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Abstract

We consider a synchronized queueing system in which customers arrive according to a
Poisson process to a station consisting pérallel servers, each with its own queue. Upon
arrival, customers split into parts and each part joins the corresponding queue. Under the
assumption that the service requirements of dtpgarts of each customer are strongly
ordered we obtain the joint distribution of the workloads.
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1 Introduction

Synchronized (or fork—join) queues have been an object of study over the last three decades
as models of parallel processing. The simplest model consistpafallel processors, each

with its own queue. Customers, upon arrival, break ingub-entities which we will call

parts. Pari requires service from servérwhere: = 1,2,..., ¢, and, if necessary, joins the
corresponding queue which is assumed to have unlimited capacity and operate under a FIFO
discipline. While each station viewed separately is an ordinary single server queue, the joint
statistics of the: queues are typically not easy to obtain.

The above system when service requirements for the parts are independent, exponential
random variables, identically distributed for each type of part, is known as the Flatto-Hahn-
Wright model (see [5], [4], [11]). In this case, while each queue considered separately is an
ordinary M/M/1 queue, determining the joint distribution is far from easy. Flatto and Hahn
[4] have studied this system (for the case= 2) using complex analysis techniques. See
also Fayolle, lasnogorodsky, and Malyshev [6]. Asymptotic results regarding this model have
been obtained using large deviation techniques by Weiss and Shwartz [10]. We also mention
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Baccelli, Makowski, and Swhartz [2] where bounds for the performance of more general fork—
join queues are obtained by means of stochastic ordering arguments.

Our approach to this problem makes use of Miyazawa’'s Rate Conservation Principle (see
[1], [8]) in order to obtain effortlessly an expression for the joint Laplace transform of the
stationary workload. This expression depends on unknown functions which, in general, are
not easily determined. In this paper we examine the case where the service times of parts are
strongly ordered.

2 The rate conservation principle

On the probability spac€?,.%#, P) a point procesqT7,} has been defined which we will
assume to be a stationary Poisson process with\iate will denote byP° the Palm trans-
formation of P with respect to{7},} and by E° expectation with respect t8° as usual. For
background on Palm theory we refer the reader to [1].

The Poisson procedd’, } is assumed to feedqueues in parallel. Each arriving customer
splits intoc parts. The service requirements of thparts of thenth customer are denoted
byo, = (ol,...,0¢). We assumdo,} to be an i.i.d. sequence of random vectors with
given joint distributionG (zy, . .., z.) := P%(o} < zy,...,05 < z.) and corresponding joint
Laplace transform _

B(sy, -+, 8) := Ele™ Xi=1%i%,

Theorem 1. If we denote the joint Laplace transform of the workload process in steady state
by ¢(sy,...,s.) := Ee™2i=1%%s then

25:1 3i¢i(' <oy Si—15 Sl - - )
Yoy si—A(1—PB(s1,...,5))

The numerator in the above equation depends anknown functions); : C-! — C, i =
1,2,...,cwhere

(1)

O(S1,...,8:) =

Ui(S1, 3 Sicty Siq1y - - -5 Se) 1= E[L(W) = 0)e” 2y SjWg]- (2
Proof: We examine the behavior of the workload vectdr), ..., Wy). If we apply the
Miyazawa Rate Conservation Principle on the prodessgt¢ € R}, defined by

X =e" iy siWi

Y

we obtain

AEY |e~ Dz siWitad) _ o= X0 SiWS} +E {%6—25—1 Sz‘Wq =0
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A(B(S1y-y8e) — 1) p(s1,...,8.) + F

em D s WEN s 1 (W > 0)] —0.

