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An apparent growing trend to reward effort or attendance rather than achievement has been
making it increasingly difficult for mathematics teachers to maintain standards. We recom-
mend that mathematics departments review evaluation procedures to insure that grades reflect
student achievement. Further, we urge administrators to support teachers in this endeavor.

4. In light of 3 above, we also recognize that advancement of students without appropriate
achievement has a detrimental effect on the individual student and on the entire class. We,
therefore, recommend that school districts make special provisions to assist students when
deficiencies are first noted.

5. We recommend that cumulative evaluations be given throughout each course, as well as at its
completion, to all students. We believe that the absence of cumulative evaluation promotes
short-term learning. We strongly oppose the practice of exempting students from evaluations.

6. We recommend that computers and hand calculators be used in imaginative ways to reinforce
learning and to motivate the student as proficiency in mathematics is gained. Calculators
should be used to supplement rather than to supplant the study of necessary computational
skills.

7. We recommend that colleges and universities administer placement examinations in mathe-
matics prior to final registration to aid students in selecting appropriate college courses.

8. We encourage the continuation or initiation of joint meetings of college and secondary school
mathematics instructors and counselors in order to improve communication concerning
mathematics prerequisites for careers, preparation of students for collegiate mathematics
courses, joint curriculum coordination, remedial programs in schools and colleges, an ex-
change of successful instructional strategies, planning of in-service programs, and other related
topics.

9. Schools should frequently review their mathematics curricula to see that they meet the needs
of their students in preparing them for college mathematics. School districts that have not
conducted a curriculum analysis recently should do so now, primarily to identify topics in the
curriculum which could be either omitted or de-emphasized, if necessary, in order to provide
sufficient time for the topics included in the above statement. We suggest that, for example,
the following could be de-emphasized or omitted if now in the curriculum:

(A) logarithmic calculations that can better be handled by calculators or computers,
(B) extensive solving of triangles in trigonometry,
(C) proofs of superfluous or trivial theorems in geometry.
10. We recommend that algebraic concepts and skills be incorporated wherever possible into
geometry and other courses beyond algebra to help students retain these concepts and skills.

CONTROVERSIES IN THE FOUNDATIONS OF STATISTICS
BRADLEY EFRON

1. Introduction. Statistics seems to be a difficult subject for mathematicians, perhaps because its
elusive and wide-ranging character mitigates against the traditional theorem-proof method of
presentation. It may come as some comfort then that statistics is also a difficult subject for statisticians.
We are now celebrating the approximate bicentennial of a controversy concerning the basic nature of
statistics. The two main factions in this philosophical battle, the Bayesians and the frequentists, have

Bradley Efron received his Ph.D. in Statistics from Stanford in 1964 under the direction of Rupert Miller. He
holds professorships at Stanford in both the Statistics Department and the Department of Preventive Medicine.
His interests cover most of theoretical and applied statistics, with special emphasns on the application of
geometrical methods to statistical problems. — Editors



232 BRADLEY EFRON [April

alternated dominance several times, with the frequentists currently holding an uneasy upper hand. A
smaller third party, perhaps best called the Fisherians, snipes away at both sides.

Statistics, by definition, is uninterested in the special case. Averages are the meat of statisticians,
where “average” here is understood in the wide sense of any summary statement about a large
population of objects. “The average 1.Q. of a college freshman is 109" is one such statement, as is ““the
probability of a fair coin falling heads is 1/2.”” The controversies dividing the statistical world revolve
on the following basic point: just which averages are most relevant in drawing inferences from data?
Frequentists, Bayesians, and Fisherians have produced fundamentally different answers to this
question.

This article will proceed by a series of examples, rather than an axiomatic or historical exposition
of the various points of view. The examples are artificially simple for the sake of humane presentation,
but readers should be assured that real data are susceptible to the same disagreements. A
counter-warning is also apt: these disagreements haven’t crippled statistics, either theoretical or
applied, and have as a matter of fact contributed to its vitality. Important recent developments, in
particular the empirical Bayes methods mentioned in Section 8, have sprung directly from the tension
between the Bayesian and frequentist viewpoints.

2. The normal distribution. All of our examples will involve the normal distribution, which for
various reasons plays a central role in theoretical and applied statistics. A normal, or Gaussian,
random variable x is a quantity which possibly can take on any value on the real axis, but not with
equal probability. The probability that x falls in the interval [a, b] is given by the area under Gauss’
famous bell-shaped curve,

2.1 | Prob{a=x=b}= j: Do (x)dx,
where

For convenience we indicate such a random variable by
2.3) x ~N(u, %),

with o instead of o as the second argument by convention.

Figure 1 illustrates the normal distribution. The high point of ¢,..(x) is at x = u, the curve falling
off quickly for | x — u | > 0. Most of the probability, 99.7%, is within +3 o-units of the central value
w. We can write x ~ N (u, 0%) as x = u + ¢, where ¢ ~ N'(0, 0°); adding the constant u merely shifts
e ~N(0,0%) w units to the right.
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FiG. 1. The normal distribution. The random quantity x ~ A'(u, ) occurs in [a, b] with probability equal to the

shaded area. 68% of the probability is in the interval [u —o,u + o), 95% in [u —20,u +20], 99.7% in
[w =30, n +30).
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The parameter u is the “mean” or “‘expectation” of the random quantity x. Using “E” to indicate
expectation,

(2.4 ' uw=E{x}= J: x¢,.-(x)dx.

The reader may wish to think of E{g(x)} for an arbitrary function g (x) as just another notation for the
integral of g(x) with respect to ¢, .(x)dx,

25 Elg)= [ g()bun(u)i

Intuitively, E{g(x)} is the weighted average of the possible values of g(x), weighted according to the
probabilities @, .(x)dx for the infinitesimal intervals [x,x +dx]. In other words, E{g(x)} is a
theoretical average of an .infinite population of g(x) values, where the x’s occur in proportion to
Bu,r ().

