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Abstract

The idea behind the recently introduced “age of information” performance measure of a networked
message processing system is that it indicates our knowledge regarding the “freshness” of the most
recent piece of information that can be used as a criterion for real-time control. In this paper, we
examine two such measures, one that has been extensively studied in the recent literature and a new
one that could be more relevant from the point of view of the processor. Considering these measures as
stochastic processes in a stationary environment (defined by the arrival processes, message processing
times and admission controls in bufferless systems) we characterize their distributions using the Palm
inversion formula. Under renewal assumptions we derive explicit solutions for their Laplace transforms
and show some interesting decomposition properties. Previous work has mostly focused on computa-
tion of expectations. We conclude with a discussion of future work, including assessment of enqueueing
policies that may have smaller age of information in some cases.
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newal process; Poisson process; performance evaluation; stochastic decomposition
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1 Introduction

The Internet is now commonly used to transmit latency-sensitive information that is part of a real-
time control or decision process. As an example, consider a temperature or pressure sensor which could
periodically transmit a reading to a latency-critical remote control. Other examples include decision
systems for an airplane, driverless vehicles, financial transactions, power systems, sensor/actuator systems
or other “cyber physical” systems. In the power system case, a high temperature reading of a transmission
line could indicate reduced capacity or predict near-term failure. In the sensor system example, the sensor
could indicate an alarm such as a motion detector which needs to be manually reset once tripped; any
alarm message would render stale any queued or in-transmission “heartbeat” message that is periodically
sent to indicate no intruder is present and that the sensor is properly functioning. In the actuator system
case, messages may embody commands to a remote actuator of a time-critical control system.

Systems such as the ones described above naturally depend on the age of the most recently received
reading from a remote sensor. This is a quantity that takes into account the time since the reading was
generated. In view of the speeds involved a decision must be taken upon arrival of a new information
packet: to read or not read it. The choice is crucial and depends on the packet length and the frequency
of information packet arrivals, quantities that may not be completely known. If current time is denoted
by t and if the arrival time of the most recent completely read message before t is denoted by A∗t then the
quantity α(t) := t − A∗t has been introduced in the literature and has been termed “age of information
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(AoI)”. This has been introduced as a measure of freshness and its expectation has been studied in, e.g.,
[8, 6, 11, 2, 9]. From a performance point of view, we are interested not only in its expectation but also
in its probability distribution. We derive results about the latter in this paper.

One can argue that the above measure may have limited usefulness for applications that cannot control
the arrivals of messages. And thus, one may assert that the freshness of information should be gauged
not against the current time t but against the last arrival time At of a message before t. By definition,
A∗t ≤ At with equality if and only if the message arriving at At is completely read. We thus introduce
the measure β(t) := At − A∗t . Since there is no terminology for this quantity, we are free to choose one:
we call it “new age of information (NAoI)”. Notice that β(t) ≤ α(t) provided that the same acceptance
policy is used on both sides. But, as seen in the paper, there could be a class of policies such that the
supremum of the left-hand side over this class is not smaller than the infimum of the right-hand side over
the same class. To better understand the difference between the two quantities, consider the case where
messages arrive randomly (according to, say, a Poisson process) but have very small duration. Then it is
unlikely that a message will arrive while another is being read. Notice then that β(t) is most of the time
zero, indicating that the information possessed by the server is most of the time fresh. Upon arrival of
a message however, β is set to the interarrival time between the current and the previous message. This
indicates that the information is old. On the other hand, α(t) increases linearly between two messages
and this is due to the age t − At of the arrival process. From a system point of view, one may wish to
keep α low. However, from a server point of view, one may wish to keep β low.

We consider α(t) and β(t) as (random) functions of time t and are interested in their steady-state
characteristics. The simplest such characteristic is the expectation. However, the expectation of α may be
arbitrarily large (potentially infinite) if, say, the arrival process is renewal with large-variance interarrival
times. Another characteristic that we may wish to keep low is the complemetary probability P(α(t) > u)
for some u > 0, and, similarly, P(β(t) > u).

We study policies in two extreme cases: the fully push-out policy (every new message immediately
obsoletes the current one, if any) and the fully blocking policy (the system ignores all messages arriving
during the time that a message is being read). We do so in order to obtain concrete formulas and explain
the methods. However, in principle, our methods will work on any policy. In addition, we work only with
buffereless systems (but see the last section for a discussion). The reason we do so is that, from the point
of view of keeping any of the two age of information measures small it makes no sense to store more than
one message. To see why, suppose a new (freshest) message arrives to a system having queued messages
together with a message that is currently being read. Processing any of the queued messages will simply
delay that of the freshest message thus increasing the age of information.

The paper is organized as follows. In Section 2 we present the setup and the definition of the models
and all relevant stochastic processes. Section 3 is a brief outline of some of the results. Formulas for
distributions and moments of both the AoI and the NAoI for the fully push-out system are derived in
Section 4. This is done by carefully applying Palm theory, first in a stationary context and then by
specializing to the case involving independence assumptions. The stronger the assumptions, the more
explicit the results. For the queueing theorist, it is not a surprise that the formulas become quite explicit
when the arrival process is Poisson. Similarly pleasing and explicit is the case when the message lengths
are independent exponentially distributed random variables. If both Poissonian assumptions hold then
we are in the best of all worlds. The NAoI is the subject of Section 5. The action plan is the same as
in the fully push-out system case, but, here, all calculations are more involved. This is due to the fact
that the fully blocking system has more complicated dynamics than the push-out system. Nevertheless,
closed-form formulas are also possible. In Section 6, we discuss variations of the AoI problem to be
considered in future work; in particular, we discuss other enqueueing policies that may have smaller Age
of Information in some cases. Last but not least, one might wonder why we only study bufferless systems.
The reason is that storing any message at all will not improve the age of information. This is heuristically
true but also supported by numerical simulations presented in the last section.
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2 System definitions

The goal of this section is to define the two measures of the age of information for a general bufferless
processing system. We are careful to include the possibility that some of the quantities below may be
restricted on a lattice. We first define such a system, allowing the possibility to accept or reject messages.
We then give the definitions of the age of information measures as functions of time. Lastly, we introduce
stochastic assumptions which make the age of information processes random functions of time. Some
notation/terminology used throughout is as follows: The set of integers is denoted by Z. The indicator
function of a set A is denoted by 1A. The notation E[X;A] stands for E[X1A]. If S is a set and s ∈ S,
then δs denotes the Dirac measure δs(B) = 1s∈B, B ⊂ S. By point measure on R (or R2) we mean a
measure assuming nonnegative integer values; necessarily, it is a finite or countable sum of Dirac measures.
A point process is a random point measure. If X is a positive random variable with finite expectation,
we say that X is the stationary version of X if it has density P(X > x)/EX:

P(X ∈ dx) =
P(X > x)

EX
dx.

We then have

Ee−uX =
1− Ee−uX

uEX
, EX =

EX2

2EX
.

When X and Y are random variables (on, possibly, different probability spaces) X
(d)
= Y denotes equality

of their laws (distributions). The symbol P̃ denotes the probability governing a time-stationary sys-
tem, whereas P denots the Palm probability of P̃ with respect to the arrival process. (We choose this
unconventional notation because the former symbol is used less frequently than the latter.)

2.1 Bufferless message processing systems

Messages arrive in a bufferless server which can read one message at a time. Denote by Tn, n ∈ Z, the
message arrival times. We assume that

Tn < Tn+1, n ∈ Z, sup
n∈Z

Tn = +∞, inf
n∈Z

Tn = −∞.

We shall fix an ordering by letting T0 be such that T0 ≤ 0 < T1. We denote by

a :=
∑
n∈Z

δTn

the arrival process, considered as a point measure. We shall also let, for all n ∈ Z,

τn := Tn+1 − Tn.

We introduce, for each n ∈ Z, the acceptance index χn, setting

χn =

{
1, if the message arriving at Tn is accepted

0, otherwise.

The χn is a decision variable that depends on the acceptance policy. See below for some example. In this
paper we shall only consider specific policies leaving optimization/control problems for future work. The
length of message n (the message arriving at time Tn) is denoted by σn and its departure time by T ′n.
The latter given by

T ′n :=

{
Tn, if χn = 0

(Tn + σn) ∧ inf{Tr : r > n, χr = 1}, if χn = 1
. (1)
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Figure 1: A message arrives at time T1 at an idle server and is immediately accepted. A double line indicates that
a message pushes out the previous one, while a single line indicates that the message is blocked. Thus, messages
1, 2, 3 and 6 are accepted, while 4, 5 and 7 are rejected. Only message 6 is successful. The server started reading
message 1 at time T1 and finishes reading message 6 in its entirety at time T ′

6 = T6 + σ6.

This means that an arriving message will either be immediately rejected (and thus depart immediatly) or
accepted, in which case it will either be read in its entirety or pushed out by another accepted message.
Note that the sets {Tn, n ∈ Z} and {T ′n, n ∈ Z} may have common elements (e.g., if we allow all variables
take vales that are integer multiples of a common unit). It is easy to see from (1) that the intervals
[Tn, T

′
n) and [Tm, T

′
m) are disjoint if m 6= n. Thus, for all t, the quantity

q(t) :=
∑
n∈Z

χn 1Tn≤t<T ′n (2)

is either 0 or 1. The q(t) is the state of the server at time t: q(t) = 1 if the server is busy or 0 if not.
Notice that q(·) is right-continuous (by choice rather than by necessity).

We call message n successful if it departs immediately after having being read in its entirety. The
success index is the binary variable

ψn := 1T ′n=Tn+σn . (3)

By definition, for all n,
ψn ≤ χn.

See Figure 1 for an illustrative example of an arbitrary policy.
Consider n ∈ Z and the statement

Zn := “q(Tn−) = 0 or T ′m = Tn for some m < n” (4)

which expresses the event that the server is idle at the arrival time Tn either because it was idle on some
interval (Tn − ε, Tn) or because a message just departed at time Tn. We shall throughout assume that
the non-idling condition

for all n ∈ Z if Zn then χn = 1 (NI)

holds. For those n for which Zn is violated the determination of χn is a matter of the acceptance policy.
Here are four examples of acceptance policies. Let ` be a nonnegative integer.

