by

EzX∞ =
1

λEG

(1− ρ)U(z)F (γ)(1−D(z))
z − γU(z)− (1− γ)D(z)U(z)

(44)

whereF (γ) is given by (36).

Proof: Use (34) forΠ(z) in theorem 2.

5.1 Sojourn time distribution

The sojourn time is obtained easily from the above formula via the distributional version of Little’s law
(see [2], [18], [19], and [26].) Indeed, settings = λ(1− z) in (40) we obtain

T (s) = Π(1− s/λ)G∗
I(s)

(1− ρ)B∗(s)
1− ρB∗

I (s)
, (45)
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where,Π(1− s/λ) can be computed from (23). After the necessary simplifications, taking into account
thatα(1− s/λ) = B∗(s) λ

λ+s , we have

Π(1− s/λ) =

∑N−1
k=0 Fk

∑N−1
n=k+1 θn

(
1−B∗(s)n−k

(
λ

λ−s

)n−k
)

1−G∗(s)
∑N

n=1 θnB∗(s)n
(

λ
λ−s

)n .

It should be pointed out that (45) gives the total time from the moment a customer enters the queue
to the moment he enters the cart. The additional delay due to the time the customer has to wait until the
cart is delivered is not included. In fact it is not possible to do this using the distributional version of
Little’s law, since the total sojourn time of a customer in this case depends on future arrivals as well.

In the case of the geometric batch transfer size, settingz = 1 − s/λ in (44) and carrying out the
necessary simplifications we obtain

T (s) =
(1− ρ)G∗

I(s)B
∗(s)F (γ)

1− ρB∗
I (s)− (1− γ)ρGB∗(s)G∗

I(s)

6 The “complete batch” policy

So far we have carried out the analysis assuming a partial batch policy. Alternative strategies can also
be analyzed, as in [7]. In this section we sketch the analysis for what we will call the “complete batch”
policy. According to this policy, each time the server returns with the cart to the system a random
variable representing the production batch size is realized. The server keeps serving customers until this
production batch size is completed (waiting for new arrivals if the queue empties) and as soon as the
batch is completed he departs to deliver the cart thus initiating a vacation period. Upon returning to
the system a new production batch is set and the whole process repeats itself. The starting point in our
analysis is to realize that, with the given policy, each service phase consists of a complete batch so that
Lm = Θm. If we define

Rk(z) := E
[
zXdk |Θ ≥ k

]
= E

[
zXdk |Θ = k

]
,

the system dynamics in this case are described by

Rk(z) =
(

Rk−1 −Hk−1

z
+ Hk−1

)
U(z), (46)

where
Hk := Rk(0).

This in turn, upon iteration, gives

αnR0(z) = Rn(z) + (1− z)
(
H0α

n + H1α
n−1 + · · ·+ Hn−1α

)
. (47)

Since we still haveΠ(z) =
∑∞

n=1 θnRn(z) and

R0(z) = Π(z)D(z), (48)
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from the above recursion we obtain

Π(z) = (z − 1)

∑∞
n=1 θn

(∑n−1
j=0 Hjα

n−j
)

1−D(z)Θ(α)
. (49)

When the batch size distribution has finite support, say the set{1, 2, . . . , N}, then the denominator is the
same as in the corresponding expression for the partial batch policy in section 3.2. Thus theN unknown
constants,H0,H1, . . . , HN−1, on whichΠ(z) depends in this case is obtained by Rouché’s theorem, as
before. When the batch size distribution has infinite support, in general one has to resort to Wiener-Hopf
factorization techniques in order to determineΠ(z). Of course one can analyze easily the case where
the batch size distribution is a combination of geometric factors as in section 4.3. Here we will restrict
ourselves to the analysis of the case of geometric batches, i.e.θn = (1 − γ)γn, n = 1, 2, . . . .. Then,
arguing as in section 4.2 we see that

Π(z) =
(z − 1)U(z)(1− γ)H(γ)

z − γU(z)− (1− γ)D(z)U(z)

where

H(γ) =
1− ρ

1− γ
− λEG

as can be seen from an argument using the fact thatΠ(1) = 1 and de l’Hospital’s rule.