It is easy to see, by symmetry, that x is indeed the theoretical average of x itself when
x ~ N(u, o*). A more difficult calculation (though easy enough for friends of the gamma function)
gives the expectation of g(x)=(x — p ),

@9 Bl == [ (= pPuae)ds = 0*

The parameter o, called the “‘standard deviation,” sets the scale for the variability of x about the
central value g, as Figure 1 shows. A #'(1,107°) random variable will have almost no perceptible
variability under repeated trials, 997 out of 1000 repetitions occurring in [.997, 1.003], since o = 107,
A X(1,10° random variable is almost all noise and no signal, in the evocative language of
communications theory,

The normal distribution has a very useful closure property that makes it as easy to deal with many
observations as with a single one. Let x,, X2, X3, . . ., X, be n independent observations, each of which is
N(u,0?), u and o being the same for all n repetitions. Independence means that the value of x,, say,
does not affect any of the other values: observing x; >y does not increase or decrease the 34%
probability that x,€ [u,u + o), etc. A familiar (non-normal) example of independent variables
X1, X2, X3, ... i$ given by successive observations of a well-rolled die.

Let
2.7 i=> uln
i=1
be the observed average of the n independent N'(u, 0?) variables. It is easy to show that
2.8) %~ N(u,a*/n).

The distribution of % is the same as that for the individual x; except that the scaling parameter has
been reduced from o to o/\/n. By taking n sufficiently large we can reduce the variability of X about
& to an arbitrarily small level, but of course in real problems n is limited and & retains an irreducible
component of random variability.

In all of our examples o will be assumed known to the statistician. The unknown parameter u will
be the object of interest, the goal being to make inferences about the value of 4 on the basis of the
data x1,X2,%3,..., %.. In 1925 Sir Ronald Fisher made the fundamental observation that in this
situation the average X contains all possible information about u. For any inference problem about u,
knowing % is just as good as knowing the entire data set xi, X2, Xs,..., X.. In modern parlance, ¥ is a
“sufficient statistic” for the unknown parameter u.

It is easy to verify sufficiency in this particular case. Given the observed value of %, a standard



234 BRADLEY EFRON [April

probability calculation shows that the random quantities x; — X, x,— X, x;— %, .. ., X, — ¥ have a joint
distribution which does not depend in any way on the unknown parameter u. In other words, what’s
left over in the data after the statistician learns % is devoid of information about . (This deceptively
simple principle eluded both Gauss and Laplace!)

3. Frequentist estimation of the mean. The statistician may wish to estimate the unobservable
parameter p on the basis of the observed data xi, x, X3, . . ., X.. “Estimate” usually means “make a
guess (& (X1, X2, X3, . . ., X, ) depending on x4, x5, . . ., X, With the understanding that you will be penalized
an amount which is a smooth increasing function of the error of estimation |g& — u |.” The usual
penalty function, which we shall also use here, is (& — u ), the squared-error loss function originally
introduced by Gauss.

Fisher’s sufficiency principle says that we need only consider estimation rules which are a function
of . The most obvious candidate is % itself,

(3.1 A(X1, X200y Xn) = X,
This estimation rule is “unbiased” for u; no matter what the true value of u is,
(3.2) EX = p.

Unbiasedness is by no means a necessary condition for a good estimation rule, as we shall see later,
but it does have considerable intuitive appeal as a guarantee that the statistician is not trying to slant
the estimation process in favor of any particular u value.

The expected penalty for using i = % is, according to (2.6) and (2.8),

(3.3 E(@@ —u)Y=ao%/n

Gauss showed that among all unbiased estimation rules gi(x,Xs,...,%,) which are linear in
X1, X2, X3, ..., X, the rule g4 =% uniformly minimizes E(& — u)* for every value of . In the early
1940’ this result was extended to include any unbiased estimator at all, linear or nonlinear. The proof,
which depends on ideas Fisher developed in the 1920’s, was put forth separately by H. Cramér in
Sweden and C. R. Rao in India.

If we agree to abide by the unbiasedness criterion and to use squared-error loss, ¥ seems to be the
best estimator for u. It is helpful for the statistician to provide not only a “point estimator”” for u, X in
this case, but also a range of plausible values of u consistent with the data. From (2.8) and Figure 1 we
see that

(3.4 Prob{|% — u|=20/\/n} =95,
which is equivalent to the statement
(3.5) Prob{x =20 /\/n=u =% +20/\/n}=.95.

The interval [% —20 /\/n,x +20/\/n] is called a “95% confidence interval” for u. The theory of
confidence intervals was developed by J. Neyman in the early 1930’s. As an example, suppose n =4,
o =1, and we observe x; =12, x,=0.3, x3=0.7, x,=0.2. Then ¥ =0.6 and the 95% confidence
interval for u is [—.04,1.6].

All of this seems so innocuous and straightforward that the reader may wonder where the grounds
for controversy lie. The fact is that all of the results presented so far are “frequentist” in nature. That
is, they relate to theoretical averages with respect to the /' (u, o*/ n) distribution of %, with . assumed
fixed at its true value, whatever that may be. Unbiasedness itself is a frequentist concept; the
theoretical average of 1 with u held fixed, Efi, equals u. Results (3.3) and (3.5), and the Cramér-Rao
theorem, are frequentist statements. For example, the proper interpretation of (3.5) is that the interval
[ =20 /V/n % +20/\/n] covers the true value of u with frequency 95% in a long series of
independent repetitions of X ~ N'(u,a?/n).
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Nobody doubts that these results are true. The question raised by Bayesians and Fisherians is
whether frequentist averages are really relevant to the process of inference scientists use in reasoning
from noisy data back to the underlying mathematical models. We turn next to the Bayesian point
of view. ’

4. Bayesian estimation of the mean. So far we have considered u to be a fixed, albeit unknown,
quantity. Suppose though that u itself is a random variable, known to have the normal distribution
with mean m and standard deviation s,

@.1) p~N(m,s?),

m and s being constants known to the statistician. For example, if u is the true 1.Q. of a person
randomly chosen from the population of the United States, (4.1) holds with m =100 and s = 15
(approximately). About 68% of 1.Q.’s are between 85 and 115, about 95% between 70 and 130, etc.
Information like (4.1), a “prior distribution for u” in the language of the Bayesians, changes the
nature of the estimation process.

