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Abstract

We consider a synchronized queueing system in which customers arrive according to a
Poisson process to a station consisting ofc parallel servers, each with its own queue. Upon
arrival, customers split into parts and each part joins the corresponding queue. Under the
assumption that the service requirements of thec parts of each customer are strongly
ordered we obtain the joint distribution of the workloads.
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1 Introduction

Synchronized (or fork–join) queues have been an object of study over the last three decades
as models of parallel processing. The simplest model consists ofc parallel processors, each
with its own queue. Customers, upon arrival, break intoc sub-entities which we will call
parts. Parti requires service from serveri, wherei = 1, 2, . . . , c, and, if necessary, joins the
corresponding queue which is assumed to have unlimited capacity and operate under a FIFO
discipline. While each station viewed separately is an ordinary single server queue, the joint
statistics of thec queues are typically not easy to obtain.

The above system when service requirements for the parts are independent, exponential
random variables, identically distributed for each type of part, is known as the Flatto-Hahn-
Wright model (see [5], [4], [11]). In this case, while each queue considered separately is an
ordinary M/M/1 queue, determining the joint distribution is far from easy. Flatto and Hahn
[4] have studied this system (for the casec = 2) using complex analysis techniques. See
also Fayolle, Iasnogorodsky, and Malyshev [6]. Asymptotic results regarding this model have
been obtained using large deviation techniques by Weiss and Shwartz [10]. We also mention
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Baccelli, Makowski, and Swhartz [2] where bounds for the performance of more general fork–
join queues are obtained by means of stochastic ordering arguments.

Our approach to this problem makes use of Miyazawa’s Rate Conservation Principle (see
[1], [8]) in order to obtain effortlessly an expression for the joint Laplace transform of the
stationary workload. This expression depends on unknown functions which, in general, are
not easily determined. In this paper we examine the case where the service times of parts are
strongly ordered.

2 The rate conservation principle

On the probability space(Ω,F , P ) a point process{Tn} has been defined which we will
assume to be a stationary Poisson process with rateλ. We will denote byP 0 the Palm trans-
formation ofP with respect to{Tn} and byE0 expectation with respect toP 0 as usual. For
background on Palm theory we refer the reader to [1].

The Poisson process{Tn} is assumed to feedc queues in parallel. Each arriving customer
splits intoc parts. The service requirements of thec parts of thenth customer are denoted
by σn = (σ1

n, . . . , σ
c
n). We assume{σn} to be an i.i.d. sequence of random vectors with

given joint distributionG(x1, . . . , xc) := P 0(σ1
0 ≤ x1, . . . , σ

c
0 ≤ xc) and corresponding joint

Laplace transform
β(s1, · · · , sc) := E0e−

∑c
i=1 siσ

i
0 .

Theorem 1. If we denote the joint Laplace transform of the workload process in steady state
byφ(s1, . . . , sc) := Ee−

∑c
i=1 siW

i
0 then

φ(s1, . . . , sc) =

∑c
i=1 siψi(. . . , si−1, si+1, . . .)∑c

i=1 si − λ (1− β(s1, . . . , sc))
. (1)

The numerator in the above equation depends onc unknown functionsψi : Cc−1 7→ C, i =
1, 2, . . . , c where

ψi(s1, . . . , si−1, si+1, . . . , sc) := E[1(W i
0 = 0)e−

∑
j 6=i sjW j

0 ]. (2)

Proof: We examine the behavior of the workload vector(W 1
t , . . . ,W

c
t ). If we apply the

Miyazawa Rate Conservation Principle on the process{Xt; t ∈ R}, defined by

Xt := e−
∑c

i=1 siW
i
t ,

we obtain

λE0
[
e−

∑c
i=1 si(W

i
0+σi

0) − e−
∑c

i=1 siW
i
0

]
+ E

[
d

dt
e−

∑c
i=1 siW

i
t

]
= 0

or

λ (β(s1, . . . , sc)− 1)φ(s1, . . . , sc) + E

[
e−

∑c
i=1 siW

i
t

c∑
i=1

si1(W i
0 > 0)

]
= 0 .
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Hence

λ (1− β(s1, . . . , sc))φ(s1, . . . , sc) =
c∑

i=1

si

(
Ee−

∑c
i=1 siW

i − E
[
1(W i

0 = 0)e−
∑

j 6=i siW
i
0

])
or

φ(s1, . . . , sc)

(
c∑

i=1

si − λ (1− β(s1, . . . , sc))

)
=

c∑
i=1

siψi(. . . , si−1, si+1, . . .)

where
ψi(s1, . . . , si−1, si+1, . . . , sc) = E[1(W i

0 = 0)e−
∑

j 6=i sjW j
0 ]. (3)

Thus from the above we obtain (1).