Finally we determine the stationary distribution of the number of customers in the system (excluding
the cart) under the complete batch policy. We indicate the differences in this case, illustrating the case of
geometric production batches. With the notation of the section 5 we have

EI1 =
∞∑

n=1

θn

n−1∑

i=0

E

[∫ di+1

di

zXsds
∣∣ Θ = n

]

=
∞∑

n=1

θn

n−1∑

i=0

(
λ−1

(
1 + z 1−U(z)

1−z

)
P (Xdi

= 0|Θ = n) + E
[
zXdi1(Xdi

> 0)
∣∣ Θ = n

]
λ−1 1−U(z)

1−z

)

=
∞∑

n=1

θn

n−1∑

i=0

(
λ−1

(
1 + z

1− U(z)
1− z

− 1− U(z)
1− z

)
Hi + Ri(z)λ−1 1− U(z)

1− z

)

=
∞∑

n=1

θn

n−1∑

i=0

(
λ−1U(z)Hi + Ri(z)λ−1 1− U(z)

1− z

)

Recall that, by definitionRi(z) := E[zXdi |Θ = i] andHi = P (Xdi = 0 | Θ = i). Rewrite (46) as

yRi = Ri−1 + (z − 1)Hi−1

and obtain
n−1∑

i=0

Ri(z) =
y

1− y
(Rn(z)−R0(z))− z − 1

1− y

n−1∑

i=0

Hi.
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Thus we have

EI1 = λ−1

(
U(z) +

1− U(z)
1− y

) ∞∑

n=1

θn

n−1∑

i=0

Hi + λ−1 1− U(z)
1− z

∞∑

n=1

θn
y

1− y
(Rn(z)−R0(z))

= λ−1U
1− z

U − z
C ′ + λ−1 1− U(z)

1− z

z

U − z

∞∑

n=1

θn (Rn(z)−R0(z))

= λ−1U
1− z

U − z
C ′ + λ−1 1− U

1− z

z

U − z
(1−D)Π(z)

where we have setC ′ :=
∑∞

n=1 θn
∑n−1

i=0 Hi and taken into account thatΠ(z) =
∑∞

n=1 θnRn(z) and
R0(z) = Π(z)D(z). On the other hand (42) still holds and thus

λ∗(EI1 + EI2) =
λ∗

λ
U

1− z

U − z
C ′ +

λ∗

λ
Π(z)

1−D

U − z
. (50)

The value ofC ′ can be determined from (49) using the observation thatΠ(1) = 1 and de l’ Hospital’s
rule:

C ′ = (1− ρ)EΘ− λEG.

Since, as in section 5EzX∞ = λ∗(EI1 + EI2), we can determineλ∗ by settingz = 1 in (50) and using
once more de l’ Hospital’s rule. Thus we obtain

λ

λ∗
= EΘ. (51)

Putting things together we obtain

EzX∞ = (1− ρ)U
1− z

U − z

(
1− λEG

1− ρ

)
+

1
EΘ

Π(z)
1−D

U − z

= (1− ρ)U
1− z

U − z

(
1− λEG

EΘ(1− ρ)

)
+

λEG

EΘ(1− ρ)
Π(z)

1−D

λEG(1− z)
(1− ρ)

1− z

U − z

or

EzX∞ = (1− p)(1− ρ)U
1− z

U − z
+ pΠ(z)G∗

I(λ(1− z))(1− ρ)
1− z

U − z
(52)

wherep = λEG
EΘ(1−ρ) , Π(z) as given in (49) is the p.g.f. of the number of customers left behind at the end

of the typical service phase,G∗
I(λ(1−z)) the p.g.f. of the number of Poisson arrivals during the residual

service time of a vacation period and finally(1 − ρ)U 1−z
U−z is the p.g.f. of the stationary number of

customers in the corresponding M/G/1 system without vacations (in that case the size of the production
batch becomes irrelevant). Note that the second term on the right hand side of (52) includes the term
(1 − ρ) 1−z

U−z which is the generating function of the number of Poisson arrivals during thewaiting time
in the corresponding M/G/1 system without vacations.

7 Bulk arrivals

There are no significant changes in the above analysis if we assume that customers arrive not singly but
in batches. Of course arrival epochs are still Poisson (λ) and the arriving batches are an i.i.d. sequence
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of random variables{βn} , independent of the Poisson arrival process, with common distributionP (β
= k) = bk, k = 1, 2, 3, . . . . The corresponding p.g.f. will be denoted byb(z) :=

∑∞
k=1 bkz

k and the
mean batch size bymb =

∑∞
k=1 kbk. In order not to obscure the main features of the problem we will

introduce here the simplifying assumption that the production batch size sequence{Θm} is deterministic
and equal to the cart capacityN. It is easy to see that, in this case, the stability condition becomes

N >
λEG

1− λEβEσ
.