Standard 1.Q. tests are constructed so that if we test our randomly chosen person to discover his
particular w value, the overall test score*, say %, is an unbiased normally distributed estimator of u as
in Section 3,

4.2) Xlu~ N, o®n),

with o/+/n about 7.5. We can expect X to be within 7.5 1.Q. points of s 68% of the time, etc. The
notation “%|u”’ emphasizes that the &' (u,o’/n) distribution for £ is conditional on the particular
value taken by the random quantity u. The reason for this change in notation will be made clearer
soon.

Bayes’ theorem, originally discovered by the remarkable Reverend Thomas Bayes around 1750, is
a mathematical formula'for combining (4.1) and (4.2) to obtain the conditional distribution of u given
%. In this case the formula gives

4.3) w|%~N(@m+CE-m),D),
where

__nle® -
(44) C=Tstnier ™ Peqaae
For example, if £ = 160 (and m =100, s = 15, o/\/n =7.5) then
4.5) w| %~ N(148,(6.7)%).

Expression (4.5), or more generally (4.3), is the “posterior distribution for u given the observed
value of £.”” It is possible to make such a statement in the Bayesian framework because we start out
assuming that g itself is random. In the Bayesian framework the averaging process is reversed; the
data % is assumed fixed at its observed value while it is the parameter u which varies. In (4.5) for
example, the conditional average of u given X = 160 is seen to be 148. If we randomly selected an
enormous number of people, gave them each an 1.Q. test, and considered the subset of those who
scored 160, this subset would have an average true 1.Q. of 148; 68% of the true 1.Q.’s would be in the
interval [148 — 6.7, 148+ 6.7, etc.

How should we estimate u in the Bayesian situation? It seems natural to use the estimator u *(¥)

which minimizes the conditional expectation of (u — u *)° given the observed value of %. From (4.3) it is

* The symbols % for the test score and o /\/n for its standard deviation are chosen to agree with our previous
notation, even though real 1.Q. scores aren’t actually the average of n independent test items. Perfect normality, as
expressed in (4.2), is an ideal only approximated by actual test scores.
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easy to derive that this “Bayes estimator’ is
4.6) pw*(x)=m+ C(x—m),

the mean of the posterior distribution of u given %. Having observed X = 160, the Bayes estimate is
148, not 160. Even'though we are using an unbiased 1.Q. test, so many more true 1.Q.’s lie below 160
rather than above that it lowers the expected estimation error to bias the observed score toward 100.
Figure 2 illustrates the situation.

posterior distribution
of true 1.Q. for a

person scoring 160 on ™~
test

prior distribution
of 1.Q. scores in
population Y

Bayes
estimate

observed
sum X

T T —

70 85 100 115 130 145148 160
—_——

95% probability
Fi. 2. 1.Q. scores have a #'(100,(15)?) distribution in the population as a whole. A randomly selected person

scoring 160 on a normal unbiased I.Q. test with standard deviation 7.5 points is estimated to have a true 1.Q. of 148.
The probability is 95% that the person’s true 1.Q. is in the interval [134.6, 161.4].

Confidence intervals have an obvious Bayesian analogue, from (4.3),
(4.7) Prob{u *(¥)—2VD = u S u*(Z)+2VD |5} = .95.

The notation Prob{- |%} indicates probability conditional on the observed value of #. In the 1.Q.
example, Prob{134.6 = u = 161.8]x = 160} = .95.

Nobody (well, almost nobody) disagrees with the use of Bayesian methods in situations like the
L.Q. problem where there is a clearly defined and well-known prior distribution for u. The Bayes
theory, as we shall see, offers some striking advantages in clarity and consistency. These advantages
are due to the fact that Bayesian averages involve only the data value £ actually seen, rather than a
collection of theoretically possible other ¥ values.

Difficulties and controversies arise because Bayesian statisticians wish to use Bayesian methods
when there is no obvious prior distribution for u, or going even further, when it is clear that the
unknown u is a fixed constant with no random character at all. (For example, if u is some physical
constant, such as the speed of light, being experimentally estimated.) It is not perversity that motivates
this Bayesian impulse, but rather a well-documented casebook of unpleasant inconsistencies in the
frequentist approach.

As an example of the kind of difficulties frequentists experience, let us reconsider the 1.Q.
estimation problem, but without assuming knowledge of the prior distribution (4.1) for . In other
words, assume only that we observe £ ~ N'(u,0’/n), o/\/n =7.5, and wish to estimate u. Having
observed & = 160, the results of Section 3 tell us to estimate u by & =160, with 95% confidence
interval [4 — 20 /v/n, i +20/\/n] = [145,175].

Suppose now that the frequentist receives a letter from the company which administered the 1.Q.
test: “On the day the score of X = 160 was reported, our test-grading machine was malfunctioning.
Any score ¥ below 100 was reported as 100. The machine functioned perfectly for scores % above
100.”
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It may seem that the frequentist has nothing to worry about, since the score he received, ¥ = 160,
was correctly reported. However, the reason he is using g = ¥ to estimate u is that it is the best
unbiased estimator. The malfunction of the grading machine implies that g is no longer even
unbiased!