Example 1. The fully push-out (P) policy. All messages are accepted:

χn = 1, n ∈ Z.

From (1) and (3) it is easy to see that

ψn = 1Tn+σn≤Tn+1 = 1τn≥σn , n ∈ Z.

Example 2. The fully blocking (B) policy. No message other than those satisfying the non-idling
condition (NI) are accepted:

χn = 1 ⇐⇒ Zn holds.

Note that, here, ψn = χn for all n, that is, every accepted message is successful.

4



Example 3. The BP(`) policy. If Tn is the arrival of a message at an idle server, and if there are at
most ` arrivals on (Tn, Tn +σn] then reject them all; otherwise, reject the first ` of them and accept every
arrival until the next time that a message arrives at an idle server.

Example 4. The PB(`) policy. If Tn is the arrival of a message at an idle server, and if there are
at most ` arrivals on (Tn, Tn + σn] then accept them all; otherwise, accept the first ` of them and reject
every arrival until the next time that a message arrives at an idle server.

We shall only study the first two policies in this paper, leaving the study of the others, as well as
optimal policies, for future work.

2.2 Age of information processes

To define the age of information functions (of time) we need to introduce the following functions on R.
The last arrival before t ∈ R is defined by

At := sup{Tn : n ∈ Z, Tn ≤ t}.

The last successful arrival before t is defined by

St := sup{Tn : n ∈ Z, Tn ≤ t, ψn = 1};

The last successful departure before t is defined by

Dt := sup{Tn + σn : n ∈ Z, Tn + σn ≤ t, ψn = 1}.

Note that, under our assumptions on the sequence Tn, the sup in the definition of At is actually a max.
Assuming further that

inf{n : ψn = 1} = −∞ (A1)

we have that the sup in St and Dt is replaced by a max. If, in addition,

sup{n : ψn = 1} =∞ (A2)

then St, Dt <∞ for all t.

Definition 1. Under assumptions (A1) and (A2), the age of information (AoI) function is defined by

α(t) := t− SDt , t ∈ R, (5)

and the new age of information (NAoI) function is defined by

β(t) := At − SDt , t ∈ R. (6)

Note that the functions A,S,D above are right-continuous and increasing (s < t ⇒ As ≤ At, Ss ≤
St, Ds ≤ Dt). It follows that α and β are also right-continuous. Moreover,

∆α(t) := α(t)− α(t−) = −∆SDt = − lim
ε↓0

(SDt − SDt−ε) ≤ 0.

So jumps of α can only be negative. Notice that

∆α(t) = SDt − S(Dt−)−.

On the other hand, β can have both positive and negative jumps.
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We shall also use the following notations and terminology. Consider the arrival times Tn of messages
arriving at a idle server:

{Bk : k ∈ Z} := {Tn : Zn holds}.

By convention, we enumerate these points as

· · · < B−1 < B0 ≤ 0 < B1 < · · ·

They form the beginnings of reading intervals. An interval with endpoints Bk and Bk+1 will be referred
to as cycle. Define also

{B′k : k ∈ Z} := {Tn + σn : n ∈ Z, ψn = 1}

and again assume that
· · · < B′−1 < B′0 ≤ 0 < B′1 < · · ·

These are the ends of reading intervals. The two sequences, {Bk} and {B′k}, are interlaced: between two
successive elements of one sequence there is exactly one element of the other. See Figure 2. An interval

Figure 2: The interval [Bk, Bk+1) is a cycle and the subinterval [Bk, B
′
k) is a reading interval.

with endpoints Bk and Bk+1 is called a cycle. We set

Ck := Bk+1 −Bk

for the cycle length. The subinterval with endpoints Bk and B′k is called a reading interval. We set

Rk := B′k −Bk

for the reading length.

2.3 The stationary framework

Let (Ω,F , P̃) be a probability space endowed with a flow, i.e., a family of invertible measurable functions
θt : Ω→ Ω, t ∈ R, such that θ−1

t are also measurable and such that

θt+s = θt◦θs, s, t ∈ R. (7)

Assume further that the flow preserves P̃, that is,

P̃◦θt = P̃, t ∈ R.

Let Tn, σn be random variables such that the marked1 point process
∑

n δ(Tn,σn) is stationary, that is,(∑
n

δ(Tn,σn)

)
◦θt =

∑
n

δ(Tn−t,σn), t ∈ R. (8)

1A point process ϕ on a product space S ×M is called M -marked (or just marked) if ϕ({s} ×M) ∈ {0, 1} for all s ∈ S.
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Note then that
At◦θs = At+s − s, s, t ∈ R.

It follows that the arrival rate
λ := Ẽ

∑
n

10≤Tn≤1

is positive and finite. Consider next a acceptance policy as specified by the acceptance random variables
χn, n ∈ Z, defined on (Ω,F ). We say that the system is in steady-state if, in addition to (8),(∑

n

δ(Tn,σn,χn)

)
◦θt =

∑
n

δ(Tn−t,σn,χn), t ∈ R. (9)

If the system is in steady-state then it follows from (9), (7) (3) and (1) that(∑
n

δ(Tn,σn,χn,ψn)

)
◦θt =

∑
n

δ(Tn−t,σn,χn,ψn), t ∈ R, (10)

and, for all s, t ∈ R,

St◦θs = St+s − s, Dt◦θs = Dt+s − s,
α(s)◦θt = α(t+ s), β(s)◦θt = β(t+ s), q(s)◦θt = q(t+ s).

In general, it is not obvious that (9) holds. Of the four acceptance policies mentioned above, the push-out
P immediately satisfies (9) owing to that χn = 1 and ψn = 1Tn+1−Tn≥σn for all n. For the fully blocking
B policy note that the system is identical to the so called G/G/1/1 queue. That (9) holds is proved in
[1, Section 5.3] and may require enlarging the probability space (Ω,F , P̃).

Definition 2. We shall denote by P the Palm probability of P̃ with respect to the point process a =∑
n∈Z δTn. If (9) holds we shall denote by P∗ the Palm probabilityof P̃ with respect to the point process∑
k∈Z δBk .

For the notion of Palm probability see, e.g., Daley and Vere-Jones [4, Chapter 13], Kallenberg [7]
and Baccelli and Brémaud [1]. Formally, with B denoting the class of Borel sets on R, the measure
B 3 C 7→ Ẽ(1A

∑
n 1Tn∈C) is absolutely continuous, and hence differentiable, with respect to the measure

B 3 C 7→ Ẽ(
∑

n 1Tn∈C). The value of the derivative at 0 is precisely P(A). The Palm probability P∗(A)
can be obtained in exactly the same manner. However, since {Bk} is precisely the set of Tn for which Zn
holds, it follows that P∗ is obtained from P via elementary conditioning:

P∗ = P(·|Z0 = 1).

Integrals with respect to P, P∗ and P̃ are denoted by E, E∗ and Ẽ respectively. Moreover, P(T0 = 0) = 1
and P∗(B0 = T0 = 0) = 1. We denote by θTn the map defined by θTn(ω) = θTn(ω)(ω). Then θTn , n ∈ Z,
forms a discrete time flow that preserves P. In other words, P-a.s., θTn◦θTm = θTn+m for all m,n ∈ Z and
P◦θTn = P for all n ∈ Z. Similarly, P∗-a.s., θBk◦θB` = θBk+` for all k, ` ∈ Z and P∗◦θBk = P∗ for all k ∈ Z.

The P-law of (τn, σn) does not depend on n. In what follows, we let (τ, σ) be a generic random element
whose law is the same as the P-law of (τ0, σ0). The definition of Palm probability and the fact λ > 0
implies that

Eτ = 1/λ <∞.

This is the minimal condition imposed by stationarity and thus it cannot be avoided. It is important to
note however that we shall make no assumptions about finiteness of higher P-moments of τ .

Referring to Figure 2, note that, under P∗, all cycles have identical law and so do all reading intervals.
We denote by C a typical cycle length, that is, a random variable whose law is the P∗-law of the length
any cycle. Similarly, R denotes a typical reading interval length.
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3 Outline of some of the results

All results concern stationary processes. Denote by αP , αB the AoI processes for the fully push-out and
fully blocking systems, respectively. Similarly, we let βP , βB be the NAoI processes for the two systems.

Under stationary assumptions only, the main results for αP and αB are Theorems 1 and 5, respectively.
They give relations for the marginal distributions of the two processes that can be solved provided further
assumptions are made. In particular, under i.i.d. assumptions, we find that (see Theorem 2), in steady-
state,

αP(t)
(d)
= τ + RP ,

where τ is a random variable whose law is the law of the stationary version of the interarrival time and
RP is an independent random variable distributed as the typical reading interval of the fully push-out
system. We also find that (Theorem 6), in steady-state,

αB(t)
(d)
= σ + CB,

where σ is a random variable distributed as the typical message length and CB is an independent random
variable distributed as the stationary version of the typical cycle.

Under stationary assumptions only, the main results for processes βP and βB are Theorems 3 and 7
respectively. Regarding βP , βB, under i.i.d. assumptions, we find that they have atoms at 0 and that (see
Theorem 4)

(βP(t)|βP(t) > 0)
(d)
= CP ,

where CP is distributed as the typical cycle. Under stationarity assumptions only, we find (Theorem 7
and Remark 4) that

βB(t)1βB(t)>0
(d)
= β+(t),

where β+(t) is the NAoI process for an appropriately defined variant of the fully-blocking system: remove
from the system all undisturbed messages, that is, all messages that arrive at an idle system and are
such that no other messages arrice while they are being processed. Specializing to iid assumptions, we
find (Theorem 8) that (βB(t)|βB(t) > 0) has density and Laplace transforms depending on functions that
satisfy renewal equations. The dependence on these renewal functions is complicated but quite explicit:
see equation (66).

Further assuming that one of the variables τ , σ is exponential results into explicit formulas both for
Laplace transforms and expectations. These results are expressed as corollaries following each of the
theorems.