We can analyze this system in precisely the same way as the single customer arrival case. Indeed,
equations (8) and (13) hold unchanged, if we substitute forU(z) andD(z) the p.g.f.’s

Ub(z) := B∗(λ(1− b(z))), Db(z) := G∗(λ(1− b(z))).

ThenΠb(z), the p.g.f. of the number of customers left behind in the queue at a typical vacation start is
given by the relationship

Πb(z) =
∑N−1

k=0 Fb,kz
k
(
zN−k − Ub(z)N−k

)

zN −Db(z)Ub(z)N
. (53)

where, again, theN constantsFb,k, k = 0, 1, 2, . . . , N − 1 are obtained by Rouché’s theorem.

Let us again denote by{Tn} the basic epochs when the server leaves the queue in order to deliver the
cart and a vacation period begins.{Xt; t ∈ R} denotes the number of customers in the system process,
andλ∗ the rate of the point process{Tn}. As usual,X∞ denotes a random variable with the steady state
distribution of the process{Xt}. An analysis entirely analogous to that of section 5 gives the following
expression for the p.g.f. of the stationary number of customers in the system

EzX∞ = Πb(z)G∗
I(λ(1− b(z)))

(1− ρmb)B∗(λ(1− z))
1− ρB∗

I (λ(1− z))
,

which assumes again the form of a three way decomposition. The term(1−ρmb)B
∗(λ(1−z))

1−ρB∗I (λ(1−z)) is the p.g.f.
of the time-stationary number of customers in an M/G/1 queue with bulk arrivals and without vacations,
the termG∗

I(λ(1− b(z))) is the p.g.f. of the total number of arrivals during the forward recurrence time
of a typical vacation; and finallyΠb(z) is the p.g.f. of the number of customers present in the system at
the beginning of a typical vacation.

8 The contents of the cart when it is delivered

When the partial batch policy is used the contents of the cart when it is delivered or “actual production
batch size” is a random variable stochastically smaller than the production batch size. Its distribution in
stationarity can be determined as follows. LetΥ(z, w) :=

∑∞
k=0 Qk(z)wk andF (w) :=

∑∞
k=0 Fkw

k =
Υ(0, w). Then, from (7) it follows that

Υ(z, w)−Q0(z) =
∞∑

k=0

Qk+1(z)wk+1 = wα

( ∞∑

k=0

Qk(z)wk −
∞∑

k=0

Fkw
k

)
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or, recalling definition (6), after some elementary manipulations,

Υ(z, w) =
zQ0(z)− F (w)wU(z)

z − wU(z)
. (54)

The above expression involves the unknown functionF (w) which can be determined as follows. Suppose
that|w| < 1. The equationz−wU(z) = 0 has for each fixed value ofw in the unit disk a unique solution
ζ(w). (This can be seen by an application of Rouche’s theorem, see Takács [24]). In factζ(w) =∑∞

n=1
1
n!w

n (d/dt)n−1Un(t)
∣∣
t=0

according to the B̈urman-Lagrange inversion formula. The numerator
must also vanish whenz = ζ(w) and thusζ(w)Q0(ζ(w)) = F (w)wU(ζ(w)) or F (w) = Q0(ζ(w)).
Taking into account (12) as well we have

F (w) = Π(ζ(w))D(ζ(w)). (55)

As we saw in section 4.1D(ζ(w)) =
∑∞

n=0 κnwn with κ0 = D(0) andκn = 1
n! (d/dt)n−1D′(t)Un(t)

∣∣
t=0

,
n = 1, 2, . . . . Using (32) and the fact thatζ(w)/U(ζ(w)) = w we thus obtain the generating function
for the sequence{Fn} as follows

F (w) =
∞∑

n=0

κnwn exp

( ∞∑

r=1

(wr − 1)
∞∑

n=1

1
n

∞∑

l=1

κ∗nl+rθ
∗n
l

)
(56)

Once the sequence{Fn} has been determined, the number of customers in the actual production batch
size is obtained by first conditioning on the production batch size as follows. We have

E
[
wL |Θ = n

]
=

n−1∑

k=0

wkFk + wn

(
1−

n−1∑

k=0

Fk

)
= wn +

n−1∑

k=0

Fk

(
wk − wn

)

and thus

EwL = Θ(w) +
∞∑

k=0

wkFk

∞∑

n=k+1

θn −
∞∑

k=0

Fk

∞∑

n=k+1

wnθn. (57)