If the true value of u equals 100, the machine functioning as described in the letter produces
Ex =103, abias of + 3 points. To regain unbiasedness the frequentist must replace the estimation rule
fi =X with g' = ¥ — A(x), where the function A(¥) is chosen to remove the bias caused by the machine
malfunction.

The correction term A(x) will be tiny for & = 160, but it is disturbing that any change at all is
necessary. The letter from ‘the grading company contained no new information about the score
actually reported, or about 1.Q.’s in general. It only concerned something bad that might have
happened but didn’t. Why should we change our inference about the true value of u? Bayesian
methods are free from this defect; the inferences they produce depend only on the data value ¥
actually observed, since Bayesian averages such as (4.6), (4.7) are conditional on the
observed X.

How can a Bayesian analysis proceed in the absence of firm prior knowledge like (4.1)? Two
different approaches are in use. The “subjectivist” branch of Bayesian statistics attempts to assess the
statistician’s subjective probability distribution for the unknown parameter u, before the data is
collected, by a series of hypothetical wagers. These wagers are of the form “would you be willing to
bet even money that u > 85 versus u = 85? Would you be willing to bet two-to-one that u <150
versus u = 150?...” The work of L. J. Savage and B. deFinetti shows that a completely rational
person should aiways be able to arrive at a unique (for himself) prior distribution on w by sufficiently
prolonged self-interrogation.

The subjectivist approach can be very fruitful in cases where the statistician (usually in
collaboration with the experimenter, of course) has some vague prior opinions about the true value of
u, which he is trying to update on the basis of the observed data #. Because it is subjective, the method
is not much used where objectivity is the prime consideration, for example in the publication of
controversial new scientific results.

Another line of Bayesian thought, which might be (but usually isn’t) called “objective Bayesian-
ism,” attempts, in the absence of prior knowledge, to produce a prior distribution that everyone would
agree represents a completely neutral prior opinion about . In the 1.Q. problem, such a “flat” prior
might take the form u ~ A'(0, ), whereby we mean u ~ N'(0, s%) with s? going to infinity. From (4.3),
(4.4) we get

(4.8) w|x~N(E a*/n).

This result has a lot of appeal. The Bayes estimator u * equals the frequentist estimator 4 = £. The
95% Bayes probability interval (4.7) is the same as the 95% frequentist confidence interval (3.5).
Moreover, because (4.8) is a Bayesian statement, the letter from the 1.Q. testing company has no effect
.on it. We seem to be enjoying the best of both the frequentist and Bayesian worlds.

An enormous amount of effort has been expended in codifying the objective Bayesian point of
view. Bayes himself put forth this approach (apparently with considerable reservations—his paper
appeared posthumously and only through the efforts of an enthusiastic friend) which was adopted
unreservedly by Laplace. It fell into disrepute in the early 1900’s, and has since been somewhat
revived by the work of Harold Jeffreys. One difficulty is that a “flat” prior distribution for u is not at
all flat for w?, say, so expressing ignorance seems to depend on which function of the unknown
parameter one is interested in. A more pernicious difficulty is discussed in Section 8; in problems
involving the estimation of several unknown parameters at once, what appears to be an eminently
neutral prior distribution turns out to imply undesirable assumptions about the parameters.

5. Fisherian estimation of the mean. Ronald Fisher was one of the principal architects of
frequentist theory. However, he was a lifelong critic, often vehemently so, of the standard frequentist
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approach. His criticisms moved along the same lines as those of the Bayesians: why should we be
interested in theoretical averages concerning what happens if infinitely many & values are randomly
generated from & (4, o®/ n), with p fixed? We only have one observed value of £ in any one inference
problem, and the inference process should concentrate on just that observed value.

Fisher was also opposed to the Bayesian approach, perhaps because the type of data analysis
problems he met in his agricultural and genetical work were not well suited to the assessment of prior
distributions. With characteristic ingenuity he produced another form of inference, neither Bayesian
nor frequentist.

The relation ¥ ~ & (u, 0*/n) may be written

(5.1 I=u+te, e~N0,0%n).

We obtain the observation % by adding normal noise, ¢ ~ N'(0, 0%/ n), to the unobservable mean u.
Expression (5.1) can also be written as

.2) p=i-e

It is obvious, or at least was obvious to Fisher, that in a situation where we know nothing a priori
about u, obsewing ¥ tells us nothing about . As a matter of fact, said Fisher, if we can learn
something about ¢ from & then model (5.1) by itself must be missing some important aspect of the
statistical situation. We shall see this argument again, in more concrete form, in the next section.

If ¢ ~N(0,0°/n) then — & ~ (0, 0%/ n) because of the symmetry of the bell-shaped curve about
its central point. Fisher’s interpretation of (5.2) was

(5.3) w|x~N(E a?/n).

This looks just like the objectivist Bayesian statement (4.8), but has been obtained without recourse to
prior distributions on w. The interval statement following from (3.3) is

(5.4) Prob{f — 20 /\/n = pu =i +20/\/n| i} = .95.

This is a “fiducial” probability statement, in Fisher’s terminology.

In the fiducial argument randomness resides neither in the data %, as in frequentist calculations,
nor in u, as in Bayesian calculations. Rather it lies in the mechanism which transforms the
unobservable u to the observed #. (In the case at hand, this mechanism is the addition of
e ~N(0,0%/n) to w.) Fiducial statements such as (5.4) are obtained as averages over the random
transformation mechanism.

The fiducial argument has fallen out of favor since its heyday in the 1940’s. Most, though not all,
contemporary statisticians consider it either a form of objective Bayesianism, or just plain wrong.
Applied to the simultaneous estimation of several parameters, the fiducial argument can lead to
disaster, as shown in Section 8. '

Lest the reader feel sorry for Fisher, two other of his novel ideas on averaging, conditional
inference and randomization, are still very much in vogue, and are the subjects of the next two
sections.