4 The fully push-out system

The dynamics of the push-out system is quite simple: every arriving message is admitted: χn = 1 for all
n ∈ Z. The message arriving at Tn is successful if and only of Tn + σn ≤ Tn+1. Thus

ψn = 1τn≥σn , n ∈ Z.

Since, for all n, χn = 1 and ψn = 1τn≥σn , it follows from (1) that the state process q of (2) is alternatively
given by

q(t) =

{
0, Tn + σn ≤ t < Tn+1 for some n

1, otherwise
.

If P(τ0 < σ0) = 1 then P(τn < σn for all n) = 1 and so q is identically equal to 1. This is an uninteresting
case resulting in infinite AoI and NAoI. We thus assume that

P(τ0 ≥ σ0) > 0. (11)

8



By the Poincaré recurrence theorem [5, Theorem 7.3.4], inf{n : ψn = 1} = −∞, sup{n : ψn = 1} = +∞,
P-a.s., and hence P̃-a.s. This implies that α, β are well-defined and finitely-valued processes.

It is easy to see that, for the fully push-out system, the beginnings of cycles satisfy

{Bk : k ∈ Z} = {Tn : n ∈ Z, ψn−1 = 1}.

We therefore have:

Lemma 1. The Palm probability P∗ of Definition 2 is the Palm probability of P̃ with respect to the
(stationary) point process ∑

n∈Z
ψn−1δTn

and
P∗ = P(·|ψ−1 = 1) = P(·|τ0 ≥ σ0). (12)

In particular,

B1 = inf{Tn : n ∈ Z, Tn > 0, ψn−1 = 1}, B0 = sup{Tn : n ∈ Z, Tn ≤ 0, ψn−1 = 1}. (13)

4.1 The age of information for the fully push-out system

To compute the law of α(0) we shall use the Palm inversion formula

Ẽf(α(0)) =
E∗
∫ B1

B0
f(α(t)) dt

E∗(B1 −B0)
, (14)

where f : R → R is bounded and measurable or of constant sign and measurable. The denominator is
easy to compute:

E∗(B1 −B0) =

(
Ẽ
∑
n

ψn−110<Tn<1

)−1

=

(
λE
∫
R
ψ−110<t<1 dt

)−1

=
1

λP(τ0 ≥ σ0)
, (15)

where we used Campbell’s formula. By the non-triviality assumption (11), E∗(B1 −B0) <∞.

Theorem 1. Consider the fully push-out system under stationarity assumptions and assume that (11)
holds. Let F : R+ → R be a bounded absolutely continuous function with a.e. derivative F ′. Then

ẼF ′(α(0)) = λE

[
F

(
τ−1 +

N−1∑
i=0

τi + σN

)
− F (σN ); τ−1 > σ−1

]
, (16)

where N := inf{` ≥ 0 : τ` ≥ σ`} = min{` ≥ 0 : τ` ≥ σ`}.

Proof. We have N < ∞ because of stationarity and hence the expression in the brackets of (16) makes
sense. Message N is successful (ψN = 1) and, by the first of (13),

B1 = TN+1, P∗-a.s.

To compute the integral in the numerator of (14) we take a close look at the function α restricted on the
interval [B0, B1). If B0 ≤ t < TN + σN then Dt = B−1 and SDt = T−1. If TN + σN ≤ t < TN+1 then
Dt = TN and SDt = T0. Thus,

α(t) =

{
t− T−1, T0 ≤ t < TN + σN

t− TN , TN + σN ≤ t < TN+1

, P∗-a.s.

9



Then, P∗-a.s.,∫ B1

B0

f(α(t)) dt =

∫ TN+1

T0

f(α(t)) dt =

∫ TN+σN

T0

f(t− T−1) dt+

∫ TN+1

TN+σN

f(t− TN ) dt

= F (TN + σN − T−1)− F (T0 − T−1) + F (TN+1 − TN )− F (σN ),

and thus, since E∗F (T0 − T−1) = E∗F (TN+1 − TN ),

E∗
∫ B1

B0

f(α(t)) dt = E∗
[
F

(
τ−1 +

N−1∑
i=0

τi + σN

)
− F (σN )

]
.

We can rewrite (15) as E∗(B1−B0) = 1/λP(τ−1 ≥ σ−1). Dividing the last display by this expression and
using the relation (12) between P∗ and P we arrive at (16).

At this level of generality it is not possible to have a more explicit formula. However, given information
about the law of the sequence (τn, σn), n ∈ Z, we can proceed further. For example, assuming that the
τn, n ∈ Z, is independent of σn, n ∈ Z, and both sequences have known laws then a further simplification
is possible. If, in addition, the P-law of one of the sequences is that of i.i.d. exponential random variables
then it is possible to elaborate further and derive an almost closed-form formula.

Theorem 2. Consider the fully push-out system and assume that (τn, σn), n ∈ Z, is i.i.d. under P and
such that Eτ0 <∞ and P(τ0 ≥ σ0) > 0. Assume further that τn is independent of σn for all n. Then, for
u > 0,

Ẽe−uα(0) =
1− Ee−uτ

uEτ
E[e−uσ; τ ≥ σ]

1− E[e−uτ ; τ < σ]
(17)

In particular, under P̃, α(0) is the sum of two independent random variables:

α(0)
(d)
= τ + R, (18)

where τ is the stationary version of τ and R is a typical reading interval length.

Corollary 1. The P̃-distribution of α(0) is absolutely continuous.

To prove Theorem 2, we shall make use of the following elementary fact, often known under the name
“découpage de Lévy”.

Lemma 2. Let X1, X2, . . . be i.i.d. random elements in an arbitrary measurable space (S,S ) with common
law µ and let B ∈ S have µ(B) > 0. Let N = inf{n ≥ 1 : Xn ∈ B}. Then

(i) (X1, . . . , XN−1) is independent of XN ;

(ii) XN has law µ(·|B);

(iii) P(N = n) = µ(S −B)n−1µ(B), n ≥ 1.

Moreover, the distribution of (X1, . . . , XN ) can be expressed neatly as follows. Let X ′′, X ′1, X
′
2, . . . be

independent random elements, and independent of N , such that

P (X ′′ ∈ ·) = µ(·|B), P(X ′i ∈ ·) = µ(·|S −B), i = 1, 2, . . .

Then

(X1, . . . , XN )
(d)
= (X ′1, . . . , X

′
N−1, X

′′),

where, by definition, (X ′1, . . . , X
′
N−1, X

′′) = X ′′ if N = 1.

10



The proof is trivial and is thus omitted.

Proof of Theorem 2. For fixed u > 0, let F (x) = e−ux, x ≥ 0. Then F ′(x) = −ue−ux and F (x1 + x2) =
F (x1)F (x2) for all x1, x2 ≥ 0. With a view towards applying Lemma 2 to the sequence (τn, σn), n ≥ 0,
let B := {(t, s) ∈ R2 : t ≥ s ≥ 0}. For simplicity, let

p := P(τ ≥ σ), q = 1− p.

By (16),

ẼF ′(α(0)) = λpE∗
[
F

(
τ−1 +

N−1∑
i=0

τi + σN

)
− F (σN )

]
= λpE

[
F

(
τ ′′ +

N−1∑
i=0

τ ′i + σ′′
)
− F (σ′′)

]
,

where N, τ ′′, τ ′1, τ
′
2, . . . , σ

′′ are independent random variables such that

P(N = n) = qnp, τ ′′
(d)
= (τ |τ > σ), σ′′

(d)
= (σ|τ > σ), τ ′

(d)
= (τ |τ ≤ σ). (19)

Hence, letting F (x) = e−ux for some fixed u > 0 we have

ẼF ′(α(0)) = λpE

{
F (τ ′′)F (σ′′)

N−1∏
i=0

F (τ ′i)− F (σ′′)

}
= λpEF (σ′′)

{
EF (τ ′′)E[(EF (τ ′))N ]− 1

}
= λpEF (σ′′)

{
EF (τ ′′)

p

1− qEF (τ ′)
− 1

}
= λp

EF (σ′′) (EF (τ)− 1)

1− qEF (τ ′)
,

whence, after a little algebra, we obtain (17):

−uẼe−uα(0) = λ(Ee−uτ − 1)
pEe−uσ′′

1− qEe−uτ ′
= λ(Ee−uτ − 1)

E[e−uσ; τ ≥ σ]

1− E[e−uτ ; τ < σ]
.

To prove (18) note that the first term in (17) equals 1−Ee−uτ
uEτ is equal to Ee−uτ . So α(0)

(d)
= τ + Y where

Y is an independent random variable whose Laplace transform is the second term in (17):

Ee−uY =
E[e−uσ; τ ≥ σ]

1− E[e−uτ ; τ < σ]
. (20)

Recalling that N is the index of the first successful arrival after the origin, we see that, again after a little
algebra involving a geometric series,

Ee−u(TN+σN ) = E
∞∑
n=0

e−u(τ0+···+τn−1+σn) 1τ0<σ0,...,τn−1<σn−1,τn≥σn =
E[e−uσ; τ ≥ σ]

1− E[e−uτ ; τ < σ]
. (21)

This shows that Ee−uY = Ee−u(TN+σN ) for all u > 0, and thus

Y
(d)
= TN + σN .

But TN + σN = B1 −B0, P∗–a.s.

Remark 1. We may decompose α(0) in a different way. Rearranging terms in the P̃-Laplace transform
of α(0) we have

Ẽe−uα(0) = Ee−uσ
′′ λp

u

1− Ee−uτ

1− qEe−uτ ′
,

which implies that there is a second decomposition for the law of α(0):

α(0)
(d)
= σ′′ + Z,

where σ′′ and Z are independent random variables, with σ′′ having the law of σ conditional on τ ≥ σ and
Z having Laplace transform (λp/u)(1− Ee−uτ )/(1− qEe−uτ ′).

11



Corollary 2. Under the assumptions of Theorem 2, we have

Ẽα(0) =
Eτ2

2Eτ
+

Eτ ∧ σ
P(τ ≥ σ)

. (22)

Proof. Look at (18). We have Eτ = Eτ2/2Eτ and

ER = E(TN + σN ) =
Eτ ∧ σ
p

.