=1



Hence

[

ML= B(s1-50)) 51, .50 = 3 s (Eefzszlsiwi B [1(W(§' )T WD

=1
or
P(s1,- -+ Se) (Z si— AL =B(s1,. ., Sc))) = sithi- s Sim1, Sit1, - - )
=1 =1
where . ,
’QUZ'(Sl, ey 81, Sy e ,Sc) = E[].(WS = O)B_Zﬁéi Sng]. (3)
Thus from the above we obtain (1). |

Note that in the ordinary//G/1 queue¢ = 1 and (1), (2), imply that the solution depends
on one unknown constant which is easily determined from the requiremeni(that 1 by
an application of de I'Bpital’s rule.

3 Stochastically ordered service times

Suppose now that the service requirements for parts of different types are strongly ordered,
i.e.,foralln € Zol > 02> ... > 0¢ P'~a.s. Then, itis easy to see thata.s. W)} > W >

-+ > WE. We thus have the inequalitiagWy = 0) < 1(WZ =0) < --- < 1(W§ = 0)
holding P-a.s. and hence, from (2) it becomes clear that in this ¢askepends only on the

1 — 1 variablessy, so,...,s,_1,1 = 2,3,...,c— 1, while ¢, is a constant. Indeed, if we set

pi := AE%c} then clearlyy, = E[1(W] = 0)] = 1 — p;. Also, set

%‘(31, 2, ... 752'71)
L —p;
1=2,3,...,c. Thus (1) is written as

si(l—p1) + Do osi(l—pi)xi(se, .., 8i-1)
Yoiysi—A(1—=PB(s1,...,5)) '

Xi(S1,892,...,8i-1) = =F [6723;11 s W3 | Wg =0, (4)

O(S1,-+-58:) = (5)

There remains the problem of determining the 1 unknown functionsy;(si, ..., Si—1),
1=2,3,...,c. This problem hinges upon expressing the conditional expectations that define
them in a more convenient form and, as it turns out, the following lemma facilitates greatly
this.

Lemma 1. Let {S¢} denote the point process defined by the beginnings of busy periods for
station:. If we denote by?? the Palm transformation af with respect to this point process,
and byFE? the corresponding Palm expectation, then

Xi(Sl, Ce ,Si_1> = E?€_ ;;11 8‘7Wg. (6)



Proof: If fifi is the internal history of the point proce§S’ } (see [3] for a definition) and
FV' = o—{W,u < t} the history of the proced¥™, define the filtratiorf” := {.#/; ¢ € R}
via.7, = 77 \/ ZV'. Then theFi-stochastic intensity ofS‘ } is given by

al = \1(W} =0). (7)

We now apply Papangelou’s theorem (see [1], [9]): Sifid&}, {S}}, are jointly stationary

and the processeédV/} have left—continuous sample paths with probability 1 and thus are

predictable, _ _
i Elad e = s3]

Wi _ 0 :

Eaj (8)

In view of the expression for the stochastic intensity in (7) the right hand side of the above

equation becomes

i—1
Eoe— Z;:1 S5
1

E[1(Wg =0) e~ Zj W) ©)
E[1(W; = 0)]
and hence, from (6) and (9) we obtain (6). [
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Consider now a smaller fork—join system with the following characteristics: The system
consists of — 1 stations in parallel and the customers (who arrive again according to Poisson
process with rate\) now consist ofi — 1 parts. The service vector for theh customer is

againo,, := (o},..., 01, this time however we split it into a sum of two parts,
_ % % ) i—1 7 i—2 % 1 )
o, =(0,,0,,...,0,)+ (0, —0,,0, " —0,,...,0, —0).

The first vector on the right hand side of the above equation represents work that has preemp-
tive priority over the lower priory work represented by the second vector. (The second vector
is of course always non-negative because of our strong ordering assumption.) Thus each cus-
tomer brings to all stations the same amount of high-priority work and a varying amount of
lower priority work. Clearly, the amount of high priority work is precisely the amount of
work in theith station of the original system. Also, the epochs of busy period initiation for
high priority work are precisely the poin{s }, and thus in order to obtain an expression for
i(s1, ..., s;1) it suffices to study the workload vector of lower priority work at these epochs.