6. Conditional inference. We return to the frequentist point of view, but with a twist, “condition-
ing,” introduced by Fisher in 1934. Conditional inference illustrates another major source of
ambiguity in the frequentist methodology, the choice of the collection of theoretically possible data
values averaged over to obtain a frequentist inference.

Suppose again that we have independent normal variables x., X2, X3, . . ., X, €ach x; ~ N (g, o), but
that before observation begins the number n is randomly selected by the flip of a fair coin,

10 1/2
6.1 n= with probability
100 1/2.
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We still wish to estimate u on the basis of the data x,, x,, X3, .. ., X, and n with o a known constant as
before.
The conditional distribution of X given the observed value of n is

(6.2) £ln~N(uo0/n)

as at (2.8). The observed average ¥ by itself is not a sufficient statistic in this situation. We also need to
know whether n equals 10 or 100. Without this knowledge we still have an unbiased estimator of u,
namely 4 = X, but we don’t know the standard deviation of /.
What is the expected squared error of £ = £ in this situation? Averaging (3.3) over the two values
of n gives
. , 10?107
(6.3) E(i -y =5712100"

Fisher pointed out that this is a ridiculous calculation. It is obviously more appropriate to assess the
accuracy of £ conditional on the value of n actually observed,

6.4 ) Y10 i n=1
64) E{(ﬂ‘”f'"F{Z’;wo i n o100,

There is nothing wrong with (6.3), except that the average squared error it computes is irrelevant to
any particular value of n and % actually observed! If n = 100 then (6.3) is much too pessimistic about
the accuracy of 4, while if n =10 it is much too optimistic.

This may all seem so obvious that it is hardly worth saying. Fisher’s surprise was to show that
exactly the same situation arises, more subtly, in other problems of statistical inference. We will
illustrate this with an example involving the estimation of two different normal means, say ., and .,
on the basis of independent unbiased normal estimates for each of them,

(6.5) B~ Npn 1), o~ N o 1),

%: and &, independent of each other. (For simplicity we have assumed that both estimates have
o?/n =1.) The two dimensional data vector (%;, .) can take on any value in the plane, but with high
probability lies no more than a few units away from the vector of means (i, u2).

Given no further information we would probably estimate (w1, 2) by (%1, %,). (But see Section 8!)
However, we now add the assumption that (u,, x.) is known to lie on the circle of radius 3 centered at
the origin,

(6.6) (p1, u2) = 3(cos 8, sin 9) -T<0=m

The statistical problem, as illustrated in Figure 3, is to estimate the unknown parameter 6 on the basis
of (f 1, fz)
Let us indicate the polar coordinates of (%, %,) by

6.7 f =arctan(%,/%), r=Viitii

Then 6 is the obvious estimator of 6. It is unbiased, E§ = 6, with expected squared error
(6.8) E(6-6y=.12 '

(obtained by numerical integration; (6.8) makes the convention that § —  ranges from —  to  for
any value of 6, the largest possible estimation error occurring if (%, %.) is antipodal to (x1, u2). This
convention is unimportant because the probability of |6 — 8| > /2 is only .0014).

The unobvious fact pointed out by Fisher is that r plays the same role as did “n” in examples
(6.1)-(6.4).

(i) The distribution of r does not depend on the true value of . (For readers familiar with the
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true mean vector
(11, p2) is known
to lie on this
circle

(p1, p2) = 3(cos 0, sin 9)

data vector X, X
is observed to
lie on this

circle

FiG. 3. The model %; ~ ¥ (u,, 1) independent of %, ~ N (u2, 1), with (1, u2) known to lie on a circle of radius 3
centered at the origin. We wish to estimate the angular location @ of («., 1.) on the circle. The data vector (X, £,) is
observed to have polar coordinates (6, r).

bivariate normal density, this follows from the circular symmetry of the distribution (6.5) of (%, £2)
about (u1, p2).)

(i) If r is small, then 6 has less accuracy than (6.8) indicates, while if r is large then 6 has greater
accuracy that (6.8) indicates. Table 1 shows the conditional expected squared error E {(6-0)|r}asa
function of r. .

In Fisher’s terminqlogy, r is an “ancillary” statistic. It doesn’t directly contain information about 6,
because of property (i), but its value determines the accuracy of 6. It now seems obvious that we
should condition our assessment of the accuracy of § on the observed value of r. If r =2, as in Figure
3, then E{(6 — 6)?|r} = :18 is more relevant to the accuracy of 6 than is the unconditional expectation
E(f -6y =12

Unconditional

Vglue

r 1.5 2 25 3 35 4 45 5 E(6-0)
E{(é—o)’{r} 26 .18 14 12 10 09 .08 .07 12

TABLE 1. The conditional expected squared error of estimation in the circle problem, E{(6 — 6)?|r}, as a function
of the ancillary statistic r = Vx3+ x2. The accuracy of 6 improves as r increases. Fisher argued that E {(9 0)*|r}
is a more relevant measure of the accuracy of 6 than is the unconditional expectation E(o o).

Many real statistical problems have the property that some data values are obviously more
informative than others. Conditioning is the intuitively correct way to proceed, but few situations are
as clearly structured as the circle problem. Sometimes more than one ancillary statistic exists, and the
same data value will yield different accuracy estimates depending on which ancillary is conditioned
upon. More often no ancillary exists, but various approximate ancillary statistics suggest themselves.
What the circle example reveals is that frequentist statements like (6.8) may be true but irrelevant.
Fisher’s point was that the theoretical average of (6 - 6)* should be taken not over all possible data
values, but only over those containing the same amount of information for . So far it has proved
impossible to codify this statement in a satisfactory way.