Note that in the ordinaryM/G/1 queue,c = 1 and (1), (2), imply that the solution depends
on one unknown constant which is easily determined from the requirement thatφ(0) = 1 by
an application of de l’Ĥopital’s rule.

3 Stochastically ordered service times

Suppose now that the service requirements for parts of different types are strongly ordered,
i.e., for alln ∈ Z σ1

n ≥ σ2
n ≥ · · · ≥ σc

n P
0–a.s. Then, it is easy to see thatP–a.s.W 1

0 ≥ W 2
0 ≥

· · · ≥ W c
0 . We thus have the inequalities1(W 1

0 = 0) ≤ 1(W 2
0 = 0) ≤ · · · ≤ 1(W c

0 = 0)
holdingP -a.s. and hence, from (2) it becomes clear that in this caseψi depends only on the
i − 1 variabless1, s2, . . . , si−1, i = 2, 3, . . . , c − 1, while ψ1 is a constant. Indeed, if we set
ρi := λE0σi

0 then clearlyψ1 = E[1(W 1
0 = 0)] = 1− ρ1. Also, set

χi(s1, s2, . . . , si−1) =
ψi(s1, s2, . . . , si−1)

1− ρi

= E
[
e−

∑i−1
j=1 sjW j

0 | W i
0 = 0

]
, (4)

i = 2, 3, . . . , c. Thus (1) is written as

φ(s1, . . . , sc) =
s1(1− ρ1) +

∑c
i=2 si(1− ρi)χi(s1, . . . , si−1)∑c

i=1 si − λ (1− β(s1, . . . , sc))
. (5)

There remains the problem of determining thec − 1 unknown functionsχi(s1, . . . , si−1),
i = 2, 3, . . . , c. This problem hinges upon expressing the conditional expectations that define
them in a more convenient form and, as it turns out, the following lemma facilitates greatly
this.

Lemma 1. Let {Si
n} denote the point process defined by the beginnings of busy periods for

stationi. If we denote byP 0
i the Palm transformation ofP with respect to this point process,

and byE0
i the corresponding Palm expectation, then

χi(s1, . . . , si−1) = E0
i e

−
∑i−1

j=1 sjW j
0 . (6)
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Proof: If F Si

t is the internal history of the point process{Si
n} (see [3] for a definition) and

FW i

t = σ−{W i
u;u ≤ t} the history of the processW i, define the filtrationFi := {F i

t ; t ∈ R}
via Ft = F Si

t

∨
FW i

t . Then theFi–stochastic intensity of{Si
n} is given by

αi
t = λ1(W i

t = 0). (7)

We now apply Papangelou’s theorem (see [1], [9]): Since{W i
t }, {Si

n}, are jointly stationary
and the processes{W j

t } have left–continuous sample paths with probability 1 and thus are
predictable,

E0
i e

−
∑i−1

j=1 sjW j
0 =

E[αi
0 e

−
∑i−1

j=1 sjW j
0 ]

Eαi
0

. (8)

In view of the expression for the stochastic intensity in (7) the right hand side of the above
equation becomes

Eie−
∑i−1

j=1 sjW j
0 =

E[1(W i
0 = 0) e−

∑i−1
j=1 sjW j

0 ]

E[1(W i
0 = 0)]

(9)

and hence, from (6) and (9) we obtain (6).

Consider now a smaller fork–join system with the following characteristics: The system
consists ofi− 1 stations in parallel and the customers (who arrive again according to Poisson
process with rateλ) now consist ofi − 1 parts. The service vector for thenth customer is
againσn := (σ1

n, . . . , σ
i−1
n ), this time however we split it into a sum of two parts,

σn = (σi
n, σ

i
n, . . . , σ

i
n) + (σi−1

n − σi
n, σ

i−2
n − σi

n, . . . , σ
1
n − σi

n).

The first vector on the right hand side of the above equation represents work that has preemp-
tive priority over the lower priory work represented by the second vector. (The second vector
is of course always non-negative because of our strong ordering assumption.) Thus each cus-
tomer brings to all stations the same amount of high-priority work and a varying amount of
lower priority work. Clearly, the amount of high priority work is precisely the amount of
work in theith station of the original system. Also, the epochs of busy period initiation for
high priority work are precisely the points{Si

n}, and thus in order to obtain an expression for
ψi(s1, . . . , si−1) it suffices to study the workload vector of lower priority work at these epochs.