Things of course become simpler when the production batch size is geometric, as in section 4.2. Then,
settingK(w) := D(ζ(w)) =

∑∞
n=0 κnwn (55) becomes

F (w) = K(w)
(ζ(w)− U(ζ(w)))F (γ)

ζ(w)− γU(ζ(w))− (1− γ)K(w)U(ζ(w))
=

F (γ)K(w)(1− w)
−w + γ + (1− γ)K(w)

with F (γ) given by (36). The mean of the probability distribution{κn} is given byK ′(0) = D′(0)ζ ′(0)
and of courseζ ′(0) = U(0) = 1, thusK ′(0) = λEG. Hence, if we define the distribution function

KI(w) :=
1

K ′(0)
1−K(w)

1− w

we have

F (w) =
F (γ)K(w)

1− (1− γ)λEGKI(w)
. (58)

When the production batch size is geometric (57) simplifies into the following expression

EwL =
1− γ + (1− w)F (γw)

1− γw

which, together with (58) gives the generating function of the number of items delivered.
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9 The contents of the cart in steady state

This section refers to the queue and cart model and we are interested in the cart as long as it is ”next to
the server”, receiving customers, so we will suppose that the number in the cart process becomes equal
to zero as soon as the server takes the cart to deliver it (see figure 2).In order not to obscure the main
aspects of the problem here and in the sequel we assume that the production batch size is deterministic
and equal to the cart’s capacity,N. Random production batches can be analyzed in a similar fashion as
in the previous sections. In the first subsection we examine the marginal distribution of the cart contents
under the partial batch policy while in the second the joint distribution of the number of customers in the
queue and the cart.

9.1 The marginal distribution under the partial batch policy

If we denote byY ≡ Y∞ a random variable with the steady state distribution of the number of customers
in the cart and byC(w) := EwY∞ the corresponding p.g.f., then the cycle formula gives

C(w) = EwY∞ =
E

∫ T1

T0
wYsds

E(T1 − T0)
=

EG + EσE
∑L

k=1 wk−1

EG + ELEσ

=
EG + EσE

[
1−wL

1−w

]

EG + ELEσ

=
1− wN −∑N−1

k=0 Fk

(
wk − wN

)

1− w

Eσ

EG + ELEσ
+

EG

EG + ELEσ

= ρ
1

EL

N−1∑

k=0

wk

(
1−

k∑

i=0

Fi

)
+ (1− ρ),

where, in the above string of equalities we have taken into account the fact thatQN (1) = 1−∑N−1
k=0 Fk

andEL = λEG
1−λEσ . (This last equation is (24).) Thus the steady–state number of customers in the cart is

P (Y = 0) =
ρ

EL
(1− F0) + (1− ρ),

P (Y = k) =
ρ

EL

(
1−

k∑

i=0

Fi

)
, k = 1, 2, . . . , N − 1.

The expected number of customers in the steady state is then equal to

EY =
N−1∑

k=1

k
ρ

EL

(
1−

k∑

i=0

Fi

)
= ρ

E[L(L− 1)]
2EL

.

9.2 Joint distribution of the number of customers in the queue and the cart

Arguing as above, we can obtain with a little more effort the joint distribution of the number of customers
in the queue and the cart,V (z, w) := EzX∞wY∞ by using the same method as in the analysis of§5.
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Figure 2: Sample path of cart contents.

With the notation of§5 we have

V (z, w) = λ∗
(

E

∫ S0

T0

zXtwYtdt + E

∫ T1

S0

zXtwYtdt

)
. (59)

Taking into account that at the beginning of a cycle, when the server returns with the cart to the queue
and starts serving,Y (T0) = 0 (i.e. the cart is empty) we have

E

∫ S1

T0

zXtwYtdt = E
N−1∑

k=0

1(L > k)wk

∫ dk+1

dk

zXtdt =
1− U(z)
λ(1− z)

N−1∑

k=0

wkQk(z).