A Bayesian would agree that it is correct to condition one’s opinion of the accuracy of 6 on the
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observed value of r, but would ask why not go further and condition on the observed value of (i, %2)
itself. This is impossible in the frequentist framework, since if we reduce our averaging set to one data
point, there is nothing left to average over. Bayesian inferences are always conditional on the data
point actually observed. In the circle problem the natural flat prior is a uniform distribution on
0 €[~ m, ). With this prior distribution it turns out that E{(8 — )| (%, %)} equals E{(f — 6)*|r =
Vi2+x% as given in Table 1, so in this particular case the objective Bayesian and conditional
frequentlst points of view agree. (Notice that in the first expectation *“9” is the random quantity, while
in the second it is “” which varies.)

7. Randomization. Randomization is yet another form of inferential averaging introduced by R.
A. Fisher. In order to discuss it simply we must change statistical problems, from estimation theory to
“hypothesis testing.” The data are now in the form of 2rn independent normal observations
X1y X2, X350 005 Xny Y1y Y25 Y354+ 05 Yoy

(7.1) =N, oD,  y~Nuso?d) i=12,...n

with o known, u, and p., unknown. We wish to test the “‘null hypothesis” that u, = u; versus the
“alternative hypothesis” that u,> u,, often written

(7.2) H:pu,=p, versus A:p,>u,.

(For our purposes, u,< u; is assumed impossible.)

In hypothesis testing the null hypothesis H usually plays the role of a devil’s advocate which the
experimenter is trying to disprove. For example, the x’s may represent responses to an old drug and
the y’s responses to a new drug that the experimenter hopes is an improvement. Because there is a
vested interest in discrediting H, conservative statistical methods have been developed which demand
a rather stiff level of evidence before H is declared invalid. The frequentist theory, which is dominant
in hypothesis testing, accomplishes this by requiring that the probability of falsely rejecting H in favor
of A, when H is true, be held below a certain small level, usually .05. A test satisfying this criterion is
said to be .05 level” for testing H versus A.

With the data as in (7.1) it seems natural to compute ¥ = Zix; /n, § = Z}y;/n, and reject H in
favor of A if

(7.3) y—x>c

The constant ¢ is chosen so that if H is true then Prob{j — % >c}=.05. Standard probability
calculations show that ¢ =2.326-0/v/n is the correct choice. The theory of optimal testing
developed by J. Neyman and E. Pearson around 1930 shows that (7.3) is actually the best .05 level test
of H versus A, in the sense that 1f A is actually true then the probability of rejecting H in favor of A
is maximized.

The x’s and y’s we observe are actually measurements on some sort of experimental units, perhaps
college freshmen or white mice or headache victims. Let us denote these units by U,, U, Us,. .., Uz,
The opportunity for randomization arises when we have an experiment in which we can decide
beforehand which n of the units are to be x’s, and which n are to be y’s. If we are lazy we can just give
the first n units we happen to have at hand the x treatment and the last n the y treatment. This is
begging for disaster! The first n headache victims may be those with the worst headaches, the first n
mice those in the cage with the heavier animals, etc. An experiment done in the lazy way may have
probability of falsely rejecting the null hypothesis much greater than .05 because of such uncontrolled
factors.

In his vastly influential work on experimental design, Fisher argued that the choice of experimental
units be done by randomization. That is, the assignment of the n units to the x treatment group and
the n units to the y treatment group be done with equal probability for each of thé (2n!)/(n!)* such
assignments. A random number generating device is used to carry out the randomization process.
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Fisher pointed out that randomized studies were likely to be free of the type of experimental biases
discussed above. Suppose for example that there is some sort of “covariate” connected with the
experimental units, by which we mean a quantity which is thought to affect the observation on that
unit no matter which treatment is given. For example, weight might be an important covariate for the
white mice. Heavy mice might respond less well to the stimulus than light mice. If n is reasonably
large, say 10, it is very unlikely that the randomized experiment will have all the heavy mice in the x
group and the light mice in the y group. This statement applies equally to every covariate, whether or
not we know it affects the response, and even if we are unaware of its existence.

None of this has anything to do with averaging. The connection comes through Fisher’s next
suggestion: that we compute theoretical averages not over the hypothesized normal distributions, but
instead over the randomization process itself. Suppose that if all 2n experimental units had received
treatment x, the observations would have been X, X, ..., Xz., X; being the observation on unit U
The capital letters indicate that these are hypothetical observations and not necessarily the observed
data. Under the null hypothesis H, treatment y is the same as treatment x, so we can indeed consider
all 2n units to have received treatment x. In this case the observed data xi, X2, ..., Xn, Y1, Y25+ ¥n
coincide with the theoretical values X, Xy, ..., Xz.. Let $(x) be the indices of those units actually
assigned to the x treatment and F(y) those assigned to the y treatment. Then, if H is true,

(7.4) = > Xin, §= X Xin
iEF(x) i€L(y)

If the study has been randomized then £ is merely the average of n randomly selected X’s and y the
average of the remaining n X’s.

The randomization (or “permutation”) test of H analogous to (7.3) is constructed as follows:

(i) Given the observed data Xxi,Xz,...,Xn, Y1,¥2,...s ¥ define u;=x;, Ur=xs,..., Ups1 =
Y1, ... Uza = yn. (Notice that, if H is true, the u’s coincide with the X’s of the previous paragraph.)

(ii) For each partition ? ={%,, %} of {1,2,...,2n} into two disjoint subsets of size n, calculate

(7.5) GF-%)e=2 wiln- > uln
1ES, €Y

(iii) List all (2n!)/(n!)* values of (y — X)» in ascending order.

(iv) Reject H in favor of A if the value of y — % actually observed is in the upper 5% of the list.