In the sequel we will use the notationβi(s1, . . . , si) := β(s1, s2, . . . , si, 0, . . . , 0). We
begin with the following

Lemma 2. In the preemptive priority fork-join system withi− 1 stations described above the
steady-state workload vector of lower priority work considered at the epochs of busy period
initiation for high priority work is equal to the workload vector in a fork-join system with
Poisson arrivals with the same arrival rate and with service requirement vector sequence{vn}
wherevn := (v1

n, . . . , v
i−1
n ) are i.i.d. vectors with joint Laplace transformγi(s1, . . . , si−1)

which is the unique solution with modulus less than one which satisfies the equation

γi(s1, . . . , si−1) = βi(s1, s2, . . . , si−1, λ(1− γi(s1, . . . , si−1))−
∑i−1

j=1 sj). (10)
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Proof: It is obvious that secondary work is performed only during the idle periods of high
priority work and these are exponentially distributed with rateλ. Thus the lower priority
workload vector at the end of the idle periods of high priority work is that of amodified
fork–joinsystem where customers arrive according to a Poisson process with rateλ and bring
service requirement vector equal to the vector of secondary work accumulated during a high–
priority busy period. To determine the new service requirement vector we will use an argument
based on a sub-busy period decomposition. Let(σ1

0, σ
2
0, . . . , σ

i
0) the service requirement vector

that initiates the typical busy period of stationi. If there areK Poisson arrivals during the
service timeσi

0 then the random vector of service requirements for the modified fork–join
system,(Y 1

0 , Y
2
0 , . . . , Y

i−1
0 ), satisfies the relationship

(Y 1
0 , Y

2
0 , . . . , Y

i−1
0 ) =

(
σ1

0 − σi
0, σ

2
0 − σi

0, . . . , σ
i−1
0 − σi

0

)
+

K∑
k=1

(
Y 1

k , Y
2
k , . . . , Y

i
k

)
,

whereYk, k = 1, 2, . . . , K are independent random vectors with the same distribution asY0.
Conditioning onσi

0 andK we have

E0
i [e

−s1Y 1
0 −···−si−1Y i−1

0 | σi
0, K] = E0

i [e
−s1σ1

0−···−si−1σi−1
0 | σi

0] e
σi
0

∑i−1
j=1 sj (γi(s1, . . . , si−1))

K .

Taking expectation, first with respect toK givenσi
0, and then with respect toσi

0, we obtain
(10).

Using lemma 2, one can recursively determine the unknown functionsχi in (5) and hence
φ(s1, . . . , sc) itself. We then have the following

Theorem 2. The joint Laplace transform of the stationary workload in the fork–join system
with strongly ordered service requirements is given by the following recursive relations. Define

ρ
(i)
j =

ρj − ρi

1− ρi

, j = 1, 2, . . . , i− 1. (11)

γi(s1, . . . , si−1) = βi

(
s1, s2, . . . , si−1, λ(1− γi(s1, . . . , si−1))−

∑i−1
j=1 sj

)
(12)

χi(s1, . . . , si−1) =
(1− ρ

(i)
1 )s1 +

∑i−1
j=2(1− ρ

(i)
j )sjχj(s1, . . . , sj−1)∑i−1

j=1 sj − λ(1− γi(s1, . . . , si−1))
, (13)

wherei = 2, . . . , c. With these definitions,φ(s1, . . . , sc) is given by (5).

4 An explicit expression whenc = 2

Here we examine in more detail the case wherec = 2 and we give an explicit expression for
the joint Laplace transform of the equilibrium workload under the hypothesis that the service
requirements are strongly ordered.
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Proposition 1. If the joint Laplace transform of the service requirements isβ(s1, s2) :=
E0e−s1σ1−s2σ2

whereσ1 ≥ σ2 w.p. 1 then the joint Laplace transform of the workload in
the two queues in steady state,φ(s1, s2) := E[e−s1W 1

0−s2W 2
0 ] is given by

φ(s1, s2) =
s1(1− ρ1)

s1 − λ (1− λγ2(s1))

s1 + s2 − λ (1− γ2(s1))

s1 + s2 − λ (1− λβ(s1, s2))
(14)

whereγ2(s1) is the unique solution of the equation

γ2(s1) = β(s1, λ(1− γ2(s1))− s1). (15)

Proof: Specializing the general situation to the casec = 2 we have

φ(s1, s2) =
s1(1− ρ1) + s2(1− ρ2)χ2(s1)

s1 + s2 − λ(1− β(s1, s2))
(16)

whereχ2(s1) := E
[
e−s1W 1

0 | W 2
0 = 0

]
is given by

χ2(s1) =
(1− ρ

(2)
1 )s1

s1 − λ (1− γ2(s1))
(17)

andγ2(s1) is the unique solution of the equation (15). Substituting (17) into (16) completes
the proof.
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