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Abstract

In this work, we propose a Bayesian implementation of the Lasso regression that
accomplishes both shrinkage and variable selection. We focus on the appropriate
specification for the shrinkage parameter λ through Bayes factors that evaluate
the inclusion of each covariate in the model formulation. We associate this pa-
rameter with the values of Pearson and partial correlation at the limits between
significance and insignificance as defined by Bayes factors. By this way, a mean-
ingful interpretation of λ is achieved that leads to a simple specification of this
parameter which is of prominent importance in Lasso literature.

Keywords: Bayes factors; MCMC; Partial Correlation; Pearson Correlation; Shrink-
age; Benchmark and Threshold Correlations.

1 Introduction

Least absolute shrinkage and selection operator or Lasso for short (Tibshirani, 1996) is a
shrinkage method that was originally used for the selection of variables in the linear regression
problem. Its use was also extended to other problems such as multivariate models, generalized
linear models (Meier et al., 2008) and survival methods (Tibshirani, 1997, Johnson, 2009). It
imposes the L1 norm on the least squares problem and shrinks the coefficients towards zero.
The Lasso estimates are given by

β̂
lasso

= argminβ

{

(y − Xβ)T (y − Xβ) + λ

p∑

j=1

|βj|
}

= (XT X)−1(XT Y − λsbβ
), (1)

for the usual regression model
Y ∼ Nn(Xβ, Inσ

2),

where Nn(µ,Σ) is the multivariate normal distribution of dimension n with mean vector µ

and covariance matrix Σ, Y is a n×1 vector of the random responses, y is the corresponding
vector of observed response values, X is the n × p design or data matrix with elements Xij

corresponding to i individual and j variable, β is a n×1 vector with elements the coefficients
βj of each Xj covariate, σ2 is the error variance of the regression model, λ is the shrinkage

parameter of Lasso, sβ is a vector with elements the sign of each β̂ lasso

j and In being the n×n
identity matrix.

The shrinkage parameter λ controls the amount of shrinkage imposed on the coefficients,
where some weak effects are forced to be exactly zero if the shrinkage level is large enough.
This shrinkage property makes Lasso popular as a variable selection method since there is
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no need to search the model space but only to fit the full model. Moreover, it is more
stable than the stepwise subset selection methods and is computationally feasible for high-
dimensional data under appropriate conditions (Osborne et al., 2000, Efron et al., 2004,
Zhang and Huang, 2008). These advantages have stimulated many researchers to propose
extensions and improvements of the method; see, for example, Tibshirani (1997) Zou and
Hastie (2005), Park and Hastie (2006), Zou (2006), Meier et al. (2008), Johnson (2009), and
Lykou and Whittaker (2010).

1.1 Background of Bayesian Lasso

Lasso has also a straightforward Bayesian interpretation since its estimates can be derived as
the posterior mode when independent double-exponential prior distributions are used for β.
The density of the double exponential (or Laplace) distribution for β ∼ DE(µ, b) is given by

f(β|µ, b) =
1

2b
exp

(
−|β − µ|

b

)

with mean µ and variance 2b2. Thus a prior βj ∼ DE(0, σ2/λ) will produce a posterior
distribution that will be maximized under the Lasso estimates (1).

For this reason, a wide variety of Bayesian Lasso methods have been published over the past
years. Yuan and Lin (2005) incorporate a prior distribution of a mixture of a mass at zero and
of the double exponential distribution into a linear model and they prove that the model with
the highest posterior probability is the Lasso solution. The choice of the shrinkage parameter
is achieved through the empirical Bayes criterion CML. Park and Casella (2008) illustrate the
Bayesian Lasso regression by adopting the double exponential prior as a mixture of normal
and exponential prior. However, this approach does not directly implement covariate selection
but performs only shrinkage of the regression coefficients towards zero. They also propose
a hierarchical model where a gamma distribution is imposed on the shrinkage parameter.
Balakrishnan and Madigan (2009) combine the sparse Bayesian learning and the Bayesian
Lasso, by proposing the demi-Bayesian Lasso, where a mixture of normal-exponential prior is
imposed and the mixing parameter is estimated by maximizing the marginal data likelihood.
Zero values in the mixing parameter denote which variables are excluded from the model,
whereas, the shrinkage parameter is specified through cross validation methods.

Hans (2009) imposes directly the double exponential prior on the Lasso regression coefficients
and a gamma prior on the shrinkage parameter and focuses on the problem of predicting
future observations. Model uncertainty is addressed in Hans (2010) by computing exactly
the marginal posterior probabilities for small model spaces. He handles the cases of large
model spaces by imposing a mixture of a mass at zero and of the double-exponential prior
and sample the posterior inclusion probabilities by using a Gibbs sampler.

Griffin and Brown (2010) also investigate the Bayesian Lasso by imposing normal-gamma
prior and a data depended hyperprior on the shrinkage parameter. The Bayesian version
of the Elastic net (Zou and Hastie, 2005) has been introduced by Li and Lin (2010), where
the prior information is a compromise between Normal and double exponential priors and
the penalty parameters are chosen through an empirical method that maximizes the data
marginal likelihood.
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Finally, the last years, pure Bayesian shrinkage methods have been also received attention
in the statistical community resulting in the introduction of other prior distributions such as
the horse-shoe prior (Carvalho et al. 2010) and the double generalized Parero (Armagan et
al. 2010). All these approaches try to overshrink small coefficients and leave unaffected large
ones (similar to lasso) but also have additional consistency properties.

1.2 Merits and defects of Bayesian Lasso

The main advantage of all shrinkage methods is the fact that they can be directly implemented
in the full model and no model search is needed. The coefficients of covariates with weak
effect on the response are immediately set equal to zero and, therefore, they are eliminated
from the model structure.

Lasso is clearly better than ridge regression in terms of shrinkage since small coefficients
are shrunk towards zero faster while less shrinkage is applied for large coefficients. This is
due to the diamond shaped restriction area that Lasso implements on (y −Xβ)T (y − Xβ)
when it is written as a problem of constrained maximization in contrast to the corresponding
n-dimensional sphere restriction area implemented by ridge regression.

From the Bayesian point of view, the double exponential prior has a considerably higher spike
at zero giving higher probability to values in neighbourhoods close to zero. For example, for
a double exponential centred at zero with variance equal to one, the probability of β ∈
(−0.5, 0.5) is 0.507 for the double exponential and 0.383 for the normal model; see Figure 1
for a graphical comparison of the corresponding density plots. Similarly, the distribution has
slightly thicker tails, and for this reason, it has less shrinking effect on large coefficients.

On the other hand, there are some disadvantages or problems that need further consideration
when using Lasso. First of all, Lasso is a fast efficient method for selecting a single model
but it does not allow to estimate model uncertainty which is important within Bayesian
framework especially if prediction is the main aim.

Another problem is the selection of the shrinkage parameter λ. This actually controls the
whole procedure. If we select a small value for λ then no shrinkage (and therefore selection)
will be performed, while if this value is too high then all coefficients will be shrunk to zero.
The regularization plot, which depicts the estimated Lasso coefficients for different levels of
the shrinkage parameter, provides a valuable information about the order of decay of each
coefficient and hence, the order of importance of each covariate but still it does not solve
the problem. Usually cross-validation techniques are used to provide a sensible value for this
parameter. Nevertheless, the specification of the shrinkage coefficient highly depends on the
choices we make without having a solid universal methodology for defining this parameter.