Corollary 3. Under the assumptions of Theorem 2, and if, in addition, the variables σn are exponential
with rate µ, then, under P̃,

α(0)
(d)
= τ +

e

µ
,

where e is a rate-1 exponential random variable, independent of τ and so

Ẽα(0) =
Eτ2

2Eτ
+

1

µ
.

Proof. We use (18). We just have to show that the reading interval length R is exponential with rate µ.
Since

E[e−uσ; τ ≥ σ] = E
∫ τ

0
e−usµe−µsds = µE

∫ τ

0
e−(u+µ)sds =

µ

u+ µ
[1− Ee−(u+µ)τ ],

E[e−uτ ; τ < σ] = Ee−uτP(σ ≥ τ |τ) = Ee−uτe−µτ = Ee−(u+µ)τ ,

we have, from (20), that the Laplace transform of R is

Ee−uR =
E[e−uσ; τ ≥ σ]

1− E[e−uτ ; τ < σ]
=

µ
u+µ [1− Ee−(u+µ)τ ]

1− Ee−(u+µ)τ
=

µ

u+ µ
.

Corollary 4. Under the assumptions of Theorem 2, and if, in addition, the variables τn are exponential
with rate λ, then

Ẽe−uα(0) =
λEe−(λ+u)σ

u+ λEe−(λ+u)σ
, Ẽα(0) =

1

λEe−λσ
.

Proof. Since τ is exponential we have τ
(d)
= τ and so

Ee−uτ = Ee−uτ =
λ

u+ λ
.

Using (20), we have

Ee−uR =
(u+ λ)Ee−(u+λ)σ

u+ λEe−(u+λ)σ
.

Equation (17) says that the Laplace transform of α(0) is the product of the last two displays and so this
derives the first formula. Next use (22). Since

Eτ ∧ σ =
1

λ
(1− Ee−λσ), P(τ > σ) = Ee−λσ,

12



we have

Ẽα(0) =
1

λ
+

1

λ
· 1− Ee−λσ

Ee−λσ
=

1

λEe−λσ
.

Finally, a direct consequence of either of the above corollaries is:

Corollary 5. If the τn are i.i.d. exponential with rate λ, if the σn are i.i.d. exponential with rate µ, and
if the two sequences are independent, then, under P̃,

α(0)
(d)
=

e1
λ

+
e2
µ
,

where e1, e2 are two independent unit-rate exponential random variables.

4.2 The new age of information for the fully push-out system

Recall that β(t) = At − SDt . Under P̃, the law of β(t) is independent of t.

Lemma 3. The P̃-law of β(t) has a nontrivial atom at 0.

Proof. Indeed,
P̃(β(t) = 0) = P̃(At = SDt) = P̃(q(t) = 0) > 0.

The latter is positive because of the non-triviality assumption (11).

Theorem 3. Consider the fully push-out system under stationarity assumptions and assume that (11)
holds. Let f : R+ → R be a measurable function that is bounded or nonnegative. Then

Ẽf(β(0)) = λE

N−1∑
i=0

τif

 i−1∑
j=−1

τj

+ σNf

N−1∑
j=−1

τj

+ (τN − σN )f(0); τ−1 > σ−1

 , (23)

where N is as in Theorem 1.

Proof. We use again the Palm inversion formula

Ẽf(β(0)) =
E∗
∫ B1

B0
f(β(t)) dt

E∗(B1 −B0)
, (24)

where the notation is as before. We now have

β(t) = At − SDt =

{
Ti − T−1, T0 ≤ Ti ≤ t < Ti+1 ≤ TN + σN , i ≥ 0,

0, TN + σN ≤ t < TN+1

, P∗-a.s.

Hence the integral in (24) is∫ B1

B0

f(β(t)) dt =

∫ TN+1

T0

f(β(t)) dt

=
∑

i:T0≤Ti<Ti+1≤TN

∫ Ti+1

Ti

f(Ti − T−1)dt+

∫ TN+σN

TN

f(TN − T−1)dt+

∫ TN+1

TN+σN

f(0)dt

=
N−1∑
i=0

τif(Ti − T−1) + σNf(TN − T−1) + (τN − σN )f(0).

Substitute this into (24) and use E∗(B1 −B0) = 1/λP(τ−1 ≥ σ−1) to obtain (23).
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Corollary 6 (Continuation of Lemma 3). The atom of β(0) at 0 has value

P̃(β(0) = 0) = λE[(τN − σN ); τ−1 > σ−1]. (25)

Proof. Let, in (23), f(x) := 1x=0. Since all the τn and σn are nonzero with probability 1, (25) follows.

Theorem 4. Consider the fully push-out system and assume that (τn, σn), n ∈ Z, is i.i.d. under P and
such that Eτ0 <∞ and P(τ0 ≥ σ0) > 0. Assume further that τn is independent of σn for all n. Then the
P̃-law of β(0) can be described as

β(0)
(d)
=


0, with probability

E(τ − σ)+

Eτ
C, with probability

Eτ ∧ σ
Eτ

, (26)

where C has the distribution of a typical cycle length;

Ee−uC = E∗e−u(B1−B0) =
E[e−uτ ; τ ≥ σ]

1− E[e−uτ ;σ < τ ]
, (27)

In particular,

Ẽβ(0) =
Eτ ∧ σ
P(τ ≥ σ)

. (28)

Proof. Using (25) and independence,

P̃(β(0) = 0) = λE(τN − σN )P(τ−1 > σ−1).

By Lemma 2 and (19), we further have

P̃(β(0) = 0) = λE(τ ′′ − σ′′)P(τ > σ)

= λE(τ − σ|τ > σ)P(τ > σ)

= λE(τ − σ)+.

This proves the upper part of (26). To prove the lower part notice, from (23),

Ẽ[f(β(0));β(0) > 0] = λP(τ−1 > σ−1)E

N−1∑
i=0

τif

 i−1∑
j=−1

τj

+ σNf

N−1∑
j=−1

τj

∣∣∣∣τ−1 > σ−1


= λpE

N−1∑
i=0

τ ′if

τ ′′−1 +
i−1∑
j=−1

τ ′j

+ σ′′f

τ ′′−1 +
N−1∑
j=−1

τ ′j

 ,
where we used Lemma 2 and the definitions (19). Next, let f(x) = e−ux and write the above as

Ẽ[f(β(0));β(0) > 0] = λp (Ef(τ ′′))E

[
N−1∑
i=0

(Eτ ′)(Ef(τ ′))i + (Eσ′′)(Ef(τ ′))N

]

= λp (Ef(τ ′′))

[
(Eτ ′)E

(
1− (Ef(τ ′))N

1− Ef(τ ′)

)
+ (Eσ′′)(Ef(τ ′))N

]
= λp (Ef(τ ′′))

[
Eτ ′

1− Ef(τ ′)

(
1− p

1− qEf(τ ′)

)
+ (Eσ′′)

p

1− qEf(τ ′)

]
= λp (Ef(τ ′′))

qEτ ′ + pEσ′′

1− qEf(τ ′)
= λp (Ef(τ ′′))

Eτ ∧ σ
1− qEf(τ ′)

,
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that is precisely the lower part of (26). The last equality in (27) is easily verified along the same lines.
To finally show (28) just note that

Ẽβ(0) =
Eτ ∧ σ
Eτ

EZ =
Eτ ∧ σ
Eτ

Eτ
P(τ > σ)

.

Remark 2. Notice that β does not suffer from the same drawback as α when τ2 is not integrable. Indeed,
here, under the condition Eτ <∞ we have Ẽβ(0) ≤ 1, regardless of the variance of τ .

Corollary 7. Let the assumptions of Theorem 4 hold true.
(i) If the variables τn are exponential with rate λ, then

Ẽe−uβ(0) = 1− u(1− Ee−λσ)

u+ λEe−(λ+u)σ
, Ẽβ(0) =

1

λEe−λσ
− 1

λ
.

(ii) If the variables σn are exponential with rate µ, then

Ẽe−uβ(0) = 1− 1− Ee−µτ

µEτ
1− Ee−uτ

1− Ee−(u+µ)τ
, Ẽβ(0) =

1

µ
.

(iii) If the τn are with rate λ, and the σn are exponential with rate µ then, under P̃,

β(0)
(d)
=

{
0, with probability µ

λ+µ
e1
λ + e2

µ , with probability λ
λ+µ

, Ẽβ(0) =
1

µ
,

where e1, e2 are two independent unit-rate exponential random variables.

5 The fully blocking system

The fully blocking system is defined by the requirement that only those messages for which Zn holds are
admited. The remaining ones are immediately rejected (blocked). The system has the dynamics of the
G/G/1/1 queue. It is well-known that if

P( sup
i≤−1

(σi − Ti) ≤ 0) > 0 (29)

then the system admits a unique steady-state, see [1, Section 5.2]. Under this condition, (10) holds.
We have ψn = χn for all n ∈ Z (a message is successful if and only if it is admitted) and

ψn is a measurable function of (τm, σm : m ≤ n− 1). (30)

Recall that we use letters Bk, B
′
k for the beginings and ends of reading periods, respectively. In other

words,

{Bk : k ∈ Z} = {Tn : n ∈ Z, ψn = 1},
{B′k : k ∈ Z} = {Tn + σn : n ∈ Z, ψn = 1}.

Therefore the Palm probability P∗ of P with respect to {Bk} admits a simpler representation:

Lemma 4. P∗ is the Palm probability of P̃ with respect to the (stationary) point process∑
n∈Z

ψnδTn

and
P∗ = P(·|ψ0 = 1). (31)
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Recalling that {Bk} and {B′k} are interlaced sequences let us compute the quantities St (last successful
arrival before t), Dt (last successful departure before t), and SDt (last successful arrival before Dt)
depending whether t falls in a reading interval (that is, between Bk and B′k for some k) or not (that is,
between B′k and Bk+1 for some k). Since {Bk} is the totality of successful arrivals, we have that, for all
k ∈ Z,

Bk ≤ t < Bk+1 ⇒ St = Bk.

