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Imaginary data and power-prior motivation for the prior distribution in the
main paper’s equation (6)
After observing the design matrix X~ for any model ~, we consider a set of imaginary data y; = (y;; =

1, y5 =0),i =1,...,n that assigns probabilities 1/2 for all ¢ and therefore supports the simplest (constant)
model. We consider a prior that is generated using the likelihood of these imaginary data,
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where y* = (y7,...,y}). Using the above prior, the posterior becomes
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therefore this is equivalent to obtaining information from .7 (14 1) = (n+ 1) data points, instead of
n data points when using a flat prior. Thus the proposed prior (37) introduces additional information to
the posterior equivalent to adding one data point to the likelihood and therefore we support a priori the
simplest model with a weight of one data point.

Using a Laplace approximation to (37) (see, e.g., Bernardo and Smith, 1994, p. 286), we obtain

F(By.y") ~ N[By,20T(B4) ], (39)

where ﬁ is the maximum likelihood estimate if the imaginary data y; were observed and Z (,5',7) is the
observed information matrix given by

I(B~) = X2 diag {257 (v)[1 — p; ()]} X, (40)

in which pf(v) = [1 +exp(—X ZﬁA»y) is the fitted success probability for all ¢ under model 4 when
observing data y*. Under the above imaginary data, B,), = 0 and p;(v) = 1/2 for all 4, yielding 7 (B"/) =
% (X gX 7) and therefore leading to the prior given by (6). This approach is also sensible in terms of the

parsimony principle. Posterior model odds (and Bayes factors) penalize the model likelihood for deviations
of the actual data from the prior distribution (see Raftery, 1996, equation 12). Since the above prior can
be generated using a set of minimally-weighted imaginary data that fully support the constant model, it
will provide sensible a priori support for more parsimonious models.

Details on RIMCMC and MC? implementation
The RIMCMC algorithm we employed can be summarized as follows:

1. For 7 = 1,...,p, use RIMCMC to compare the current model v with the proposed one 4’ with
components 'y} =1—; and v}, =~ for k # j with probability one. The updating sequence of ~; is
randomly determined in each step.

2. For j =0,...,p, if 75 = 1 then generate model parameters §; from the corresponding posterior
distribution f(8;]B;,7,y); otherwise set 3; = 0.

In our context the MC? algorithm may be summarized by the following steps:

1. For j = 1,...,p, propose a move from the current model 4 to a new one 4’ with components
'y;- =1—+, and 7, = v for k # j with probability one. The updating sequence of +; is randomly
determined in each step.
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2. Accept the proposed model " with probability

f(']y)
f(vly)

o = min {1, } = min (1, PO~y /) . (41)

Details on utility elicitation in Fouskakis and Draper (2008)

Since data on future patients are not available, Fouskakis and Draper (2008, hereafter FD) use a cross-
validation approach (e.g., Gelfand et al., 1992, Hadorn et al., 1992) in which (i) a random subset of nps
observations is drawn for creation of the mortality predictions (the modeling subsample) and (ii) the quality
of those predictions is assessed on the remaining ny = (n — nys) observations (the wvalidation subsample,
which serves as a proxy for future patients; FD take % = %)

In the approach taken by FD (and using the notation of that paper in this supplemental material),
utility is quantified in monetary terms, so that the data collection utility is simply the negative of the total
amount of money required to gather data on the specified predictor subset. Letting I; = 1 if X; is included
in a given model (and 0 otherwise), the data-collection utility associated with subset I = (I1,...,I,) for

patients in the validation subsample is
P
I) = —anCjIj, (42)
j=1

where c¢; is the marginal cost per patient of data abstraction for variable j.

To measure the accuracy of a model’s predictions, a metric is needed that quantifies the discrepancy
between the actual and predicted values, and in this problem the metric must come out in monetary terms
on a scale comparable to that employed with the data-collection utility. In the setting of this problem the
outcomes Y; are binary death indicators and the predicted values p;, based on statistical modeling, take
the form of estimated death probabilities. FD use an approach to the comparison of actual and predicted
values that involves dichotomizing the p; with respect to a cutoff, to mimic the decision-making reality that
actions taken on the basis of input-output quality assessment will have an all-or-nothing character at the
hospital level (for example, regulators must decide either to subject or not subject a given hospital to a
more detailed, more expensive quality audit based on process criteria; see, e.g., Kahn, Rogers et al., 1990).

