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Abstract

In this paper we examine a reinsurance market where a number of companies co-
operate in order to minimize the total premium. The analysis is carried out in the
context of the classical Cramér–Lundberg model of collective risk theory and it is
assumed that each company determines its premium based on its attitude towards
risk which is expressed via a fixed, infinite horizon ruin probability, as specified by
the model. We formulate this problem as a variational problem in which ruin proba-
bilities (as represented by the corresponding adjustment coefficients) are treated as
constraints and the sum of the premium rates charged by insurer and reinsurers is
minimized. Within this framework, the optimal solution is proportional reinsurance.
Connections are also made with classical studies of the reinsurance market, such as
Borch (1962).
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1 The reinsurance market

In a seminal paper, Borch (1962) examined the economics of a reinsurance
market. He introduced the following model of such a market: n insurers have
n portfolios, which can be though of as independent, non–negative real random
variables X1, X2, . . . , Xn with distribution functions Fi, i = 1, 2, . . . , n. Each
insurer has an initial capital Si and a utility function vi(·) which represents
his attitude towards risk. Thus the utility of the ith insurer in this situation is
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Vi =
∫∞
0 vi(Si − x)dFi(x) = Evi(Si −Xi). Suppose now that these companies

have concluded reinsurance agreements (reinsurance treaties) represented by
the functions ψi : Rn

+ → R+, i = 1, 2, . . . , n. As a result of these treaties the
new risks for the n insurers are given by Yi = ψi(X1, X2, . . . , Xn), where of
course the ψi’s satisfy the additional requirement that

n∑
i=1

ψi(x1, x2, . . . , xn) =
n∑
i=1

xi for all (x1, . . . , xn) ∈ Rn
+.

The new utilities under these treaties become V ψ
i = Evi(Si−ψ(X1, . . . , Xn)).

In this framework one thus examines the functions ψi that lead to Pareto–
optimal solutions. It has been shown in Borch (1962) (see also Borch, 1990),
that Pareto–optimality implies that the reinsurance treaties are of the pool type
i.e. that the functions ψi depend only on

∑n
i=1 xi and not on the individual

xi’s and that they satisfy the condition

kiui(ψi(x)) = kjuj(ψj(xj)), i, j = 1, 2, . . . , n,

where ki > 0, i = 1, 2, . . . , n, are arbitrary positive numbers and ui(x) :=
vi(Si − x). The above in particular implies that

kiui(ψi(x)) = u′(x) (1)

where u′(x) represents aggregate marginal utility in the market. Denoting
by Ri(x) := −u′′i (x)/u′i(x), i = 1, 2, . . . , n, and R(x) := −u′′(x)/u′(x) the
corresponding absolute risk aversion (1) becomes

ψ′i(x) =

1
Ri(ψi(x))∑n
j=1

1
Rj(ψj(x))

, i = 1, 2, . . . , n. (2)

In general, the above formulation does not give a unique solution for the
reinsurance contracts, ψi. It only gives a set of Pareto-optimal solutions, the
so-called Pareto efficient frontier. If one desires to arrive to a unique solution,
as opposed to characterizing the set of Pareto-optimal solutions, then it is
necessary to introduce an overall criterion to be optimized.

Pioneers in the field of economics of risk are Allais (1953) and Arrow (1953).
Parallel with Borch contributor are Gerber (1984), De Waegenaere (1994),
De Waegenaere and Delbaen (1992), see also Aase (1993) and Aase (2002).
Optimal properties of stop loss reinsurance are given in Borch (1969), see
also Benktander (1975). The theory of premium principles and prices in the
reinsurance market can be found among others in Pressacco (1979). Finally
Dickson and Waters (1996) examine optimal reinsurance policies by minimiz-
ing the insurer’s ruin probabilities.
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2 Optimal premium with respect to the adjustment coefficient–A
variational approach

We now examine the following risk-theoretic model of n insurance companies
that are involved in insuring a portfolio that consists of a stream of claims
that occur according to the standard Cramér-Lundberg collective risk model.
We will denote the claim distribution by F and will assume it to be abso-
lutely continuous with density f and finite mean denoted by µ. We further
assume that the claim size distribution possesses exponential moments, i.e.
that there exists ε > 0 such that

∫∞
0 eεxf(x)dx <∞. Claim occurrence epochs

are assumed to be Poisson with rate α.

2.1 The adjustment coefficient and the willingness to assume risk

We will adopt a simplified view whereby the ith insurance company sets its
insurance premium rate by deciding on a fixed ruin probability and setting the
corresponding premium rate by means of this fixed ruin probability which,
in view of our assumption regarding the light–tailed nature of the claim size
distribution, is given by the Cramér-Lundberg model. According to this model
the infinite horizon ruin probability is asymptotically equal to

Aje
−ujRj (3)

where uj is the initial capital of company j, Rj is the corresponding adjustment
coefficient (or Lundberg exponent) determined by the equation

1 +Rj
cj
αµ

=
∫ ∞

0
eRjxf(x)dx, (4)

where cj is the premium rate, and Aj is a constant which depends on the
claim distribution and the premium rate. This is of course an approach taken
in many other studies before, e.g. in Hesselager (1990) and its validity has been
investigated in Dickson and Waters (1996). Here we will ignore the constant
altogether and, denoting by ej the negative logarithm of the ruin probability,
we have the approximate equality (for large initial capital uj)

ej = ujRj. (5)

However, instead of looking at the adjustment coefficient as a quantity to be
minimized (as in Dickson and Waters (1996), Hesselager (1990) etc.) we will
view the inverse of the adjustment coefficient,

R−1
j = uj/ej, (6)
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as a measure of the willingness of the jth company to assume risk. It increases
with the initial capital of the company and also increases with its tolerance of
”ruin” as represented by e−1

j .