Since {B′k} is the totality of successful departures, we have that, for all k ∈ Z,

B′k ≤ t < B′k+1 ⇒ Dt = B′k.

It then follows that, for all k ∈ Z,

SDt =

{
Bk−1, if Bk ≤ t < B′k
Bk, if B′k ≤ t < Bk+1

. (32)

5.1 The age of information for the fully blocking system

We shall use the Palm inversion formula (14) for the process α(t) = t− SDt , t ∈ R, for the fully blocking
system. By Campbell’s formula we have that the denominator of (14) is

E∗(B1 −B0) =
1

λP(ψ0 = 1)
, (33)

however, unlike in the push-out system, the probability in the denominator depends on the full distribution
and the dynamics of the system and so it does not admit an explicit form without further assumptions.

Theorem 5. Consider the fully blocking system under stationarity assumptions and assume that (29)
holds. Let f be bounded and measurable or locally integrable and nonnegative function and let F be such
that F ′ = f . Then

Ẽf(α(0)) = λE[F (TN + σN )− F (σN ); ψ0 = 1] =
E[F (TN + σN )− F (σN )|ψ0 = 1]

E[TN |ψ0 = 1]
, (34)

where
N := inf{` ≥ 1 : τ0 + · · ·+ τ`−1 ≥ σ0}. (35)

Proof. Under P∗, message 0 is successful (admitted) and N is the first successful (admitted) message after
that. Note that N <∞. Thus,

B1 = TN , P∗-a.s. (36)

Note also that, with a =
∑

n∈Z δTn ,

N = a([0, σ0]) =
∞∑
n=0

1Tn≤σ0 , P-a.s. and (hence) P∗-a.s. (37)

By (32), and since B′0 = T0 + σ0, P∗-a.s., the function α on [B0, B1) is given by

α(t) = t− SDt =

{
t−B−1, T0 ≤ t < T0 + σ0

t−B0, T0 + σ0 ≤ t < TN
, P∗-a.s. (38)

Hence, for functions f, F as in the theorem statement, with F ′ = f ,∫ B1

B0

f(α(t)) dt =

∫ TN

T0

f(α(t)) dt =

∫ T0+σ0

T0

f(t−B−1) dt+

∫ TN

T0+σ0

f(t−B0) dt

= F (B0 −B−1 + σ0)− F (B0 −B−1) + F (B1 −B0)− F (σ0), P∗-a.s.,
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and thus, since E∗F (B0 −B−1) = E∗F (B1 −B0),

E∗
∫ B1

B0

f(α(t)) dt = E∗F (B0 −B−1 + σ0)− E∗F (σ0)

= E∗F (B1 −B0 + σN )− E∗F (σN ).

Here we used the fact that P∗ is preserved by θBk for all k ∈ Z. Taking into account (14), (33) and (36),
we can conclude.

Remark 3. Note that, since there is no ready-made expression for P(ψ0 = 1), the second formula in (34)
turns out to be more useful for further computations.

We now introduce
Nt := inf{` ≥ 0 : T` ≥ t}, t ≥ 0, (39)

so that the variable N defined by (35) is simply the value of Nt for t = σ0:

Nσ0 = N.

Note that N is left-continuous on [0,∞) with N0 = 0 and N0+ = 1. Since a =
∑

n∈Z δTn , we have

Nt = a([0, t)) = 1 + a((0, t)), t ≥ 0.

Remembering that P is a Palm probability and P(T0 = 0) = 1, define

U(t) := ENt = Ea([0, t)) =

∞∑
n=0

P(Tn < t), t ≥ 0. (40)

If the τn are i.i.d., then U is known as 0-potential function (if T0, T1, T2, . . . is thought of as a random
walk) or renewal function (if T0, T1, T2, . . . are thought of as the points of a renewal process). We have
that U is left-continuous on [0,∞) with U(0) = 0, U(0+) = 1. We shall deal with the renewal case next.
We will also need the definition

W (f, t) := Ef(TNt), t ≥ 0, (41)

where f is an appropriate function for which the expectation exists. In particular, with f(x) = e−ux for
some u > 0, we let

Wu(t) = Ee−uTNt , (42)

and with f(x) = xp for some p > 0, we let

Mp(t) = ET pNt .

The following result gives the Laplace transform of the P̃-marginal of α(t) in terms of functions that can
be computed as unique solutions to fixed-point equations.

Theorem 6. Consider the fully blocking system and assume that (τn, σn), n ∈ Z, is i.i.d. under P and
such that Eτ0 <∞ and P(τ0 ≥ σ0) > 0. Assume further that τn is independent of σn for all n. Then, for
u > 0,

Ẽe−uα(0) = Ee−uσ · 1− Ee−uTN
uETN

= Ee−uσ · 1− EWu(σ)

uEτ EU(σ)
, (43)

where U and Wu are the unique solutions to the fixed-point equations

U(t) = 1 +

∫
(0,t]

U(t− x)P(τ ∈ dx) (44)

Wu(t) =

∫
(t,∞)

e−uxP(τ ∈ dx) +

∫
(0,t]

Wu(t− x)e−uxP(τ ∈ dx). (45)
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In particular, under P̃, α(0) is the sum of two independent random variables:

α(0)
(d)
= σ + TN , (46)

where TN is the stationary version of TN .

Proof. Observe first that P(τ0 ≥ σ0) > 0 implies (by the ergodic theorem) (29) and hence a unique
steady-state version exists. Using the fact that ψn is a measurable function of the variables τm, σm with
m ≤ n [see (30)] we write (34) as

ẼF ′(α(0)) =
E[F (TN + σN )− F (σN )]

ETN
, (47)

with N = inf{` ≥ 1 : τ0 + · · · + τ`−1 ≥ σ0}, P-a.s. Since N − 1 = inf{i ≥ 0 : τ0 + · · · + τi ≥ σ0}, it
follows that N − 1 is a stopping time with respect to Ai, i ≥ 0, where Ai is the σ-algebra generated by
(σ0, τ0, . . . , τi). Let F (x) = e−ux. Then

E[F (TN + σN )− F (σN )] = E[F (TN )F (σN )− F (σN )] = [EF (TN )− 1]EF (σN ),

where the last equality needs that N − 1 is a stopping time. Noting that EF (σN ) = EF (σ) we obtain the
first equality in (43) from which decomposition (46) follows at once.
For the last equality of (43) we have

E TN = E
N−1∑
i=0

τi = E
∞∑
i=0

τi 1Ti≤σ0 =

∞∑
i=0

(Eτi)P(Ti ≤ σ0) = (Eτ)

∞∑
i=0

P(Ti ≤ σ0) = (Eτ)EU(σ), (48)

and,
Ee−uTN = Ee−uTNσ0 = EE[e−uTNσ0 |σ0] = EWEu(σ0). (49)

Equation (44) is the renewal equation from standard renewal theory. To obtain(45) we write

W (f, t) = Ef(TNt) = E[f(TNt); t < τ0] + E[f(TNt); t ≥ τ0].

If t < τ0 then Nt = 1, TNt = T1 = τ0, P-a.s., If t ≥ τ0 and τ0 = x then TNt
(d)
= x + TNt−x , under P. Set

Φt := TNt . If τ is independent of (Φt) we have TNt
(d)
= τ + Φt−τ and so f(TNt)1τ0≤t

(d)
= f(τ + Φt−τ )1τ≤t.

Hence
W (f, t) = E[f(τ); τ > t] + E[f(τ + Φt−τ ); τ ≤ t]. (50)

Letting f(x) = e−ux we further have F (τ + Φt−τ ) = e−uτe−uΦt−τ and so

E[e−u(τ+Φt−τ ); τ ≤ t] = E[e−uτE(e−uΦt−τ |τ)1τ≤t] = E[e−uτWu(t− τ)1τ≤t],

and this establishes (45).

To compute the first moment of the AoI we need to know the second moment of TNt . Recall that
Mp(t) = ET pNt is the p-th moment of TNt .

Lemma 5. If p is a positive integer we have

Mp(t) = EMp(t− τ) + Eτp +

p∑
k=1

(
p

k

)
E[τkWp−k(t− τ)]

=

∫
(0,t]

Wp−k(t− x)P(τ ∈ dx) + Eτp +

p∑
k=1

(
p

k

)∫
(0,t]

xkWp−k(t− x)P(τ ∈ dx). (51)
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Proof. Proceed as in the proof of Theorem 6 but let F (x) = xp in (50); then use the binomial theorem.

Let (U ∗ U)(t) :=
∫ t

0 U(t− x)U(dx).

Corollary 8. Under the assumptions of Theorem 6,

Ẽα(0) = Eσ +
ET 2

N

2ETN
= Eσ +

EM2(σ)

2EM1(σ)
= Eσ +

Eτ2

2Eτ
+

E(τ(U ∗ U)(σ − τ))

EU(σ)
. (52)

Proof. The first equality in (52) follows from the decomposition (46). The second equality follows from
ET pN = EE[T pNσ0

|σ0] = EMp(σ). We next have

M1(t) = Eτ U(t) (53)

and, from (51) with p = 2,

M2(t) = Eτ2 + 2E[τ M1(t− τ)] + EM2(t− τ) = Eτ2 + 2Eτ E[τ U(t− τ)] + EM2(t− τ).

With the help of (44) we can solve this explicitly and express M2 as a function of U :

M2(t) = Eτ2 · U(t) + 2Eτ E[τ (U ∗ U)(t− τ)]. (54)

Using (53) and (54) in the second equality of (52) we arrive at the third one.

The Laplace transforms of U , Wu andM2 are easy to obtain explicitly in terms of the Laplace transform
of τ :

Lemma 6.