The randomization test has a .05 chance of falsely rejecting H, where the probability .05 now refers
1o an average taken over all (2n!)/(n')’ random assignments of treatment types to experimental units.
The test is still of the form “‘reject H in favor of A if y — % > ¢,” except that ¢ no longer equals the
constant 2.326 - o /+/n. Instead c is a function of the set of values {u,, U, ..., u2,} constructed in (i).
For each set {u,, u,, ..., u2,}, ¢ is selected to satisfy (iv).

The randomization test has one big advantage over test (7.3). Its .05 probability of falsely rejecting
H remains valid under any null hypothesis that says the 2n x’s and y’s are generated by the same
probability distribution, normal or otherwise.+As a matter of fact, no randomness at all in the
observations need be assumed. We can just take the null hypothesis to be that each unit U; has a fixed
response X; connected with it, no matter whether it is given the x or y treatment. This last statement
reemphasizes that the randomization test must involve a non-frequentist form of averaging.

Randomization, or at least inference based on randomization, appears heretical to a Bayesian
statistician. The true Bayesian must condition on the assignment {¥(x), #(y)} of units to treatments
actually used, since this is part of the available data, and not average over all possible partitions that
might have been. (Fisher’s arguments on ancillarity seem to point in exactly the same direction, which
is to say directly opposite to randomization!)

One aspect of randomization makes both frequentists and Bayesians uneasy. Suppose, just by bad
luck, that the randomization process does happen to assign all heavy mice to the x treatment and all
light mice to the y treatment. Can we still use the .05 level randomization test to reject H in favor of
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“A ? The answer seems clearly not, but it is difficult to codify a way of avoiding such traps. To put things
the other way, suppose we know the weights w,, wz, w, ..., w2, of the mice before we begin the
experiment. Under reasonable frequentist assumptions there will be a unique best way {¥(x), ¥(y)}
of assigning the mice to the treatments for the purpose of testing treatment x versus treatment y, one
that optimally equalizes the weight assignments to the two groups. Statisticians trained in the
Fisherian tradition find it difficult to accept such “optimal experimental designs’ because the element
of randomization has been eliminated.

8. Stein’s Phenomenon. The reader may have noticed that the controversies so far have been more
academic than practical. All philosophical factions agree that in the absence of prior knowledge
[x=2-a/V/nx+2-a/\n] is a 95% interval for u, the disagreement being over what “95%”
means. This situation changes, for the worse, when we consider the simultaneous estimation of many
parameters.

Suppose then that we have several normal means wi, 42, . . ., i« to estimate, for each one of which
we observe an independent, unbiased normal estimate

8.1) % ~N(ui, 1) independently i=1,2,... k.

(Once again we have taken the variance o®/n equal to 1 for the sake of convenience.) The natural
analogue of squared error loss when there are several parameters to estimate is Euclidean squared
distance. To simplify notation, let X = (X, %2,..., %) be the vector of observed averages, u =
(41, M2,..., k) the vector of true means, and fi = (i, (2, ..., d ) the vector of estimates. Then the
squared error misestimation penalty is

82) P

Before pursuing the problem of estimating g on the basis of x, we note an elementary but
important fact. This fact, which can be proved in one line by readers familiar with the multivariate
normal distribution, is that for every parameter vector 4 we have

(8.3) Prob{||x[ > & [} >.50.

That is, the data vector X tends to be farther away from the origin than does the parameter vector u,
no matter what u is. Table 2 shows that for k = 10 the probability is actually quite a bit greater than
.50 for moderate values of ||u |. ‘

Suppose that k = 10, and we observe a data vector X with squared length || X |* = 12. Assume also
that we have no prior knowledge about u. Looking at Table 2, it seems to be a very good bet that
|l |F < 12. For || u |F in the range [0, 40), which is almost certainly the case if | x| = 12, more than 75%
of the time we have ||x||> || u [. However, this is a frequentist “75%,” calculated with u fixed and %
varying randomly according to (8.1). The analogue of the objective Bayesian argument presented in
Section 4 gives quite different results.

3 0

Prob{|%|>|p|}  1.00 967 904 .857 .822 .795 .762 .719

12 18 24 30 40 6D

(=)}

TABLE 2. The probability that ||%|| = || || is always greater than .5. For the case k = 10 the probabilities are much
greater than .5 for moderate values of | u |-

Given our complete prior ignorance about the parameter vector u, it seems natural to use a flat
prior of the form u, ~ (0, %) (that is, u; ~ A"(0, s*) with s*— ) independently for i = 1,2,..., k. This
leads to the posterior distribution (4.8) for each parameter w,

(8.4) Mi Xi~ J\'ﬁ(‘fu 1)
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independently for i =1,2,..., k. This of course is a Bayesian statement, with the %’s fixed at their
observed values and the u;’s varying randomly according to (8.4). Reversing the names of the fixed
and random quantities in Table 2 gives

®5) ' Prob{[ p [ >[1%] I%[F = 12} = .904.
It now seems to be a very good bet that || ||>||x|]. As a matter of fact,
(86) Prob{ || | > %] %} >.50

for every observed data vector k! Fisher’s fiducial argument of Section 5 also leads to (8.4)~(8.6).
Equations (8.3) and (8.6) show a clear contradiction between the frequentist and Bayesian points
of view. Which is correct? There is a most surprising and persuasive argument in favor of the
frequentist calculation (8.3). This was provided by Charles Stein in the mid 1950’s and concerns the
estimation of p on the basis of the data vector X (or equivalently the estimation of the parameters
M1, M2, ..., Mk OD the basis of Xy, %, ..., Xk).
The obvious estimator is

@7 A(X) =%,
which estimates each u; by X;, as at (3.1). This estimate has expected squared error loss
838 Elg-npl=k

for every parameter vector u. What Stein showed is that if k, the number of means to be estimated, is
= 3, then the estimator

(8.9 p(x)= [1—%_‘:”72])?
has
(8.10) Elp-plF<k

for every u! (This particular form of g was developed jointly with W. James in 1960.) From a
frequentist point of view, gi estimates g uniformly better than does gi. It is also better from a
Bayesian point of view: given any prior distribution on u, estimating by fi rather than g results in a
lower overall expected squared error of estimation (averaging now over the randomness in # and the
randomness in x).