In the sequel we will use the notatioh(si,...,s;) := 5(s1,92,...,%,0,...,0). We
begin with the following

Lemma 2. In the preemptive priority fork-join system with- 1 stations described above the
steady-state workload vector of lower priority work considered at the epochs of busy period
initiation for high priority work is equal to the workload vector in a fork-join system with
Poisson arrivals with the same arrival rate and with service requirement vector seq{rengce
wherev,, := (v},...,v:"1) are i.i.d. vectors with joint Laplace transform(sy, ..., s;_1)

n? rn

which is the unique solution with modulus less than one which satisfies the equation

’yi(Sl, cvey Si—l) = 51(817 S9,...,8i—1, )\(]_ — 71(81, <y Sz’—l)) — Z;;ll Sj). (10)



Proof: It is obvious that secondary work is performed only during the idle periods of high
priority work and these are exponentially distributed with rate Thus the lower priority
workload vector at the end of the idle periods of high priority work is that ehadified
fork—join system where customers arrive according to a Poisson process withanadiebring
service requirement vector equal to the vector of secondary work accumulated during a high—
priority busy period. To determine the new service requirement vector we will use an argument
based on a sub-busy period decomposition.(kgto?, . . ., o)) the service requirement vector

that initiates the typical busy period of statianl|f there areK Poisson arrivals during the
service times} then the random vector of service requirements for the modified fork—join
system(Y;, Y2, ..., Y, 1), satisfies the relationship

K
Yy, Ys,.... Yy ") = (0g — 00,05 — 0§, ...,op " — o) —I—Z (v, v2,....Y]),
k=1

whereY,, k =1,2,..., K are independent random vectors with the same distributidf,as
Conditioning ons, and K we have

E}?[efslyolf"'fsiflyoiil | 067K] — E?[efslg(%*"'fsiflaéil ‘ 0'6] egé Z;;ll S5 (77:(817 . 7574',1))K .

Taking expectation, first with respect f6 given o, and then with respect t@, we obtain

(20). [
Using lemma 2, one can recursively determine the unknown functipims(5) and hence
o(s1,...,s.) itself. We then have the following

Theorem 2. The joint Laplace transform of the stationary workload in the fork—join system
with strongly ordered service requirements is given by the following recursive relations. Define

iy _ Pi— Pi ; '
pj():ﬁ’ J=1,2 01, (11)

’71‘(517 ey Si—l) = 6@' <817 §9,...,8i—-1, )\(1 — ’72‘(81, ey Si—l)) — Z;;ll Sj) (12)

(1= p\)s1 + 051 = o) sixg (51, -y 85-1)
Sisi— AL = i1, ..., sim1)
wherei = 2, ... c. With these definitions;(sy, . . ., s.) is given by (5).

: (13)

Xi(817 ey Sifl) =

4 An explicit expression whernc = 2

Here we examine in more detail the case whete 2 and we give an explicit expression for
the joint Laplace transform of the equilibrium workload under the hypothesis that the service
requirements are strongly ordered.



Proposition 1. If the joint Laplace transform of the service requirementsi{s;, sz) =
E%¢—19' 20" whereg! > o2 w.p. 1 then the joint Laplace transform of the workload in
the two queues in steady stafés,, s;) := E[e~*'"o ~2'5] is given by

s1(1 = p1) s1+ 82 — A (1 —72(s1))
,89) = 14
O(s1:52) = T T TN sr ot s — A (1 — N5y, 59)) (14)
whereys(s1) is the unique solution of the equation
Y2(s1) = B(s1, M1 — 12(s1)) — s1)- (15)
Proof: Specializing the general situation to the case 2 we have
s1(L = p1) + s2(1 = pa)xa(s1)
S1,89) = 16
¢( 1 2) 51+ 89 — )\(1 _ 5(81782)) ( )
whereys(sy) == E eV | W2 = 0] is given by
1,
X2(s1) = 0= pi)s, (17)

51— A (1= 2(s1))

and~s(s1) is the unique solution of the equation (15). Substituting (17) into (16) completes
the proof. |
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