Û(ξ) :=

∫ ∞
0

e−ξtU(t)dt =
1/ξ

1− Ee−ξτ
, (55)

Ŵu(ξ) :=

∫ ∞
0

e−ξtWu(t)dt =
1

ξ
· E[e−uτ − e−(u+ξ)τ ]

1− Ee−(u+ξ)τ
. (56)

M̂2(ξ) :=

∫ ∞
0

e−ξtM2(t)dt =
Eτ2

ξ(1− Ee−ξτ )
+ 2(Eτ)

E(τe−ξτ )

ξ(1− Ee−ξτ )2
. (57)

Proof. Equation (44) then gives

Û(ξ) =
1

ξ
+ Û(ξ)Ee−ξτ ,

and hence (55) follows. Equation (45) gives

Ŵu(ξ) =

∫ ∞
0

e−ξtE[e−uτ1τ>t] dt+

∫ ∞
0

e−ξtE[Wu(t− τ)e−uτ1τ≤t] dt

= E
[
e−uτ

1− e−ξτ

ξ

]
+ E

[
e−uτe−ξτ

∫ ∞
τ

e−ξ(t−τ)Wu(t− τ)dt

]
=

1

ξ
E
[
e−uτ (1− e−ξτ )

]
+ E

[
e−uτe−ξτ

]
Ŵu(ξ),

from which (56) follows. Finally, (57) follows from (54) and (55).
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Corollary 9. Let the assumptions of Theorem 4 hold true.
(i) If the variables τn are exponential with rate λ, then

Ẽe−uα(0) =
λ

1 + λEσ
· (u+ λ− λEe−uσ)Ee−uσ

u(u+ λ)
, Ẽα(0) = Eσ +

1

λ
+
λ

2
· Eσ2

1 + λEσ
.

(ii) If the variables σn are exponential with rate µ, then

Ẽe−uα(0) =
1

Eτ
· µ

(µ+ u)u
· (1− Ee−µτ )(1− Ee−uτ )

1− Ee−(µ+u)τ
=

µ2

(µ+ u)2
· Ee

−µτ Ee−uτ

Ee−(µ+u)τ
,

Ẽα(0) =
1

µ
+

Eτ2

2Eτ
+

E(τe−µτ )

1− Ee−µτ
.

(iii) If the τn are exponential with rate λ, and the σn are exponential with rate µ then, under P̃,

Ẽe−uα(0) =
µ2λ(λ+ µ+ u)

(λ+ µ)(λ+ u)(µ+ u)2
, Ẽα(0) =

1

µ
+

1

λ
+

λ

µ(λ+ µ)
.

Proof. (ia) We compute the functions U(t) and Wu(t) that enter formula (43). Since, under P, a =
∑

n δTn
is a Poisson process with a point at 0 we have, directly from (40), U(t) = 1 + λt. Since τ is exponential,
(56) explicitly gives the Laplace transform of Wu:

Ŵu(ξ) =
1

ξ
· E[e−uτ (1− e−ξτ )]

1− Ee−uτe−ξτ
=

1

ξ
·

λ
λ+u −

λ
λ+u+ξ

1− λ
λ+u+ξ

=
λ

λ+ u
· 1

u+ ξ
,

and hence

Wu(t) =
λ

λ+ u
e−ut.

Substituting into (43) we obtain the announced formula for Ẽe−uα(0).
(ib) Equations (55) and (57) give

M̂2(ξ) = Eτ2 Û(ξ) + 2(Eτ)
E(τe−ξτ )

ξ(1− Ee−ξτ )2
= Eτ2 Û(ξ) +

2λEτ
ξ3

.

Hence
M2(t) = Eτ2 U(t) + λ(Eτ)t2.

Using this and M1(t) = Eτ U(t) in (52) we obtain the announced formula for Ẽα(0).

(iia) If σ is exponential with rate µ then EU(σ) = µÛ(µ) and EWu(σ) = µŴu(µ). Hence (43) gives

Ẽe−uα(0) = Ee−uσ
1− µŴu(µ)

uEτ µ Û(µ)

But the Laplace transforms Û and Ŵu are known from Lemma 6. Substituting in the last display we
obtain the first announced equality for Ẽe−uα(0). For the second equality, simply replace the three terms
of the form 1− Ee−ξτ by ξ(Eτ)Ee−ξτ .
(iib) From the middle of (52) we have

Ẽα(0) =
1

µ
+

Ŵ2(µ)

2Ŵ1(µ)

and the formula follows from the previously derived formulas for Ŵ2 and Ŵ1.

(iiia) Consider the second equality in (ii). Since τ
(d)
= τ we have Ee−ξτ = λ/(ξ + λ). Replacing the three

terms in the second equality in (ii) by such ratios we arrive at the announced formula. Alternatively,
letting Ee−µσ = µ/(µ+ u) and Eσ = 1/µ in (i) we arrive at the same formula.
(iiib) Set Eσ = 1/µ, Eσ2 = 2/µ2 in the last formula of (i).
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5.2 The new age of information for the fully blocking system

Things are a bit more delicate here. Recall that the NAoI process is given by β(t) = At − SDt , where
At is the last arrival (accepted or not) before t and SDt is the last successful departure before the last
successful arrival before t; this quantity is given by (32).

Theorem 7. Consider the fully blocking system under stationarity assumptions and assume that (29)
holds. Then the P̃-law of β(0) has an atom at 0 satisfying

P̃(β(0) = 0) =
E∗(τ0 − σ0)+

E∗TN
, (58)

while, for f bounded and measurable function,

Ẽ[f(β(0));β(0) > 0] =
1

E∗TN
E∗
{
N−1∑
i=0

τif(Ti − TM )− (TN − σ0) f(TN−1 − TM )

}

+
1

E∗TN
E∗
{

(TN − σ0) f(TN−1)1TN−1>0

}
, (59)

where N = inf{` ≥ 1 : ψ` = 1} and M = sup{` ≤ −1 : ψ` = 1}.

Proof. Notice that N = inf{` ≥ 1 : T` ≥ σ0}, P∗-a.s. We use the Palm inversion formula:

Ẽf(β(0)) =
E∗
∫ B1

B0
f(β(t)) dt

E∗(B1 −B0)
. (60)

Since M,N are the indices of the admitted messages nearest to 0,

B−1 = TM ≤ T−1 < T0 = B0 = 0 < T1 < · · · < TN−1 < σ0 ≤ TN = B1, P∗-a.s.

In particular, B1 −B0 = TN , P∗-a.s. Since β(t) = At − SDt , using (32) we have

β(t) =


Ti − TM , if T0 ≤ Ti ≤ t < Ti+1 ≤ TN−1

TN−1 − TM , if TN−1 ≤ t < T0 + σ0

TN−1 − T0, if T0 + σ0 ≤ t < TN

.

Let f : R→ R be bounded and measurable. We write the integral in the numerator of (60) as:∫ TN

T0

f(β(t)) dt =

∫ TN−1

T0

f(β(t)) dt+

∫ T0+σ0

TN−1

f(β(t)) dt+

∫ TN

T0+σ0

f(β(t)) dt

=
N−2∑
i=0

∫ Ti+1

Ti

f(Ti − TM )dt+

∫ T0+σ0

TN−1

f(TN−1 − TM )dt+

∫ TN

T0+σ0

f(TN−1 − T0)dt

=

N−2∑
i=0

τif(Ti − TM ) + (σ0 − TN−1) f(TN−1 − TM ) + (TN − σ0) f(TN−1). (61)

Add and subtract the term corresponding to i = N − 1 to write the last line as

=

N−1∑
i=0

τif(Ti − TM )− τN−1f(TN−1 − TM ) + (σ0 − TN−1) f(TN−1 − TM ) + (TN − σ0) f(TN−1)

=

N−1∑
i=0

τif(Ti − TM ) + (σ0 − TN−1 − τN−1) f(TN−1 − TM ) + (TN − σ0) f(TN−1)

=

{
N−1∑
i=0

τif(Ti − TM )− (TN − σ0) f(TN−1 − TM )

}
+ (TN − σ0) f(TN−1). (62)
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(For f ≥ 0, the term in the bracket is positive because the last term of the sum is τN−1f(TN−1 − TM ) is
bigger than (TN − σ0) f(TN−1 − TM ) and this is because τN−1 − (TN − σ0) = σ0 − TN−1 > 0.) By (60),

E∗TN Ẽf(β(0)) = E∗
{
N−1∑
i=0

τif(Ti − TM )− (TN − σ0) f(TN−1 − TM )

}
+ E∗ {(TN − σ0) f(TN−1)} . (63)

To reveal the atom of the P̃-law of β(0) at 0, let

f(x) = 1x=0.

Then f(Ti − TM ) = 0 because TM > 0. Also, f(TN−1) = 1TN−1=0 = 1N=1 = 1τ0≥σ0 . Hence

E∗TN P̃(β(0) = 0) = E∗ {(TN − σ0)1N=1} = E∗ {(τ0 − σ0)1τ0≥σ0} = E∗(τ0 − σ0)+.

On the other hand,

Ẽ[f(β(0));β(0) > 0] = Ẽf(β)− Ẽ[f(β(0));β(0) = 0]

= Ẽf(β)− f(0)P̃(β(0) = 0)

= Ẽ[f(β)− f(0)1β(0)=0] ≡ Ẽg(β(0)),

where
g(x) = f(x)− f(0)1x=0.

We use g in place of f in (63) after noting that g(Ti−TM ) = f(Ti−TM )− f(0)1(Ti = TM ) = f(Ti−TM )
for i ≥ 0, and g(TN−1) = f(TN−1)− f(0)1TN−1=0 = f(TN−1)− f(0)1N=1. So

E∗TN Ẽ[f(β(0));β(0) > 0] =

= E∗
{
N−1∑
i=0

τif(Ti − TM )− (TN − σ0) f(TN−1 − TM )

}
+ E∗ {(TN − σ0) (f(TN−1)− f(0)1N=1)} .

Notice that

f(TN−1)− f(0)1N=1 = f(TN−1)− f(TN−1)1N=1 = f(TN−1)1N>1 = f(TN−1)1TN−1>0

and substitute into the last display to obtain the announced formula.

By Palm theory and stationarity, we have that |M | and N have the same P∗-law and so do |TM | and
TN . This simple fact is stated as an stand-alone lemma because it holds only under stationary assumptions
and because it is needed when we explicitly compute distributions under independence assumptions.