Stein’s estimator is based on (8.3). Since || || =]|X| tends to be greater than ||u | with high
probability, a shrinking factor [1 — (k —2)/||x|] is used to give an estimate nearer . The shrinking
factor is more drastic when || x| is small. With k = 10, || x|’ = 12, we have g = [.333]x. If instead
| %[ =800 then g =[.99]x. Figure 4 gives a schematic illustration.

Notice that the origin O plays a special role in the construction of g, even though there is nothing
in the statement of the estimation problem that favors Q. As a matter of fact, we can change the origin
to any other point in k dimensional space, O’ say, and obtain a different Stein estimate,

@.11) =0+ [1—”’_"‘_—02,”2]@—0'),
which is also uniformly better than g.

Stein’s result has created a host of difficulties for frequentists and Bayesians alike, which we can’t
pursue here. The implications for objective Bayesians and fiducialists have been especially disturbing.
The seemingly flat prior distribution leading to (8.4) isn’t flat at all: it forces the parameter vector to
relatively far away from any prechosen origin O'. If a satisfactory theory of objective Bayesian
inference exists, Stein’s estimator shows that it must be a great deal more subtle than previously
expected.




1978] CONTROVERSIES IN THE FOUNDATIONS OF STATISTICS 245

fi’, Stein’s estimator relative

XO'

O’, some other origin

(]

FiG. 4. Stein’s estimate i is obtained by shrinking the obvious estimate fi = X toward the origin O. The shrinking
factor is more extreme the closer ||%|| lies to O. Stein and James showed that Ef| & — p [P < E||@ — p |* for every u.
We can choose any other origin O’ and obtain a different Stein estimate, p', which also dominates fi.

The trouble with the multiparameter estimation problem is not that it is harder than estimating a
single parameter. It is easier, in the sense that dealing with many problems simultaneously can give
extra information not otherwise available. The trouble lies in finding and using the extra information.
Consider the Bayesian model (4.1). With just a single u to estimate this model must be taken on pure
faith (or relevant experience). However, if we have several means to estimate, g1, &2, .. ., i, €ach
drawn independently from an '(m, s°) population, the data £, %2, ..., % allows us to estimate m and
s?, instead of postulating their values. Plugging the estimated values into (4.6) gives an “‘empirical
Bayes rule” very much like the Stein rule (8.11). Empirical Bayes theory, originally developed by
Herbert Robbins in the early 1950’s, offers some hope of a partial reconciliation between frequentists
and Bayesians.

9. Some last comments. The field of statistics continues to flourish despite, and partly because of,
its foundational controversies. Literally millions of statistical analyses have been performed in the past
50 years, certainly enough to make it abundantly clear that common statistical methods give
trustworthy answers when used carefully. In my own consulting work I am constantly reminded of the
power of the standard methods to dissect and explain formidable data sets from diverse scientific
disciplines. In a way this is the most important belief of all, cutting across the frequentist-Bayesians
divisions: that there do exist more or less universal techniques for extracting information from noisy
data, adaptable to almost every field of inquiry. In other words, statisticians believe that statistics
exists as a discipline in its own right, even if they can’t agree on its exact nature.

What does the future hold? At a recent conference Dennis Lindley, of University College,
London, gave a talk entitled, “The future of statistics—A Bayesian 21st century.” My personal
subjective probability is .15 on that eventuality. The big advantage of subjective Bayesianism, which is
what Professor Lindley was referring to, is its logical consistency. Philosophers who investigate the
foundations of scientific inference usually wind up being repelled by frequentism and attracted to the
Bayesian argument.

But consistency isn’t enough. Subjective Bayesianism must face the challenge of scientific
objectivity. This is the ultimate stronghold of the frequentist viewpoint. If the 21st century is Bayesian,
my guess is that it will be some combination of subjective, objective, and empirical Bayesian, not
significantly less complicated and contradictory than the present situation. The complexity of the
problems statisticians are asked to deal with is increasing at an alarming rate. It is not unusual these
days to deal with data sets of a million numbers, and models with several thousand parameters. As
Section 8 suggests, this trend is likely to exacerbate the difficulties of producing a logically consistent
theory of statistics.
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WHEN IS A FUNCTION THAT SATISFIES THE
CAUCHY-RIEMANN EQUATIONS ANALYTIC?

J. D. GRAY AND S. A. MORRIS

1. The Looman-Menchoff theorem—An extension of Goursat’s theorem. It is well known' that a
complex-valued function f = u + iv, defined and analytic on a domain D in the complex plane satisfies
the Cauchy-Riemann equations

du_ dv and u_ %

ax dy dy ax
throughout D. The standard textbooks, such as those authored by Ahlfors, Cartan, Churchill,
Jameson, Knopp, Sansone and Gerretson, avoid answering the question as to whether or not the
converse holds. Most instead offer the following partial converse due to Goursat [13].

THEOREM 1. If f = u + iv, defined on a domain D, is such that
(i) ou/ox, du/dy, dv/ax, dv/dy exist everywhere in D,
(i) wu, v satisfy the Cauchy—Riemann equations everywhere in D, and if further
(iii) f is continuous in D,
(iv) ou/ox. du/dy, dv/ax, dv/dy are continuous in D,
then f is analytic in D.

This is a substantially revised version of an article by the present authors and S. A. R. Disney that appeared in
the Gazette of the Australian Mathematical Society 2 (3) (1975), 67-81. S. A. R. Disney’s name does not appear
above only because he preferred it that way.

' This is a rare instance of a well-known result that is indeed well known.