2.2 The principle of minimizing the total premium

In order to decide on the retention level for each company we will use the
following principle: The portfolio will be split among the n companies in such
a way as to minimize the total premium for the insured. This principle is based
on the assumption that the n companies cooperate fully in order to obtain the
best possible position against outside competitors.

To be more specific, we will assume that a claim x must be covered from a
group of n insurance companies in the following way. The part of the claim
that corresponds to company j is defined to be xψj(x) where the following
portfolio partitioning constraints must obviously hold.

0 ≤ ψj(x) ≤ 1, j = 1, 2, . . . , n (7)
n∑
j=1

ψj(x) = 1, for every x ∈ R+.

Thus the functions ψj : R+ 7→ [0, 1] describe completely the reinsurance
treaties between the n companies. For instance, if ψj(x) = bj > 0 with∑n
j=1 bj = 1, then we have a proportional reinsurance treaty. If ψj(x) =

min((x − aj−1)
+, aj − aj−1), with 0 = a0 < a1 < . . . < an−1 < an = ∞

then we have a band reinsurance treaty, and so forth.

Suppose that each insurer quotes a premium rate based on a fixed probability
of ruin which in turn translates into a fixed adjustment coefficient via equation
(6). Fixing the adjustment coefficient Rj for the jth insurer gives in turn, for
each reinsurance treaty ψj(x) a corresponding premium rate cj from (4):

cj = R−1
j

∫ ∞

0
eRjxψj(x)f(x)dx − R−1

j .

Then the total premium rate charged to the insured is

c =
n∑
j=1

[R−1
j

∫ ∞

0
eRjxψj(x)f(x)dx − R−1

j ]. (8)

The minimum premium rate principle we propose then consists in choosing
the functions ψj(x) so as to minimize the total premium rate charged to the
insured, c =

∑n
j=1 cj, subject to given attitudes toward risk for the n com-
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panies as determined through the corresponding adjustment coefficients Rj,
j = 1, 2, . . . , n and under the portfolio partitioning constraints (7).

This becomes then a variational problem which turns out to have a very simple
solution.

2.3 The Variational Problem

Write (8) in the form

c[ψ] =
∫ ∞

0
L[x;ψ]dx −

n∑
j=1

R−1
j , (9)

where ψ = (ψ1, . . . , ψn) and

L[x;ψ] := f(x)
n∑
j=1

R−1
j eRjxψj(x). (10)

We will consider the problem of minimizing the above functional of ψ under
the portfolio partitioning constraints (7) and using variational methods we
will establish the following

Theorem 1 The reinsurance treaties ψj(x), j = 1, 2, . . . , n that minimize the
total premium c are the proportional treaties given by

ψj(x) =
R−1
j∑n

k=1R
−1
k

, ∀x ∈ R+. (11)

The corresponding minimum premium rate is then given by

c∗ =
n∑
j=1

R−1
j (M(R∗)− 1) (12)

where M(t) :=
∫∞
0 etxf(x)dx is the moment generating function that corre-

sponds to the claim distribution and R∗ =
(∑n

j=1R
−1
j

)−1
is the harmonic

mean of the Rj.

Proof: Let us denote by Sn := {(y1, . . . , yn) :
∑n
j=1 yj = 1; yj ≥ 0, j =

1, 2, . . . , n} the (n − 1)–dimensional simplex in Rn. We are faced with the
problem of finding a function

ψ = (ψ1, . . . , ψn) : [0,∞) 7→ Sn (13)

so as to minimize the right hand side of (9). Ignoring for the moment the
constraint imposed by the range of ψ in (13) we consider the problem of
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minimizing the right hand side of (9) when

ψ = (ψ1, . . . , ψn) : [0,∞) 7→ Hn (14)

where Hn := {(y1, . . . , yn) :
∑n
j=1 yj = 1} is the hyperplane that contains Sn.

The Hamiltonian of the system is given by

H[x;ψ] := L[x;ψ]− λ(x)G[x;ψ], (15)

where

G[x;ψ] :=
n∑
j=1

ψj(x) − 1 (16)

and λ(·) is a piecewise continuous function. (The Lagrange multiplier func-
tion.)

The first order necessary conditions for an extremum are

∂H

∂ψj
= 0, j = 1, 2, . . . , n, (17)

∂H

∂λ
= 0. (18)

In view of (10) and (15) the first order conditions (17) above become

xf(x)eRjxψj(x) − λ(x) = 0 for all x ≥ 0 and j = 1, 2, . . . , n.

These give for each j

eRjxψj(x) =
λ(x)

xf(x)
or

ψj(x) =
1

Rjx
log

λ(x)

xf(x)
for j = 1, 2, . . . , n. (19)

In view of (15), (16), and (18) it follows from (19) that

n∑
j=1

1

Rjx
log

λ(x)

xf(x)
= 1,

or
1

x
log

λ(x)

xf(x)
=

1∑n
j=1

1
Rj

.

Hence, according to (19), the functions ψj that satisfy the first order conditions
for an extremum are the constant functions given by

ψj(x) =
R−1
j∑n

j=1R
−1
j

, x ∈ [0,∞), j = 1, 2, . . . , n. (20)
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Denote by ψ∗ the element of Hn defined by (20). Since ψ∗ is the unique
function that satisfies the first order conditions it is clear that it is an extremal
point. Furthermore, if α ∈ [0, 1], from (9) and the convexity of the exponential
function on R we can readily check that c[αψ+(1−α)ψ′] ≤ αc[ψ]+(1−α)c[ψ′]
for any ψ,ψ′ ∈ Hn, i.e. that c : Hn 7→ R+ is a convex function. Thus it follows
that ψ∗ minimizes c over Hn and hence over Sn since ψ∗ ∈ Sn ⊂ Hn.
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