Within the Bayesian framework usually interest lies in the whole posterior distribution and
the posterior means and medians are often used as point estimates instead of the posterior
modes. Theses estimates will approach zero slowly but they will be never exactly equal
to zero as the posterior modes and the Lasso estimates. Therefore, some of the properties
of the original Lasso are diminished when using this approach. Moreover, using the double
exponential prior instead of the conjugate normal–inverse-gamma prior, makes the evaluation
of the posterior distribution less straightforward requiring the use of MCMC methods.
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Figure 1: Plot of the density functions for the double exponential (solid line) and normal
(dashed line) distributions with zero mean and variance equal to one.

Finally, the double exponential prior in Lasso formula a-priori assumes independence of βjs.
Therefore it does not account for the structure of the covariates as for example in Zellner’s
(1986) g-prior, where coefficients a-priori assumed to be normally distributed with prior
variance covariance matrix equal to g(XT X)−1σ2 in order to have similar structure with the
OLS estimates.

1.3 Paper structure and contribution

In this paper, we combine the properties of the Lasso through the use of the double expo-
nential prior distribution with the advantages of usual variable selection techniques within
the Bayesian framework. For this reason, we utilize the binary variable inclusion indicators
introduced by George and McCulloch (1993) and widely used thereafter such as in Kuo and
Mallick (1998) and Dellaportas et al. (2002). We focus on the case that the number of predic-
tors is smaller than the number of observations but we strongly believe that the method will
efficiently find practical implementations in large p small n problems. We use MCMC meth-
ods to estimate the posterior parameter estimates, the posterior model probabilities as well
as the posterior variable inclusion probabilities. We can now additionally have meaningful
regularization plots based on posterior variable inclusion probabilities and model averaged
medians of the regression coefficients.

We then focus on the specification of the shrinkage parameter using their effect on posterior
model probabilities and Bayes factors. By investigating the behaviour and the sensitivity
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of these measures on the choice of λ we obtain a simple and meaningful interpretation of
its effect. By this way, we can a-priori specify the shrinkage level and control the variable
selection procedure. With this analysis, we have traced a range of correlation values for
which covariates will be never be included in the model structure whatever is the value of
the shrinkage parameter is. Moving further, we specify λ by defining the levels of correlation
measures that produce Bayes factors that cannot discriminate between nested models that
differ by a specific covariate Xj .

The article is organized as follows. In Section 2 we introduce the model structure for the
Bayesian Lasso variable selection framework. Then, a simple Gibbs sampler scheme is de-
scribed for the estimation of the posterior parameters, posterior variable inclusion probabil-
ities and posterior model probabilities. The section closes with a short illustration and a
discussion about new regularization plots based on the posterior medians of model averaged
regression coefficients and posterior variable inclusion probabilities obtained by the Bayesian
Lasso variable selection. Section 3 provides an in-depth analysis about the relationship of
the shrinkage parameter, the Bayes factors and their association with the Pearson and par-
tials correlation coefficients. In particular, Section 3.1 focuses on the unicoviate Bayes factor
comparing each simple regression model with the null and their association with the Pearson
correlation coefficient. We examine and interpret this association using extensive graphical
representations. In Section 3.2 we provide arguments based on practical values of significance
for the Pearson correlation for the specification of the shrinkage level λ. Section 3 concludes
with an analysis about the effect of λ on the partial correlations and the Bayes factors of
nested multiple Lasso regression models. In Section 4 we illustrate our method using two
simulation studies (with low and high correlated covariates, respectively) and a real dataset.
The paper closes with a small discussion about open problems and further research on the
topic.

2 Bayesian Variable Selection and Lasso

2.1 Model Structure

To set-up the Bayesian Lasso variable selection we consider the usual likelihood of the normal
model incorporating also the usual binary variable inclusion indicators γ = (γ1, . . . , γp) as in
Kuo and Mallick (1998) and Dellaportas et al. (2002). We further assume a set of independent
double exponential prior distributions for each model coefficient βj in order to implement a
Lasso type of shrinkage within each model. Hence the model can be summarized by the
following expressions

Y|β, τ, γ ∼ Nn(XDγβ, τ−1In), where Dγ = diag(γ1, . . . , γp),

βj |τ ∼ DE
(
0,

1

τλ

)
, for j = 1, . . . , p, (2)

γj ∼ Bernoulli(πj),

τ ∼ Gamma(a, d),

where τ = 1/σ2 is the precision of the Normal regression model, Bernoulli(π) is the Bernoulli
distribution with success probability π and Gamma(a, d) is the gamma distribution with
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mean a/d and variance a/d2.

The prior specification in the formulation above was also used by Hans (2009). However,
Hans (2009) did not consider the variable inclusion indicators in his approach since he did
not address the variable selection problem in that publication.

The level of the posterior shrinkage towards zero for each βj is controlled via λ since the
prior distribution becomes more and more informative as λ increases. In the remaining of
the paper we assume that both the covariates and the response are standardized and therefore
the constant term in the linear model is eliminated throughout this paper.

2.2 A Simple Gibbs Sampler for Bayesian Lasso Variable Selection

In this work, we use the Kuo and Mallick (1998) approach to estimate the posterior densities.
However, any equivalent algorithm such as the GVS (Dellaportas et al., 2002) or the RJM-
CMC (Green, 1995) will provide similar results. Thus the conditional posterior distribution
of βj coincides with the prior distribution for γj = 0 while it is a mixture of truncated normal
distributions when γj = 1, that is

βj |y, τ, β\j , γ\j , γj = 0 ∼ DE
(
0,

1

τλ

)
(3)

βj, ωj|y, τ, β\j , γ\j , γj = 1, ∼ ωj TN(µ−
j , s2

j , βj < 0) + (1 − ωj) TN(µ+
j , s2

j , βj ≥ 0), (4)

where β\j , γ\j are vectors β, γ without βj and γj respectively, I(A) is the indicator function
taking the value of one when A is true and zero otherwise, and TN(µ, σ2, A) is the normal
distribution truncated in the subset A ⊂ ℜ with density function

fTN(x; µ, σ2, A) =
fN (x; µ, σ2)∫

A
fN(x; µ, σ2)dx

I(x ∈ A)

with fN(x; µ, σ2) denoting the density of a normal distribution with mean µ and variance σ2

evaluated at x. Hence the densities of the truncated normal distributions appearing in (4)
are given by

fTN(βj ; µ−
j , s2

j , βj < 0) =
fN(βj ; µ−

j , s2
j)

Φ(−µ−
j /sj)

I(βj < 0)

and

fTN (βj ; µ+
j , s2

j , βj ≥ 0) =
fN (βj ; µ+

j , s2
j)

Φ(µ+
j /sj)

I(βj ≥ 0),

respectively, with Φ(x) being the cdf of the standardized normal distribution. The means
and variance of the truncated normal distributions are computed be the following expressions

µ−
j =

cj + λ

||Xj||2
, µ+

j =
cj − λ

||Xj ||2
, cj = XT

j (e + βjXj) and s2
j =

1

τ ||Xj ||2
.

with Xj denoting the jth column of matrix X, e = y −Xβ denoting the vector of residual
values with elements ei = yi −

∑
j Xijβj (for i = 1, . . . , n) while ||z||2 =

∑n
i=1 z2

i and ||z|| =∑n
i=1 |zi| for any vector z of length n.
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Additionally, ωj is a binary parameter specifying the sign of βj. The full conditional posterior
probability of ωj = 1 is given by

wj = P(ωj = 1|y, τ, β\j , γ\j , γj = 1) = P(βj < 0 |y, τ, β\j, γ\j , γj = 1)

=
Φ(−µ−

j /sj)/fN(0 ; µ−
j , s2

j)

Φ(−µ−
j /sj)/fN(0 ; µ−

j , s2
j) + Φ(µ+

j /sj)/fN(0 ; µ+
j , s2

j)
. (5)

Hence, when γj = 1 we generate

• Generate ωj from a Bernoulli with success probability wj given by (5).