Remark 4. We now give a physical meaning to the P̃-law of β(0) conditional on β(0) > 0. Say that
the message arriving at time Tn is undisturbed if it is admitted (and hence successful) and no other
messages arrive during the time it is being processed; i.e., ψn = 0 and Tn + σn ≤ Tn+1. Therefore, for
Tn ≤ t < Tn+1 we have β(t) = 0: undisturbed messages provided the freshest possible information; this
is what contributes to the atom at 0 for β(0). Define then an auxiliary system, pathwise, by removing
all undisturbed messages. If β+(t) denotes the NAoI process for the auxiliary system then we have that,

under P̃, β(0) equals 0 with probability E∗(τ0−σ0)+

E∗TN
or β+(0) with the remaining probability. In particular,

Ẽ[f(β(0)); β(0) > 0] = Ẽf(β+(0)).
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Lemma 7. Assume that (τn, σn), n ∈ Z, is stationary under P. Let N = inf{` ≥ 1 : ψ` = 1} and
M = sup{` ≤ −1 : ψ` = 1}. Then

E(g(−TM )|ψ0 = 1) = E(g(TN )|ψ0 = 1),

for any bounded and measurable function g.

Proof. The point process
∑

n ψnδn is stationary under P̃ and the Palm probability of the latter with
respect to this point process is denoted by P∗. If · · · < T ∗−1 < T ∗0 ≤ 0 < T ∗1 < T ∗2 < · · · is an enumeration
of the points of

∑
n ψnδn in their natural order then E∗g(−T ∗−1) = E∗g(T ∗1 ) for any bounded measurable

function g. But T ∗1 = TN and T ∗−1 = TM and P = P∗(·|ψ0 = 1).

Under i.i.d. assumptions, and because the decision on whether to admit a message or not is past-
dependent, the ensued regeneration results into further simplification and the vanishing of the M from
the formula. We explain this below. First fix u ≥ 0 and consider the function Wu(t) introduced in (42)
as well as

Vu(t) := E
Nt−1∑
i=0

e−uTi , t ≥ 0 (64)

Qu(t) := E
{

(TNt − t) e−uTNt−1
}
, t ≥ 0. (65)

Theorem 8. Consider the fully blocking system and assume that (τn, σn), n ∈ Z, is i.i.d. under P and
such that Eτ0 < ∞ and P(τ0 ≥ σ0) > 0. Assume further that τn is independent of σn for all n. Then

P̃(β(0) = 0) = E(τ0−σ0)+

ETN and

Ẽ[e−uβ(0);β(0) > 0] =
1

ETN
Ee−uTN

{
Eτ E

N−1∑
i=0

e−uTi − E(TN − σ0) e−uTN−1

}

+
1

ETN
E
{

(TN − σ0) e−uTN−11TN−1>0

}
=

EWu(σ) [Eτ EVu(σ)− EQu(σ)] + E[e−uτQu(σ − τ)]

Eτ EU(σ)
, (66)

where U,Wu are uique solutions to the fixed point equations (44), (45), respectively, while Vu, Qu are
unique solutions to

Vu(t) = 1 +

∫
(0,t]

Vu(t− x) e−ux P(τ ∈ dx), (67)

Qu(t) = E(τ − t)+ +

∫
(0,t]

Qu(t− x)e−uxP(τ ∈ dx). (68)

In particular, under P̃, and conditional on β(0) > 0, the random variable β(0) is absolutely continuous.

Remark 5. The term Eτ EVu(σ)−EQu(σ)] +E[e−uτQu(σ− τ) in (66) is nonnegative and this is due to
the remark made below (62) about the nonnegativity of the bracketed term in (66).

Proof. The value of P̃(β(0) = 0) follows from (58) and (30) that allows us to replace E∗ by E. To show
the rest, we look at the various terms in (59) with f(x) = e−ux. Using (30) we obtain

E∗
N−1∑
i=0

τie
−u(Ti−TM ) = E(euTM |ψ0 = 1)E

N−1∑
i=0

τie
−uTi (69)
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Due to Lemma 7, the first term of the product is further written as:

E(euTM |ψ0 = 1) = E(e−uTN |ψ0 = 1) = Ee−uTN .

The second term in the last product of (69) is computed as follows.

E
N−1∑
i=0

τie
−uTi = E

∞∑
i=0

τie
−uTi1Ti<σ0 =

∞∑
i=0

E{E[τie
−uTi1Ti<σ0 |σ0, τ0, . . . , τi−1]}

=

∞∑
i=0

E{e−uTi1Ti<σ0E[τi|σ0, τ0, . . . , τi−1]} = (Eτ)E
N−1∑
i=0

e−uTi . (70)

Using the same logic,

E∗(TN − σ0)e−u(TN−1−TM ) = E∗euTM E(TN − σ0) e−uTN−1 = EeuTM E(TN − σ0) e−uTN−1 (71)

E∗
{

(TN − σ0) f(TN−1)1TN−1>0

}
= E

{
(TN − σ0) f(TN−1)1TN−1>0

}
(72)

Substituting (70) into (69) and then this, together with (71) and (72), into (59) we arrive at the first
equality for (66). For the second equality, use (48), (49) and (42), (64), (65) and observe that

E
{

(TNt − t) e−uTNt−11TNt−1>0

}
= E[e−uτ Qu(t− τ)].

To see that Vu satisfies (67), notice that

Vu(t) = E

[
Nt−1∑
i=0

e−uTi ; T1 > t

]
+ E

[
Nt−1∑
i=0

e−uTi ; T1 ≤ t

]
= E[e−uT0 ; T1 > t] + E

[
e−uT0 + e−uT1Vu(t− T1); t− T1 ≥ 0

]
= e−u0 + E[e−uτVu(t− τ)1τ≤t].

To see that Qu satisfies (68), notice that

Qu(t) = E
[
(TNt − t) e−uTNt−1 ; T1 > t

]
+ E

[
(TNt − t) e−uTNt−1 ; T1 ≤ t

]
= E

[
(T1 − t) e−uT0 ; T1 > t

]
+

∫
E
[
(x+ TNt−x − t) e

−u(x+TNt−x−1)
]
1x≤t P(T1 ∈ dx)

= E
[
(τ − t) e−u0; τ > t

]
+

∫
(0,t]

e−ux E
[
(TNt−x − (t− x)) e−u(TNt−x−1)

]
P(τ ∈ dx)

= E(τ − t)+ +

∫
(0,t]

e−uxQu(t− x)P(τ ∈ dx).

Continuing in the same manner as Lemma 6, we obtain the Laplace transforms of Vu and Qu.

Lemma 8.

V̂u(ξ) =
1/ξ

1− Ee−(u+ξ)τ
(73)

Q̂u(ξ) =
1

ξ2

ξEτ − 1 + Ee−ξτ

1− Ee−(u+ξ)τ
(74)
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Proof. Directly from (67) and (68).

Corollary 10. Let the assumptions of Theorem 4 hold true.
(i) If the variables τn are exponential with rate λ, then

P̃(β(0) = 0) =
Ee−λσ

1 + λEσ

and, with Lσ(u) = Ee−uσ,

Ẽ[e−uβ(0);β(0) > 0] =
λ

1 + λEσ

[
Lσ(u)

λ+ u

λ2(1− Lσ(u))− u2(1− Lσ(λ))

u(λ− u)
+
Lσ(u)− Lσ(λ)

λ− u

]
(ii) If the variables σn are exponential with rate µ, then, with Lτ (u) = Ee−uτ ,

P̃(β(0) = 0) =
1

µEτ
(1− Ee−µτ )(µEτ − 1− Ee−µτ ),

Ẽ[e−uβ(0);β(0) > 0] =
1− Lτ (µ)

µEτ(1− Lτ (u+ µ))

[
Lτ (u)− Lτ (u+ µ)

1− Lτ (u+ µ)
(1−Lτ (µ))+Lτ (u+µ) (µEτ−1−Lτ (µ))

]
(iii) If the τn are exponential with rate λ, and the σn are exponential with rate µ then, under P̃,

β(0)
(d)
=


0, with probability µ2

(λ+µ)2

ζ, with probability λ(λ+2µ)
(λ+µ)2

,

where ζ is an absolutely continuous random variable with

Ee−uζ =
µ2

λ+ 2µ

u2 + (2λ+ µ)u+ λ(λ+ 2µ)

(u+ λ)(u+ µ)2
.

Proof. From Theorem (8), we have P̃(β(0) = 0) = λE(τ − σ)+/EU(σ) and the expressions of this are
obtained by elementary integrals in all cases. We rewrite (66) as

Ẽ[e−uβ(0);β(0) > 0] =
EWu(σ)EHu(σ) + EQ+

u (σ)

Eτ EU(σ)
, (75)

where
Hu(t) = Eτ Vu(t)−Qu(t), Q+

u (t) = E[e−uτ Qu(t− τ)].

We thus know the Laplace transforms of all functions entering in (75) in terms of Lτ (ξ) := Ee−ξτ :

Û(ξ) =
1/ξ

1− Lτ (ξ)
, Ŵu(ξ) =

1

ξ

Lτ (u)− Lτ (u+ ξ)

1− Lτ (u+ ξ)
,

Ĥu(ξ) =
1

ξ2

1− Lτ (ξ)

1− Lτ (u+ ξ)
, Q̂+

u (ξ) =
Lτ (u+ ξ)

ξ2

ξEτ − 1 + Lτ (ξ)

1− Lτ (u+ ξ)
.

(i) When τ is exponential, we already know that U(t) = 1 +λt and that Wu(t) = λe−ut/(λ+u) and, with
Lτ (u) = λ/(λ+ u), we obtain

Ĥu(ξ) =
λ+ u+ ξ

ξ(λ+ ξ)(u+ ξ)
, Q̂+

u (ξ) =
1

(u+ ξ)(λ+ ξ)
,
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that can easily be inverted to the nonnegative functions

Hu(t) =
λ2(1− e−ut)− u2(1− e−λt)

λu(λ− u)
, Q+

u (t) =
e−ut − e−λt

λ− u
.