The integral over the vacation phase, whereY (t) = 0, is

E

∫ T1

S0

zXtwYtdt = Π(z)
1−G∗(λ(1− z))

λ(1− z)
,

where, as in§5, Π(z) = QN (z) +
∑N−1

j=0 Fj . Using also the recursionα(Qk − Fk) = Qk+1, we have

Qk = Fk + yFk+1 + y2Fk+2 + · · ·+ yN−k−1FN−1 + yN−kQN ,

and hence

N−1∑

k=0

wkQk =
N−1∑

k=0

wk

{(
N−1∑

l=k

Fly
l−k

)
+ yN−kQN

}

= Π(z)
1− (αw)N

1− αw
+

N−1∑

l=0

(αw)N − (αw)l+1

1− αw
Fl,

where we have used the fact thaty = α−1. Upon substitution in (59), taking into account (43), we obtain
after some simplifications the following expression for the joint p.g.f. of the queue and cart contents:

V (z, w) = (1− ρ)Π(z)G∗
I(λ(1− z))

+(1− ρ)
Eσ

EG

B∗
I (λ(1− z))
1− αw

(
Π(z)

(
1− (αw)N

)
+ (αw)N

N−1∑

l=0

Fl − αw
N−1∑

l=0

Fl(αw)l

)
.
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10 Appendix

Here we show that equation (17) hasN roots within the unit disk. Variations of this equation abound in
the bulk service literature. (See for instance Chaudhry and Templeton [4] and also Coffman and Gilbert
[7].) However in these treatments it is (either explicitly or tacitly) assumed that the service and vacation
distributions are light-tailed, i.e. that the corresponding moment generating functions exist in an open
interval containing the origin. The argument becomes more involved if we assume only the natural
conditions for the existence of a stationary version of the process i.e. the finiteness offirst moments plus
the stability condition. Here we shall take this, more general, approach. We begin with the following
theorem established in Boudreau, Griffin, and Kac [3].

Theorem 3. Suppose thatϕ(z) :=
∑∞

n=0 fnzn is the p.g.f. offn, n = 0, 1, 2, . . . , a non-degenerate
probability distribution on the non-negative integers with finite meanµ :=

∑∞
n=0 nfn andN is a natural

number. If the condition
N > µ (60)

holds, then the equation
zN − ϕ(z) = 0 (61)

hasN roots within the unit disk{z ∈ C : |z| ≤ 1}. z = 1 is a single root of (61) while the remaining
N − 1 roots have modulus strictly smaller than 1.

In our case,ϕ(z) = D(z)
∑N

n=1 θnzN−nU(z)n andµ = ϕ′(1) = EG− (1− ρ)EΘ + N, thus (60)
is equivalent to the stability condition for the system (1).

10.1 Determination of the constants

We give in the sequel an explicit procedure for the computation of theN constants,F0, . . . , FN−1 in
the case of the partial batch policy with finite cart capacity. These constants can be obtained from the
identity (19) as follows. If we denote bySk := Sk(y1, y2, . . . , yN−1), k = 1, 2, . . . , N−1 the symmetric
polynomials inN − 1 variables,

S1 =
∑

i

yi,

S2 =
∑

i<j

yiyj ,

· · · · · · · · · · · · · · · · · · · · · · · ·
Sk =

∑

i1<i2<···<ik

yi1yi2 · · · yik ,

· · · · · · · · · · · · · · · · · · · · · · · ·
SN−1 = y1y2 · · · yN−1.
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Then

(y − 1)
N−1∏

i=1

(y − yi) = yN − yN−1(1 + S1) + yN−2(S1 + S2)− yN−3(S2 + S3) + · · ·

+(−1)N−1y(SN−2 + SN−1) + (−1)NSN−1

On the other hand,

P (y) = yN




N−1∑

k=0

Fk

N∑

j=k+1

θj


− yN−1

(
N−1∑

k=0

Fkθk+1

)
− · · · − yN−i

(
N−i∑

k=0

Fkθk+i

)
− · · ·

−y2 (F0θN−2 + F1θN−1 + F2θN−2)− y (F0θN−1 + F1θN )− F0θN .

We thus can obtain the constantsFk from the triangular linear system

θNF0 = C(−1)NSN−1

F0θN−1 + F1θN = C(−1)N (SN−1 + SN−2)
F0θN−2 + F1θN−1 + F2θN−2 = C(−1)N (SN−2 + SN−3)

...

F0θN−i + F1θN−i−1 + · · ·+ FiθN−i = C(−1)N (SN−i + SN−i−1)
...

F0θ1 + F1θ2 + · · ·+ FN−1θN = C(−1)N (S2 + S1)

(One additional equation, namelyF0 (θ1 + · · ·+ θN ) + · · ·+ Fk (θk+1 + · · ·+ θN ) + · · ·+ FN−1θN =
C(−1)N−1S1, which is obtained by equating the coefficients ofyN is redundant and has been omitted.)
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