• If ωj = 1 generate βj from TN(µ−
j , s2

j , βj < 0) otherwise from TN(µ+
j , s2

j , βj ≥ 0).

The full conditional posterior distributions for the remaining parameters are the following

τ |β, γ, y ∼ Gamma

(
n

2
+ p + a,

||y − XDγβ||2
2

+ λ||β|| + d

)
(6)

γj|β, τ, γ\j , y ∼ Bernoulli

(
Oj

1 + Oj

)
(7)

with Oj =
P (γj = 1|γ\j, β, τ 2, y)

P (γj = 0|γ\j, β, τ 2, y)
=

f(y|β, τ , γ\j , γj = 1)

f(y|β, τ , γ\j , γj = 0)

π(γ\j , γj = 1)

π(γ\j , γj = 0)
. (8)

2.3 Regularization Plots for Bayesian Lasso Variable Selection

Using the Gibbs sampler described in Section 2.2, we obtain a posterior sample (β(t), τ (t), γ(t))
for t = 1, 2, . . . , T . From this output we can estimate not only the posterior model probability
f(γ|y) of each model γ but also the posterior inclusion probabilities f(γj = 1|y) for each
covariate Xj as well as Bayesian model averaged (BMA) versions β∗

j = γjβj of the effect
of each covariate Xj . For the later two quantities, we will examine their behaviour using
different levels of prior variances and therefore different levels of the shrinkage parameter
λ. This sensitivity analysis is depicted using graphs equivalent to the regularization plots
obtained in traditional Lasso techniques.

Here we illustrate these visual representations by considering the first simulated dataset of
Dellaportas et al. (2002) which is available in the website of the book written by Ntzoufras
(2009). This dataset consists of n = 50 observations and p = 15 covariates generated from a
standardised normal distribution and the response from

Yi ∼ N(Xi4 + Xi5, 2.5
2), for i = 1, . . . , 50.

The proposed method is performed on this dataset for different values of λ, πj = 0.5 for all
j, a = d = 10−4 and we consider 10000 updates after discarding additional one thousand
iterations as burn-in period.

In Figure 2(a), the posterior means of β∗
j = γjβj are plotted against the values of λ while in

Figure 2(b) the usual regularization plot of the Lasso estimates is depicted. As it is obvious
from both of these plots, λ controls the shrinkage applied on each βj: for λ → 0 no shrinkage
is implemented while as λ increases the coefficients are shrunk to zero.
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Figure 2: Regularization plots for the posterior means of β∗
j = γjβj and usual Lasso estimates

against λ.

The Lasso estimates (derived by the Lars algorithm) approach the ordinary least squares
estimates as λ approaches zero. Similarly, for very low values of λ (expressing high prior
ignorance), we would expect the BMA posterior means of β∗

j to approach the MLE estimates.
Nevertheless, due to the Lindley-Bartlett paradox (Lindley, 1957, Bartlett, 1957), this is not
true since small values of λ (corresponding to large prior variance of βj) activate the effect
of the paradox, leading to posterior model odds that fully support the most parsimonious
model and therefore a-posteriori restricting β∗

j to zero. As λ moves away from zero, the
posterior means of the most important coefficients increase rapidly (in absolute value) until
β∗

j is maximized. After this point, shrinkage is effective and, as expected, all coefficients
gradually approach zero in a similar manner as in the original Lasso. For moderate values
of λ, the coefficients of the unimportant covariates have posterior means close to zero which
slowly decay to zero as λ becomes larger.

Nevertheless, the covariates that should be ultimately selected are highlighted in a more
obvious way when plotting the posterior medians of β∗

j ; see Figure 3(a). Posterior medians
become exactly equal to zero when P (γj = 1|y) < 0.5 in contrast to the posterior means
which will be small but non-zero unless P (γj = 1|y) = 0. Hence, in the plot of the posterior
medians, non-important variables are eliminated from the plot for all values of λ.

The second plot of Figure 3 (on the right) shows the posterior probabilities of P (γj = 1|y)
as a function of λ. As a result of the Lindley-Bartlett paradox, the posterior probabilities of
including a variable in the model tends to zero for λ → 0. The posterior probabilities of the
unimportant variables approach the value of 0.5 as λ moves away from zero. The behaviour
of the important covariates is different since they sharply increase as soon as λ moves away to
zero. As λ increases, the prior variance becomes smaller and the posterior distributions of the
coefficients are forced to be a-posteriori close to zero. In such case, the data (in comparison
to the prior) are not strong enough to provide evidence for the status of a covariate in the
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Figure 3: Regularization plots for the posterior medians of β∗
j = γjβj and the posterior

variable inclusion probabilities P (γj = 1|y) against λ.

model formulation under consideration.

Even in these initial illustrations, the proposed method seems to offer a very challenging
approach to perform both shrinkage and variable selection. The regularization plot based on
the medians of the BMA estimates is more efficient than the corresponding Lasso plot since
the effect of unimportant covariates are eliminated for all values of the shrinkage parameter
λ. Moreover, the behaviour of the posterior inclusion probabilities for large and small values
of λ can motivate the restriction of the sensible values of λ to avoid over-shrinkage (when λ
is large) or the Lindley-Bartlett paradox (when λ is small). Using these observations as a
starting point, in Section 3 we work on the choice of λ providing reasonable interpretation
and insight about which values are sensible for the variable selection procedure.

3 Specification the Shrinkage Parameter Based on Bayes

Factors and Practical Significance Values

3.1 Bayes Factors for Simple Lasso Regression and Pearson Cor-
relations

In this section we will focus on the Bayes factors comparing two simple models: the null (or
constant) model m0 versus a model mj which includes in the linear predictor only covariate
Xj. We will call these Bayes factors as unicovariate and facilitate results based on these
simple comparisons to identify reasonable values for the choice of λ.

Definition 1 (Unicovariate Bayes Factor BF un

j ) The unicovariate Bayes fac-
tor BF un

j for covariate Xj is defined as the Bayes factor that evaluates the evi-
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dence of model mj versus m0 with

Y|β, τ, mj ∼ Nn(Xjβj , τ
−1In) and Y|β, τ, m0 ∼ Nn(0, τ−1In).

Under the prior setup described in the general model formulation (2), the Bayes factor of
model mj against m0 is given by

BFun
j =

f(y|mj)

f(y|m0)
= λ

√
π

||Xj||2
Γ

(
df
2

)

Γ
(

df−1
2

)
C

− df

2

j− P (βj− < 0) + C
− df

2

j+ P (βj+ > 0)

(||y||2 + 2d)−(n
2
+a)

, (9)

where

Cj− =
(
Cj − M2

j−

)
||Xj ||2, Cj+ =

(
Cj − M2

j+

)
||Xj ||2, Cj =

||y||2 + 2d

||Xj||2
,

βj− ∼ tdf

(
Mj− ,

Cj−

||Xj||2df

)
, Mj− =

yT Xj + λ

||Xj||2
, df = n + 2a + 1,

βj+ ∼ tdf

(
Mj+ ,

Cj+

||Xj||2df

)
, Mj+ =

yT Xj − λ

||Xj||2
,

where T ∼ tν(µ, σ2) is a random variable such that (T − µ)/σ follows the Student’s t distri-
bution with ν degrees of freedom.