The values of Hu and Q+
u at u = λ should be interpreted as limits when u → λ. Thus, Hλ(t) =

λ−1[2− (λt+ 2)]e−λt, Q+
λ (t) = te−λt. Substitute these functions in (75) to obtain the annouced formula.

(ii) When σ is exponential with rate µ, all functions in (75) are essentially Laplace tranforms of σ, for

example, EWu(σ) = µŴu(µ). Hence

Ẽ[e−uβ(0);β(0) > 0] =
µŴu(µ)µĤu(µ) + µQ̂+

u (µ)

Eτ µÛ(µ)
,

and the formula is obtained because we know all Laplace transforms.
(iii) The formula readily follows from either (i) or (ii).

Let us take a closer look at the law of the random variable ζ of Corollary 10(iii). Letting ρ = λµ we
have

Ee−uµζ =
1

ρ+ 2

u2 + (2ρ+ 1)u+ ρ(ρ+ 2)

(u+ ρ)(u+ 1)2
.

Inverting this Laplace transform, we find that µζ has density

gρ(t) =
1

(ρ+ 2)(ρ− 1)2

[
ρe−ρt + (ρ3 − 3ρ+ 1 + ρ2(ρ− 1)t)e−t

]
,

for all values of ρ 6= 1 and, for ρ = 1, the density corresponds to the limit of this expression when ρ→ 1:

g1(t) =
1

6
(t2 + 2t+ 2)e−t.

We now pass on to computing first moments.

Lemma 9. Consider the fully blocking system under stationarity assumptions. Then

Ẽβ(0) =

E∗
[
N−1∑
i=0

τiTi − σ0TM

]
E∗TN

(76)

Proof. Take f(x) = x in (61) and regroup the terms there to obtain∫ TN

T0

β(t)dt =
N−1∑
i=0

τi(Ti − TM ) + (TN − σ0)TM =
N−1∑
i=0

τiTi − σ0TM

and then use the Palm inversion formula.

Next define

Z(t) = E
Nt−1∑
i=0

Ti, t ≥ 0. (77)

26



Lemma 10. Consider the fully blocking system and assume that (τn, σn), n ∈ Z, is i.i.d. under P and
such that Eτ0 <∞. Assume further that τn is independent of σn for all n. Then

Ẽβ(0) = Eσ +
E
[∑N−1

i=0 Ti

]
EN

= Eσ +
EZ(σ)

EU(σ)
,

where Z is the unique solution to the fixed-point equation

Z(t) = E[Z(t− τ)] + E[τU(t− τ)]

and has Laplace transform

Ẑ(ξ) =
Eτe−ξτ

ξ(1− Ee−ξτ )2
.

Proof. The numerator of (76) is written as

E∗
[
N−1∑
i=0

τiTi − σ0TM

]
= E∗

N−1∑
i=0

τiTi + E∗σ0(−TM )

= Eτ E

[
N−1∑
i=0

Ti

]
+ E(−TM |ψ0 = 1)Eσ

= Eτ E

[
N−1∑
i=0

Ti

]
+ ETN Eσ.

Dividing this by ETN = Eτ EN results in the first equality. Next use the function (77) to write

E
[∑N−1

i=0 Ti

]
= EZ(σ). The fixed point equation is obtained from first principles or by differentiat-

ing both sides of (67) with respect to u and letting u→ 0. The Laplace transform is obtained by taking
the Laplace transform of both sides of the fixed-point equation.

Corollary 11. Let the assumptions of Theorem 4 hold true.
(i) If the variables τn are exponential with rate λ, then

Ẽβ(0) = Eσ +
λ

2

Eσ2

1 + λEσ
.

(ii) If the variables σn are exponential with rate µ, then, with Lu = Ee−uτ ,

Ẽβ(0) =
1

µ
+

Eτe−µτ

1− Ee−µτ

(iii) If the τn are exponential with rate λ, and the σn are exponential with rate µ then, under P̃,

Ẽβ(0) =
1

µ
+

λ

µ(λ+ µ)
.

6 Further discussion

We studied the performance of two measures of freshness of information (AoI and NAoI) for two policies:
fully push-out P and fully blocking B and computed their Laplace transforms in steady-state. We briefly
hinted that the choice of policy is important and it is not clear that P always outperforms B. The choice
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push out (P) blocking (B)

model AoI (ẼαP(0)) NAoI (ẼPβ(0)) AoI (ẼαB(0)) NAoI (ẼβB(0))

G/G Eτ2
2Eτ + Eτ∧σ

P(τ≥σ)
Eτ∧σ
P(τ≥σ)

1
µ + Eτ2

2Eτ + Eτ(U∗U)(σ−τ)
EU(τ)

1
µ + EZ(σ)

EU(σ)

M/G 1
λEe−λσ

1
λEe−λσ −

1
λ

1
µ + 1

λ + λ
2

Eσ2

1+λEσ
1
µ + λ

2
Eσ2

1+λ/µ

G/M Eτ2
2Eτ + 1

µ
1
µ

1
µ + Eτ2

2Eτ + Eτe−µτ
1−Ee−µτ

1
µ + Eτe−µτ

1−Ee−µτ

M/M 1
λ + 1

µ
1
µ

1
µ + 1

λ + λ
µ(λ+µ)

1
µ + λ

µ(λ+µ)

Table 1: Mean AoI and NAoI for different models of interarrival times (with Eτ = 1/λ) and service times
(with Eσ = 1/µ) in the renewal case. We use queueing theoretic notation, where “G” means general
distribution and “M” means memoryless (exponential).

depends on the distributions. To explain this, let us look at the formulas for the expectations of AoI and
NAoI in various cases. They are summarized in Table 1 below.

Suppose first that we are in the “M/M” case, that is, both processes are Poissonian. Look at the last
line of the table. Then the P policy outperforms the B policy because it gives smaller mean for AoI and
NAoI.

Suppose next that we are in the “M/D” case, meaning that the reading times are all deterministic and
all equal to a constant that, without loss of generality, can be taken to be equal to 1. Look at the second
line of the table, remove the expectation and set σ = 1/µ = 1. Using the inequality ex > 1 + x+ x2/2 we
can easily see that, for all λ > 0,

1

λe−λ
> 1 +

1

λ
+
λ

2

1

1 + λ
,

and this means that B outperforms P in this case. The intuition here is this: if σ is concentrated around
its mean then it is better to completely read a message rather than push it out by an incoming one; the
latter is more beneficial if, having partially read a message, we still know little about its actual duration.

To say that B outperforms P if σ is approximately deterministic is true only because we considered
expectations performance measures If, for example, we consider tail probabilities as performance measures
then more care is needed in order to justify this.

Even though we worked with Laplace transforms and derived, in certain cases, the density of AoI
and the density of the NAoI conditional that it be positive, by Laplace transform inversion. We may
alternately obtain expressions for the probability densities by using level-crossing arguments as in, e.g.,
[3]. We should also point out the genearility of the formulas obtained in Theorems 1, 3, 5 and 7: they
hold only under stationarity assumptions. Therefore, we can, for example, incroporate situations where
messages arrive according to more general than renewal processes.

Recall Remark 2 in Section 4.2. Since ẼαP(0) = Eτ2
2Eτ +ẼβP(0), it follows that ẼαP(0) can be arbitrarily

large if the variance of τ is large. This can be a drawback in using the AoI rather than the NAoI as a
performance criterion. Indeed, as explained in the paper, if the arrivals are not controllable (and, typically,
they are not) then it makes more sense to use NAoI as a measure of freshness of information.

Alternative definitions of age of information are possible and may be desirable. For example, a
measure of freshness of information may involve message streams where the most recent message does not
obsolete all previous ones. More specifically, assume that, upon arrival of a new message (with normalized
“importance” 1), the importance of all prior messages can be diminished by a positive factor ξ < 1, and
the objective could be to minimize the sum of the importance of all transmitted messages. This case may
require a large (perhaps lossless) message buffer.

Consider now the claim made at the end of the Introduction: that bufferless systems perform best.
We ran several simulations that support this. We merely present a typical one. Suppose all arrivals are
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Figure 3: Messages of fixed length equal to 1 arrive according to a Poisson(λ) process. The figure plots the mean
NAoI as a function of λ in three cases: the bufferless fully push-out system (1-po), the bufferless fully blocking
system (1-block) and a variant of the fully push-out sustem where a message can be temporarily stored in a buffer
(2-poq). The curve in the last case is obtained via stochastic simulation.

deterministic: messages arrive every 1/λ time units. Suppose message lengths are exponential with rate
µ = 1. Compare three systems. First the bufferless fully push-out system. Then Table 1, third row, tells
us that the mean NAoI is 1/µ = 1. Second, the bufferless fully blocking system. Table 1 again tells us
that the mean NAoI is

1 + (λ(e1/λ − 1))−1.

This, as a function of λ, is plotted in Figure 3; it is the curve labeled “1-block”. Third, consider the
following system that can store at most one message. Suppose a message, say message 1, is being read
and that another message. say 2, arrives during the reading period of 1. Then it is stored. If no other
message arrives while 1 is being read then message 2 starts being read and an empty position is created
for the storage of a new message, say message 3, while 2 is being read. Suppose, however, that a message
arrives while 1 is being read and 2 is in storage. Then the new message pushes message 2 out and occupies
its position. This system is thus an extension of the bufferless fully push-out system. Simulations show
that the mean NAoI is worse: it is plotted as the curve labeled “2-poq” in Figure 3.

The situation described in the last paragraph is typical. It is for this reason that we study bufferless
systems. In the literature, systems with infinite storage have been studied. See, for instance, [2] where a
LIFO (last-in first-out) infinite storage system with no service preemption is considered and where it is
observed that serving an older message has no effect on the age of infrmation after a newer message has
been served. Note that a LIFO system with nonzero buffer space and service preemption has the same
NAoI as the bufferless push-out system.

Hence, the search for the optimal policy can be confined within the class of bufferless systems only.
We proposed the new age of information as an alternative performance measure. Thus, if we need the age
to be less than a given critical level, we need to find the best policy that minimizes the probability that
the new age of information exceeds this critical level. Such problems are to be considered in future work.

References
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