Assuming that all data are standardized and d → 0, a simplified version of BFun
j can be

expressed in terms of the shrinkage parameter λ and ρj , i.e. the sample estimate of the
Pearson correlation coefficient between Y and the candidate predictor Xj :

BFun
j =

λ

n − 1

√
π

Γ
(

df
2

)

Γ
(

df−1
2

)






(
1 +

t2j−
df

) df

2

Ftdf (tj−) +

(
1 +

t2j+
df

) df

2

Ftdf (tj+)






=
λ

n − 1

df − 1

2
√

df

{(
1 +

t2j−
df

)− 1

2 Ftdf (tj−)

ftdf (tj−)
+

(
1 +

t2j+
df

)− 1

2 Ftdf (tj+)

ftdf (tj+)

}
(10)

where Ftν , ftdf is the cdf and the density function of a Student’s t random variable with ν
degrees of freedom and

tj− = − Mj−

√
df√

1 − M2
j−

, tj+ =
Mj+

√
df√

1 − M2
j+

, Mj− = ρj +
λ

n − 1
, Mj+ = ρj −

λ

n − 1
.

In order to interpret the behaviour of the unicovariate Bayes factors, we present their log-
arithms in Figure 4 as a function of the shrinkage parameter λ for different values of the
Pearson correlation coefficient ρj and fixed sample size n = 50. The sensitivity of such Bayes
factors on different values of λ is clearly depicted.

As expected the Bayes factors provide stronger evidence against the null model as the Pearson
correlation between the response and the candidate variable increases. We focus on the thick
dark horizontal line (BFun

j = 3), which according to the interpretation tables of Kass and
Raftery (1995) indicates the boundary between covariates for which the BFun

j provides or
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Figure 4: Logarithm BFun
j against λ for several values of the Pearson correlation coefficient

ρ (1Sample size is fixed to n = 50; 2BFun
j is the Bayes factor of model mj (with variable Xj) versus model m0 (constant)).

not evidence strong enough in favour of their inclusion in the model. We clearly see that
the logBFun

j never overcomes this threshold for Pearson correlation equal to 0.31 or lower.
For these values, as the correlation increases the overall values of BFun

j increase, however, it
is always smaller than 3, implying that there is only weak evidence in favour of mj for any
value of λ.

For ρ > 0.31, the Bayes factor increases substantially, providing stronger evidence against
the null model for some values of λ. For high correlations (ρ > 0.6), the unicovariate BF
provides very strong evidence in favour of mj for all values of λ. Furthermore, the shrinkage
value that provides the strongest evidence against m0 (i.e. maximizes BFun

j ) decreases when
ρ increases. Similar figures can be derived for sample of different size.

11



3.2 Specification of the shrinkage parameter λ

Several approaches for tuning the shrinkage levels have been proposed in the literature based
on the generalized cross-validation techniques (Tibshirani, 1996) or the Cp selection criterion
(Efron et al., 2004). Here, we use the unicovariate Bayes factor (Eq. 9), its relation to
the Pearson’s sample correlation and its behaviour as illustrated in Section 3.1 to specify a
reasonable value for the shrinkage parameter λ.

3.2.1 Identifying the set of “non-important” covariates under all shrinkage val-
ues

Starting from Figure 4, we observe that, for specific values of ρ, the BFun
j is lower than 3 for

all the values of λ. In particular, for n = 50, the unicovariate Bayes factor will never support
strongly enough models including any covariate correlated with the response with ρ = 0.31
or lower. Thus we can identify a range of sample correlations corresponding to covariates
that will be never considered as “important” determinants of the response for all values of λ
and fixed n.

A graphical representation of the BFun
j against the values of ρ and λ will reveal the range of

“non-important” correlations corresponding to covariates that will not be supported in the
simple regression model for all the shrinkage levels. Thus we define the non-important set of
correlations using Definition 2.

Definition 2 (Non-important set of correlations I) The “non-important” set
of correlations is the set of correlations that correspond to covariates with uni-
variate Bayes factors less than 3 for all possible shrinkage values λ, i.e. I = {ρ :
BF un

j ≤ 3 for all λ > 0}

Moreover, we specify the benchmark correlation using the Definition which follows.

Definition 3 (Benchmark correlation ρb) The benchmark correlation ρb is de-
fined as the maximum value in the “non-important” set of correlations I. All the
covariates with correlation less than this ρb will not be supported strongly enough
by the corresponding unicovariate BFs for any shrinkage value λ.

3.2.2 Specifying λ via levels of practical significance for the Pearson correlation

In Section 3.2.1 we identified which covariates will be never supported strongly enough using
Bayes factors that compare a simple regression model with the null model. Here we specify
λ via setting up the levels of practical significance for the Pearson correlation.

Returning back to Equation 10, for any given value of λ, we can identify a specific ρ for
which BF un

j takes a particular value. Specifically, we seek the combination of λ and ρ that
produces a unicovariate Bayes factor equal to one. Covariates with such correlations will be
at the limits between significance and insignificance, since the Bayes factor cannot separate
the competing models. This correlation will be called the threshold value ρt and its formal
definition follows.
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Definition 4 (Threshold correlation ρt) Threshold correlation ρt is the cor-
relation that produces a unicovariate Bayes factor equal to one, i.e. ρt = {ρ :
BF un

j = 1} for a given λ.

We can now work backwards and specify a threshold level of practical significance ρt ≥ ρb and
obtain the corresponding shrinkage level λ. The choice of λ = λ(ρt) implements a variable
selection procedure in which covariates with Pearson correlation lower than ρt will be never
supported in unicovariate comparisons.

Therefore, the threshold correlations can be used to specify the shrinkage parameter. This
value of λ results in a Bayes factor that gives posterior weight of 50% to the model with a
covariate with correlation equal to ρt and 50% to the constant model, i.e. it will not be able
to separate between these two models. The choice of different threshold correlations, where
the Bayes factor cannot decide which model is (even slightly) better, controls the shrinkage
parameter λ and the sparsity of our finally selected model.

For example, for n = 50, the benchmark value is ρb = 0.31. Hence, we may choose λ such
that the threshold correlation is equal to ρt = 0.40 as a reasonable value. For this choice,
any model including a covariate correlated with Y with ρ = 0.4 will be a-posteriori supported
with 50% probability while this value will be increased as ρ increases. Other reasonable
choices in this example might be ρt = 0.35 or ρt = 0.5. The first choice will be less strict
supporting models of slightly higher dimension while the later will be more strict supporting
more parsimonious models. Table 1 presents λ for n = 50, 100 and 500 and various values of
the correlation as the threshold values.

n=50 n=100 n=500
Specification of λ ρb=0.31 ρb=0.22 ρb=0.10

{λ : ρ = ρt, BFun
j = 1} ρt = 0.35, λ = 0.218 ρt = 0.25, λ = 0.335 ρt = 0.15, λ = 0.060

{λ : ρ = ρt, BFun
j = 1} ρt = 0.40, λ = 0.067 ρt = 0.30, λ = 0.069 ρt = 0.20, λ = 7 × 10−4

{λ : ρ = ρt, BFun
j = 1} ρt = 0.50, λ = 0.004 ρt = 0.40, λ = 0.001 ρt = 0.30, λ = 5 × 10−6

{λ : ρ = 0.01, BFun
j = 1

150
} ρt = 0.42, λ = 0.038 ρt = 0.31, λ = 0.053 ρt = 0.14, λ = 0.116

Table 1: Shrinkage levels that correspond to BF=1 for various values of ρ and n.

Figure 5 presents the benchmark correlation against the sample size. Similarly to the results
in Table 1, ρb decreases as the sample size increases, and therefore BFun

j allows less important
(in terms of correlation values) covariates to enter the model. The dotted line in Figure 5
shows threshold correlation values ρt when the shrinkage parameter is set equal to λ = 0.067
for all the sample sizes. The value of λ = 0.067 is indicative and was selected to correspond
to the threshold correlation of 0.40 for n = 50.

Finally, an alternative way to exploit the relation between λ and ρ through the unicovariate
Bayes factors is to specify the shrinkage parameter in such way that covariates with very low
correlations are strongly not supported. Thus, we may specify λ such that a covariate with,
for example, ρ = 0.01 will result in a Bayes factor equal to 1/150 in favour of the constant
model. The shrinkage values, as well as, the corresponding threshold correlation values for
this setup for n ∈ {50, 100, 500} are provided in the last row of Table 1.
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Figure 5: Benchmark and threshold correlations versus sample size; the value of λ = 0.067
corresponds to threshold value of ρt = 0.4 for sample size n = 50.

3.3 Bayes factors for multiple Lasso regression

In this Section we examine the sensitivity of the Bayes factors on the choice of the shrinkage
parameters when performing multiple Lasso regression. In particular, we investigate which
is the level of the lasso partial correlation that corresponds to Bayes factor for nested model
comparisons equal to one (i.e. which are the levels of partial correlation that correspond
to the limits between significance and insignificance) for any given level of shrinkage λ. By
this way we have a more general overview of the effect of the selected shrinkage level on
our variable selection procedure. Before proceeding, we need to introduce some measures for
Lasso regression that are equivalent to the ones used in the ordinary regression analysis.

3.3.1 Preliminaries: Lasso regression measures

Here, we follow the approach and the notation of Whittaker (1990, Chapter 5) in order
to introduce some preliminary Lasso measures. Therefore we consider Y to be a n × 1
vector of random responses, X a n × p to be matrix of random variables that correspond
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to the explanatory variables and β to be fixed to a given value. Following this approach,
the ordinary least squares prediction coefficient βols arises when we minimize the residual
variance var(ε) = var(Y − Xβ) giving βols = [ var(X)]−1

cov(X, Y) assuming that E(X) and
E(Y) are zero for simplicity. In the same analogy, the Lasso prediction coefficient βlasso arises
when we minimize a penalized version of the residual variance var(Y−Xβ)+ k||β|| resulting

in βlasso =
[
var(X)

]−1(
cov(X, Y) − ksβ

)
; where sβ is the sign vector of βlasso and k is the

shrinkage level when working with the variances and expectations of the random variables Y

and X.

We denote by var(Y|X) = var(Y − Xβols) the residual variance for the ordinary least squares
regression model which will be called as the partial variance of Y with regressors defined by
the columns of X; see Section 5.5 in Whittaker (1990) for a formal definition. In a similar
way we can introduce the Lasso partial variance, denoted by varlasso(Y|X) = var

(
Y −Xβlasso

)

which can be written as a function of the ordinary partial variance by the following expression

varlasso(Y|X) = var(Y|X) + k2sT
β var(X)−1sβ . (11)

Following the definition in Whittaker (1990, p. 132), we introduce the Lasso version of R2

coefficient.

Definition 5 [Lasso R2] The Lasso R2 is the coefficient determination of a lasso
regression model measuring the proportion of the variability of the response ex-
plained by the fitted Lasso model and is given by

R
(lasso)2
Y|X =

var(Xβlasso)

var(Y)
,

where Xβlasso provides the vector of the fitted Lasso values.

The above defined Lasso multiple correlation coefficient can be now rewritten in terms of the
Lasso partial variance and the ordinary least squares R2 via the expressions

R
(lasso)2
Y|X = 1 − varlasso(Y|X) + 2k

∣∣∣∣βlasso
∣∣∣∣

var(Y)
(12)

= R
(ols)2
Y|X − 2k

∣∣∣∣βlasso
∣∣∣∣

var(Y)
− k2

sT
β var(X)−1sβ

var(Y)
. (13)

Corollary 1 The Lasso multiple correlation is always less than the ordinary multiple corre-
lation, i.e. R

(lasso)2
Y|X ≤ R

(ols)2
Y|X ≤ 1.

For any model m with covariates Xℓ ∈ Vm, we may define the model m−
j with covariates

in Xℓ ∈ Vm \ {Xj} which is nested to model m+
j with covariates Xℓ ∈ Vm ∪ {Xj}. Hence

covariate Xj is included in the linear predictor of model m+
j and excluded from the linear

predictor of model m−
j . Therefore for any model configuration m (and the corresponding

m−
j and m+

j ) we can define the Lasso version of the partial correlation coefficient using the
following definition.
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Definition 6 (Lasso Partial Correlation Coefficient) For any pair (Y, Xj),
we define the Lasso partial correlation coefficient given a set of regressors Xm−

j
as

the decrease of the percentage of unexplained response variability between model
m+

j and m−
j expressed as a proportion of the corresponding variability of the latter

model. Therefore the Lasso partial correlation coefficient is given by

corr
(lasso)(Y,Xj |Xm−

j
) =

√√√√√√√

(
1 − R

(lasso)2
Y|X

m
−

j

)
−

(
1 − R

(lasso)2
Y|X

m
+
j

)

1 − R
(lasso)2
Y|X

m
−

j

=

√√√√√√√1 −
1 − R

(lasso)2
Y|X

m
+
j

1 − R
(lasso)2
Y|X

m
−

j

.

(14)

The above definition of the Lasso partial correlation is based on a property of the ordinary
partial correlation (see Whittaker, 1990, p.140). From (13) we see that for k → 0 then the
above defined Lasso partial correlation tends to the ordinary partial correlation. Moreover,
for the range of values of the shrinkage parameter we use in practice and in the illustrated
examples here, the differences between the two measures are minor. As we will see in Section
3.3.2, the sample estimate of corr

(lasso)(Y, Xj |Xm−

j
) appears in the Bayes factors when com-

paring two models that differ by a covariate Xj and we will use this property to identify the
imposed levels separating important and non-important covariates in such pairwise model
comparisons.

3.3.2 Bayes factors as functions of Lasso regression measures

We now focus on the comparison of any two nested models that differ by a covariate Xj .
For any given model structure m, this comparison is evaluated by BFmu

m,j which is defined as
follows.

Definition 7 (Nested Multiple Lasso Bayes Factor BFmu

m,j ) For any model
m with included covariates Xℓ ∈ Vm, the nested multiple Lasso Bayes factor BFmu

m,j

is defined as the Bayes factor that evaluates the evidence of model m+
j with co-

variates Xℓ ∈ Vm ∪ {Xj} versus model m−
j with covariates Xℓ ∈ Vm \ {Xj}

In the following, y is the n × 1 vector of observed responses, Xj is the n × 1 vector of
observed values for covariate Xj and Xm is the data matrix with columns X ℓ for Xℓ ∈ Vm.
The variances, correlations and R2 for y, Xj and Xm refer to the corresponding sample
estimates.
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We use the Laplace approximation to integrate out β and the corresponding BFmu
m,j is ap-

proximately given by

BFmu
m,j ≈ λc




|XT

m+

j

Xm+

j
|

|XT
m−

j

Xm−

j
|




−1/2

(
||y − Xm+

j
β̂

lasso

m+

j

∣∣∣∣2 + 2λ
∣∣∣∣β̂

lasso

m+

j

∣∣∣∣
)−df/2

(∣∣∣∣y − Xm−

j
β̂

lasso

m−

j

∣∣∣∣2 + 2λ
∣∣∣∣β̂

lasso

m−

j

∣∣∣∣
)−(df−1)/2

= ck




varlasso(y|Xm+

j
) + 2k

∣∣∣∣β̂
lasso

m+

j

∣∣∣∣
1

varlasso(y|Xm−

j
) + 2k

∣∣∣∣β̂
lasso

m−

j

∣∣∣∣
1




−df/2

×
[
var(Xj|Xm−

j
)
(
varlasso(y|Xm−

j
) + 2k

∣∣∣∣β̂
lasso

m−

j

∣∣∣∣)
]−1/2

.

where c =
√

π
Γ(df

2
)

Γ(df−1

2
)
, β̂

lasso

m+

j
and β̂

lasso

m−

j
are the Lasso estimates when regressing y on Xm+

j
,

and Xm−

j
respectively while var(y|X) and varlasso(y|X) are the sample estimates of the

partial variances for the ordinary and the lasso (respectively) regression model with response
y and data matrix X. Moreover, λ is the shrinkage level when working directly with the
penalized version of the square differences between the fitted and the observed response value
as described by (1). For this reason, we have that the shrinkage level used in Section 3.3.1 is
given by k = λ/(n − 1).

Therefore, using equations (12) and (14), the BFmu
m,j can be expressed in terms of the Lasso

partial correlation by the expression

BFmu
m,j ≈ ck

[
1 − corr

(lasso)2(y, Xj|Xm−

j
)
]−df/2 1√(

1 − R
(ols)2
Xj |X

m
−

j

) (
1 − R

(lasso)2
y|X

m
−

j

) . (15)

According to our proposed method, we define the shrinkage level by setting the unicovariate
BFun

j equal to one for a given level of threshold correlation. Using (15) we can identify the cor-
responding threshold partial correlation level imposed by any selected level of λ. By this way,
we can examine the behaviour of the proposed variable selection procedure and why covari-
ates with low Pearson correlations are finally included in most probable a-posteriori models.
The behaviour of BFmu

m,j is depicted in Figure 6. This Figure presents threshold partial cor-

relations against the sample size for λ = 0.067 and for various values of R
(ols)2
Xj |X

m
−

j

, R
(lasso)2
y|X

m
−

j

.

The corresponding threshold values for Pearson correlation are also presented in the solid
line. The two threshold values are closer when there is a weak correlation between Xj and
Xm−

j
. For large values R2

y|X
m

−

j

, which means that the Xm−

j
interpret a large percentage of

the response variability, the threshold values for the partial correlation decrease.

Theorem 3.1 For any selected λ, LBFun

j = LBFmu

m,j ⇒ corr
(lasso)2(y, Xj |Xm−

j
) ≤ (ρj − ks);

where LBF is the Laplace approximation of the corresponding Bayes factor.

The proof of the theorem can be found in the Appendix.
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Figure 6: Plot of the threshold correlation for λ = 0.067 against the sample size and for
R2

Xj |X
m

+
j

= 0, 0.3, 0.6 and 0.9. The solid line shows the threshold Pearson correlations, the

dashed and dotted lines show the corresponding threshold values for the partial correlation
for R2

y|X
m

+
j

= 0.4 and 0.9 respectively.

Corollary 2 The threshold value for the Lasso partial correlation is upper bounded by a
penalized expression of the corresponding value of the Pearson correlation.

Corollary 3 For large sample size n, the threshold partial Lasso correlation is approximately
equal to the corresponding values for the Pearson correlation.

Corollary 3 helps us to approximately identify the threshold levels imposed in the comparison
of multiple regression models. For large sample sizes, the threshold values of the partial
correlations will be the same as the ones imposed for the Pearson correlation while for small
sample sizes it will be lower and bounded by a penalized version of the threshold value of
the Pearson correlation. Moreover, this behaviour justifies why covariates with low Pearson
correlation are finally added in the most probable a-posteriori models since, for responses that
depend on a large number of covariates, the partial correlations will increase as more and

18



more important covariates enter the model. The convergence between the threshold values
of the partial and Pearson correlations is also depicted in Figure 6 where their differences (as
appear on the right bottom of each plot) diminish for large sample sizes.

To sum up, in this Section we have illustrated the effect of any chosen level of λ on BFmu
m,j. To

describe and interpret this result we have identified the value of (Lasso) partial correlation
which separates important and non-important covariates for any nested model comparison.
By this way, we can understand how the method works in more complicated model compar-
isons and justify why covariates with low (or high) Pearson correlations are included in (or
excluded from) models with high posterior probabilities.

4 Illustration

4.1 Simulated exampled

We investigate the performance of the proposed method of tuning the shrinkage parameter.
We use the same data set as in Section 2.3 and we choose different threshold values for the
Pearson correlation as indicated in Table 1.

The results are summarized in Table 2. For threshold correlation equal to 0.35 or 0.40
the model with the maximum a posterior probability (MAP) is the true model, X4 + X5.
Choosing a more strict shrinkage level (λ = 0.004) leads to the selection only of X5 (which
is the covariate with the highest correlation with Y), though, the true model is still visited
frequently (43.3%). The idea to specify the shrinkage level such that a covariate with very low
correlation should be excluded from the model with high probability also seems promising,
since, in this particular example, it succeeded identifying the true model with high posterior
probability (61.4%); see third row of Table 2.

Var. incl. Post. Incl. Prob Prob. of model
ρt λ X4, X5, X12 MAP true

0.35 0.217 X4,X5 0.96, 1.00, 0.38 26.22%
0.40 0.067 X4,X5 0.85, 1.00, 0.15 55.49%
0.42∗ 0.038∗ X4,X5 0.78, 1.00, 0.09 61.39%
0.50 0.004 X5 0.45, 0.96, 0.01 50.45% 43.33%
∗These values have been produced by setting BFun

j = 1/150 for covariates

with ρ = 0.01.

Table 2: Posterior summaries for various choices of λ for Example 4.1.

Even though the unicovariate BF and the Pearson correlation between the covariates and
the response have been used to specify the shrinkage level, it turns out that this choice is
in accordance with the partial correlations. Table 3 shows the absolute values of the sample
Pearson and partial correlations, where we observe that the selected variates (the ones in
bold font) are the ones with partial correlation higher than the threshold correlations.
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X2 X4 X5 X6 X8 X9 X10 X11 X12 X15

corr(y,Xj) 0.03 0.38 0.58 0.01 0.08 0.06 0.02 0.03 0.22 0.10
corr(y,Xj |X\j)

∗ 0.11 0.51 0.68 0.18 0.16 0.22 0.13 0.16 0.34 0.28
∗Lasso partial correlations are equal to the ordinary partial correlations (in 3 d.p.) due to

small values of the shrinkage parameters used in Table 1.

Covariates with partial correlations ≤ 0.05 are omitted from the table.

Table 3: Observed Pearson and partial correlation coefficients (in absolute values) for Exam-
ple 4.1.

4.2 Simulation study

We examine the performance of the proposed Bayesian Lasso and the corresponding method
to specify the shrinkage parameter in a set of simulated data where some of the covariates
are correlated with each other. We therefore use the simulation design study from Nott and
Kohn (2005), which consists of 15 variables of 50 observations each. The first 10 variables
follow independent standard normal distribution and the last 5 variables are generated as
follows,

(X11, . . . , X15) = (X1, . . . , X5) × (0.3, 0.5, 0.7, 0.9, 1.1)T × (1, 1, 1, 1, 1) + E,

where E consists of 5 independent N(0, 1). Under this design, the last five variables are
highly correlated, whereas, they are moderately correlated with the first five variables. The
response is generated as

Y = 2X1 − X5 + 1.5X7 + X11 + 0.5X13 + ε,

where ε ∼ N(0, 2.52).

We use the same threshold correlation levels as in the Example 4.1, since the sample size
is the same. Each MCMC was updated using 20000 iterations after discarding additional
10000 observations. All results are evaluated over 100 datasets generated using the sampling
scheme described above. Figure 7 shows the posterior inclusion probabilities for covariates
X1, X5, X7, X11, X13, which are actually used to generate Y. Covariates X1, X7 and X11 are
very frequently selected for all the shrinkage levels, whereas, the remaining covariates are
less frequently selected, while their inclusions probabilities become smaller as the shrinkage
parameter decreases.

Table 4 presents the true Pearson correlation and partial correlations for this structure of
simulated data set. In fact only the covariates X1, X7 and X11, which have the higher posterior
probabilities, are the ones that have higher partial correlations with the response conditional
on all the remaining variables. While the covariates X5 and X13 have been used to generate
the response, their corresponding partial correlations are low due to the high correlations
among the variables X5, X11 and X13. The Bayesian Lasso tends to select only one of the
three highly correlated covariates and thus, the inclusion probabilities of X5 and X13 are as
expected low.

The highest a-posteriori models over 100 simulated data sets are presented in Table 5. The
model with covariates X1, X7, X11 is the one most frequently indicated as the MAP model
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Figure 7: Boxplots of the posterior inclusion probabilities for covariates with true non-zero
effects over 100 generated datasets for Example 4.2.

X1 X2 X3 X4 X5 X6,X8 X7 X11 X12 X13

X9,X10 X14,X15

corr(y,Xj) 0.56 0.17 0.24 0.31 0.15 0.00 0.34 0.56 0.44 0.50
corr(y,Xj|X\j) 0.55 0.00 0.00 0.00 0.15 0.00 0.52 0.37 0.00 0.20

Table 4: True values of the Pearson and the partial correlation coefficients (in absolute values)
for Example 4.2.

for all the shrinkage levels implemented here. As λ decreases (which implies that the selec-
tion procedure becomes more strict since the threshold correlation increases) the posterior
probability of the true model decreases as expected.

The proposed method to specify the shrinkage parameter works well even for this data set
with highly correlated variables. The important variables are identified and included in the
MAP model apart from the variables X5 and X13. Covariate X5 has been used to generate
the response but it has low Pearson and partial with the response and it is not included in the
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ρt λ X1 + X7 + X11 X1 + X5 + X7 + X11 X1 + X5 + X7 + X11 + X13

0.35 0.218 29% 10% 11%
0.40 0.067 44% 7% 5%
0.42 0.038 46% 7% 2%
0.50 0.004 28% 1% 0%

Table 5: Percentage of samples that each model is identified as the MAP over 100 generated
datasets for Example 4.2.

model. The variable X13 has high Pearson correlation with the response but it is not included
in the model due to its high correlation with the variable X11 ( corr(X11, X13) = 0.74).

4.3 Real example – Diabetes data set

The diabetes data set was widely used in the literature to evaluate algorithms for Lasso
(Efron et al., 2004). The data set contains ten baseline variables, age, sex, body mass index
(bmi), average blood pressure (bp), six blood serum measurements (tc, ldl, hdl, tch, ltg,
glu) and the response which is a one year measure of disease progression for 442 diabetes
patients. According to Efron et al. (2004) fitting linear models are desirable in this diagnostic
application, not only for future prediction but also for revealing the important factors.

The benchmark correlation for data of this size (n = 442) is found equal to 0.11 for this
reason we choose threshold correlations equal to 0.15, 0.20 and 0.30. We also present the
threshold correlation that corresponds to the choice of λ = 0.067 (ρt = 0.4 for n = 50),
which can be considered as a reference shrinkage value. The corresponding shrinkage levels
are used to update 50000 observations through the proposed Gibbs sampler after discarding
additional ten thousands iterations as burn-in period. The posterior inclusion probabilities
are summarized in Table 6, where the variables with their probabilities in bold are the ones
that included in the MAP model.

“Age” as well the second, fourth and sixth of the blood serum measurements have very small
posterior inclusion probabilities. These are also found to be the weakest predictors in Hans
(2009), whereas, Park and Casella (2008), Balakrishnan and Madigan (2009) and Li and Lin
(2010) do not identify the sixth blood serum measurements among the weakest variables.
The first blood serum measurement has moderate inclusion probabilities but is excluded
from the model for all the selected shrinkage levels. The variables of sex, blood pressure and
the third blood serum measurement are important predictors, included in the model when
the shrinkage levels imposed are moderate. Nevertheless, there is strong evidence for the
importance of body mass index and ltg measurement, which are included in the MAP model
even when the choice of the threshold correlation is high and therefore the implied variable
selection rule very strict. These are the important variables that have been also identified by
Hans (2009) and Li and Lin (2010). The same conclusion is drawn if we choose λ = 0.067
(implying ρt = 0.16), which was used in the previous (smaller in size) examples.

Table 7 shows the Pearson correlations between the variables and the response, the partial
correlation between the response and the candidate variable given that all the remaining
variables are included in the model and, in the third row, the partial correlation between

22



ρt λ age sex bmi bp tc ldl hdl tch ltg glu

0.150 0.110 0.010 0.889 1.000 1.000 0.364 0.240 0.673 0.088 1.000 0.017
0.157∗ 0.067∗ 0.007 0.810 1.000 0.998 0.305 0.191 0.661 0.077 1.000 0.011
0.200 0.002 0.000 0.002 1.000 0.585 0.031 0.001 0.030 0.000 1.000 0.001
0.300 4.41 × 10−6 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
∗The shrinkage value λ = 0.067 has been chosen by setting BFun

j = 1 for covariates with ρ = 0.40

and n = 50.

Table 6: Posterior variable inclusion probabilities for several shrinkage values λ for the Dia-
bates data set (Example 4.3).

response and each candidate variable given the variables that are included in the MAP model
for λ = 0.067. We observe that all variables included in the model are the ones with partial
correlation higher than the selected threshold correlation. Also note that hdl should not be
included in the full model (Lasso partial correlation 0.02 while the corresponding threshold
value is 0.13), while it should be included in the MAP (Lasso partial correlation 0.21 with
threshold value 0.15).

age sex bmi bp tc ldl hdl tch ltg glu

corr(y,Xj) 0.19 0.04 0.59 0.44 0.21 0.17 0.40 0.43 0.57 0.38
(0.15) (0.15) (0.15) (0.15) (0.15) (0.15) (0.15) (0.15) (0.15) (0.15)

corr
(lasso)(y,Xj |X\j) 0.01 0.19 0.35 0.23 0.09 0.07 0.02 0.05 0.21 0.05

(0.15) (0.15) (0.15) (0.15) (0.12) (0.12) (0.13) (0.13) (0.13) (0.15)

corr
(lasso)(y,Xj |Xm−

j
)∗ 0.18 0.36 0.24 0.21 0.33

(0.15) (0.15) (0.15) (0.15) (0.15)
∗Model m corresponds to the MAP model here and m−

j to the model with covariates the ones included in

the MAP except Xj .

Table 7: Absolute values of the observed Pearson and partial correlation coefficients for
Diabetes data set (Example 4.3); Threshold values for λ = 0.067 are given in parentheses
below each correlation measure. .

5 Discussion

In this article we present a Bayesian Lasso based model formulation which exploits the ad-
vantages of both shrinkage and variable selection methods. Shrinkage is attained via the use
of a product of independent double exponential prior distributions for the regression coeffi-
cients while variable selection is achieved via the usual binary variable inclusion indicators
included in the linear predictor. Estimation of the posterior distributions (including pos-
terior model and variable inclusion probabilities) is achieved via a simple MCMC scheme.
We also investigate the value of new regularization plots which depict the behaviour of the
BMA based posterior summaries of regression coefficients, the Bayes factors and the variable
inclusion probabilities for different values of the shrinkage parameter λ. These plots have
motivated us to examine the behaviour of unicovariate Bayes factors (which are available in
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closed form) and their relation with Pearson correlation measures. Following this lead, we
have concluded to the definition of “benchmark” correlations. These measures identify the
covariates that will be never supported strongly by the Bayes factor evaluating evidence in
favour of a simple regression versus the null model whatever is the level of λ. We proceed
further by defining the threshold correlation which identifies, for any given λ, the level or
correlation at the limit between significant and insignificant covariates for this unicovariate
Bayes factor. Then we exploit this relation to define λ by specifying the desired level of
threshold correlation. By this way we achieve a simple and clear way to define the level of
the shrinkage parameter λ. We have further examined which is the effect of this choice on
nested multiple regression model comparisons which evaluate the inclusion of a single covari-
ate obtaining similar arguments based on partial correlations. We can use these findings to
interpret and understand the effect of our choice in nested multiple regression model com-
parisons or even specify λ. Results from our illustrations indicate that the method behaves
efficiently identifying important and sensible covariate effects.

The ideas presented in this work are more general and can be implemented in any Bayesian
variable selection method. For example, it is interesting to see how ridge regression method
(and its Bayesian analog) behaves and how we can specify prior parameters using similar
arguments based on benchmark and threshold correlations. Another intriguing research di-
rection, is to link the classical method of Lasso with the Pearson and partial correlation limits
between significance and insignificance. The existence of a relation between these values and
the corresponding ones in the Bayesian approach may lead to the use of the simple lasso
method for indirectly finding the MAP model or even produce reasonable approximations for
posterior variable inclusion probabilities.

Another issue that the authors of this paper are currently examining is the use of hyper-priors
by exploiting active sets of λ values. These sets can be defined by eliminating prior values
of no practical use such as the ones that activate Lindley’s paradox or over-shrink important
effects towards zero. This may lead to robust variable selection methods in the direction
of the priors proposed by Liang et al. (2008). Following them, we may extend the usual
Lasso method to incorporate a covariance structure for regression coefficients and propose a
sensible hyper-prior for the shrinkage parameter λ.

Finally, extensions of this approach for generalized linear models, models for categorical data
or for ANOVA models are also open issues that the authors intend to investigate in the near
future.
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Appendix

Details for the derivation of equation and (11)

varlasso(Y|X) = varlasso (Y − Xβlasso)

= var (Y) + var (Xβlasso) − 2 cov (Y, Xβlasso)

= var (Y) + βlasso
var (X) βlasso − 2 cov (Y, X) βlasso

= var (Y) + (βlasso
var (X) − 2 cov (Y, X)) βlasso

= var (Y) −
(
cov(Y, X) + ksT

β

)
var(X)−1 ( cov(X, Y) − ksβ)

= var (Y) − cov(Y, X) var(X)−1
cov(X, Y) + cov(Y, X) var(X)−1ksβ

−ksT
β var(X)−1

cov(X, Y) + k2sT
β var(X)−1sβ

= var(Y|X) + k2sT
β var(X)−1sβ,

Details for the derivation of equations (12) and (13)

From Definition 5 we can write

1 − R
(lasso)2
Y|X =

var(Y) − var(Xβlasso)

var(Y)

=
var(Y) −

(
cov(Y, X) − ksT

β

)
var(X)−1

var(X) var(X)−1 ( cov(X, Y) − ksβ)

var(Y)

=
var(Y) − cov(Y, X) var(X)−1

cov(X, Y) + 2ksT
β var(X)−1

cov(X, Y) − k2sT
β var(X)−1sβ

var(Y)

From Corollary 5.5.2 of Whittaker (1990, p. 136), we have that var(Y|X) = var(Y) −
cov(Y, X) var(X)−1

cov(X, Y) resulting in

R
(lasso)2
Y|X = 1 −

var(Y|X) + ksT
β var(X)−1 (2 cov(X, Y ) − ksβ)

var(Y)

= 1 −
var(Y|X) + k2sT

β var(X)−1sβ + 2ksT
β var(X)−1 ( cov(X, Y) − ksβ)

var(Y)

= 1 −
var(Y|X) + k2sT

β var(X)−1sβ + 2ksT
ββlasso

var(Y)

= 1 −
var(Y|X) + k2sT

β var(X)−1sβ + 2k
∣∣∣∣βlasso

∣∣∣∣

var(Y)
(16)

From (11) we have that

R
(lasso)2
Y|X = 1 − varlasso(Y|X) + 2k

∣∣∣∣βlasso
∣∣∣∣

var(Y)
.

which is the expression (12).

Finally, substituting R2
Y|X = 1 − var(Y|X)

var(Y)
back in (16) gives us the result of equation (13).
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Corollary 1

Proof: The R2
Y|X of the Lasso regression is related with the ordinary multiple correlation

through

R
(lasso)2
Y|X = 1 − varlasso(Y|X) − 2k

∣∣∣∣βlasso
∣∣∣∣

1

= 1 − var(Y|X) − k2sT
β var(X)−1sβ − 2k

∣∣∣∣βlasso
∣∣∣∣

1

= R
(ols)2
Y|X − k2sT

β var(X)−1sβ − 2k
∣∣∣∣βlasso

∣∣∣∣
1
.

Hence, R
(lasso)2
Y|X ≤ R

(ols)2
Y|X ≤ 1, which also implies that R

(lasso)2
Y|X cannot exceed 1.

Theorem 3.1

Proof: We consider the Laplace approximation of the unicovariate BF, which gives

LBFun
j = ck

[
1 −

(
ρj − ksbβ

)2 ]−df/2
, (17)

where ρj is sample Pearson correlation between Y and Xj . Equating (15) and (17), the
threshold values of the Pearson and partial correlations satisfy the following

(1 − ρ2
y,Xj |X

m
−

j

)

[(
1 − R

(ols)2
Xj |X

m
−

j

) (
1 − R

(lasso)2
y|X

m
−

j

)]1/df

= 1 −
(
ρj − ksbβ

)2

, (18)

where ρy,Xj |X
m

−

j

= corr
(lasso)

(
y, Xj |Xm−

j

)
.

Since R
(ols)2
Xj |X

m
−

j

and R
(lasso)2
y|X

m
−

j

lie in the [0, 1] interval, we have that

ρ2
y,Xj |X

m
−

j

≤
(
ρj − ksbβ

)2

.

Corollary 2

Proof: The proof of Corollary 2, immediately follows Theorem 3.1 if we set LBFun
j =

LBFmu
m,j = 1.

Corollary 3

Proof: For n → ∞, (18) becomes equal to

(1 − ρ2
y,Xj |X

m
−

j

) = 1 − ρ2
j

since df = n + 2a + 1 → ∞ and k = λ/(n− 1) → 0. When considering LBFun
j = LBFmu

m,j = 1
we obtain that the threshold values of the Pearson and the partial correlations are equal for
n → ∞.
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