In the first step of their approach, given a particular predictor subset I, FD fit a logistic regression model
to the modeling subsample M and apply this model to the validation subsample V to create predicted death
probabilities . In more detail, letting ¥; = 1 if patient i dies and 0 otherwise, and taking X1, ..., Xk
to be the k sickness predictors for this patient under model I, the usual sampling model which underlies
logistic regression in this case is

(% [ p) P Bernoulli(p!), (43)
I
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FD use maximum likelihood to fit this model (as a computationally efficient approximation to Bayesian
fitting with relatively diffuse priors), obtaining a vector ( of estimated logistic regression coefficients, from
which the predicted death probabilities for the patients in subsample V' are as usual given by
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where X;0 = 1 (p! may be thought of as the sickness score for patient i under model I).

In the second step of their approach FD classify patient ¢ in the validation subsample as predicted
dead or alive according to whether p! exceeds or falls short of a cutoff p*, which is chosen — by searching
on a discrete grid from 0.01 to 0.99 by steps of 0.01 — to maximize the predictive accuracy of model I.
FD then cross-tabulate actual versus predicted death status in a 2 x 2 contingency table, rewarding and
penalizing model I according to the numbers of patients in the validation sample which fall into the cells of
the right-hand part of Table 8. The left-hand part of this table records the rewards and penalties in USS$.
The predictive utility of model I is then

Up(I)=> > Cigm .- (45)



Table 8: Cross-tabulation of actual versus predicted death status. The left-hand table records
the monetary rewards and penalties for correct and incorrect predictions; the right-hand table
summarizes the frequencies in the 2 X 2 tabulation.

Rewards and

Penalties Counts
Predicted Predicted
Died Lived Died Lived
Died C11 Cha nii ni2
A 1
ctua Lived | Cy Coys 21 122

To elicit the utility values Cj,,, FD reason as follows. (1) Clearly C11 (the reward for correctly predicting
death at 30 days) and Caq (the reward for correctly predicting living at 30 days) should be positive, and
C12 (the penalty for a false prediction of living) and Cb; (the penalty for a false prediction of death) should
be negative. (2) Since it is easier to correctly predict that a person lives than dies with these data (the
overall pneumonia 30-day death rate in the RAND sample was 16%, so a prediction that every patient lives
would be right about 84% of the time), it is natural to specify that Ci; > Caa. (3) Since it is arguably
worse to label a “bad” hospital as “good” than the other way around, one should take |Cia| > |Co1|, and
furthermore it is natural that the magnitudes of the penalties should exceed those of the rewards. (4) FD
completed the utility specification by eliciting information from health experts in the U.S. and U.K, first to
anchor C5; to the cost of subjecting a “good” hospital to an unnecessary process audit and then to obtain
ratios relating the other Cj,, to Co;.

Since the utility structure used in FD is based on the idea that hospitals have to be treated in an
all-or-nothing way in acting on the basis of their apparent quality, the approach taken was (i) to attempt
to quantify the monetary loss L of incorrectly subjecting a “good” hospital to a detailed but unnecessary
process audit and then (ii) to translate this from the hospital to the patient level. A rough correspondence
may be made between the left-hand part of Table 8 at the patient level and a hospital-level table with rows
representing truth (“bad” in row 1, “good” in row 2) and columns representing the decision taken (“process
audit” in column 1, “no process audit” in column 2). Unnecessary process audits then correspond to cell
(2,1) in these tables (hospitals where a process audit is not needed will typically have an excess of patients
who are predicted to die but actually live). Discussions with health experts in the U.S. and U.K. suggested
that detailed process audits cost on the order of L = $5,000 per hospital (in late 1980s U.S. dollars), and
RAND data indicated that the mean number of pneumonia patients per hospital per year in the U.S. at the

time of the RAND quality of care study was 71.8. This fixed Cs; at approximately % = —$69.6. FD’s

health experts judged that C2 should be the largest in absolute value of the Cj,,, and averaging across the

expert opinions, expressed as orders of magnitude base 2, the elicitation results were g—;? % = %,
Cao

2| = %, finally yielding (C11, Ci2, Ca1, Ca2) = $(34.8,—139.2, —69.6,8.7). The results in FD and this

paper use these values; Draper and Fouskakis (2000) present a sensitivity analysis on the choice of the Cy,,
which demonstrates broad stability of the findings when the utility values mentioned above are perturbed
in reasonable ways.

With the Cj,, in hand, the overall expected utility function to be maximized over I is then simply

)

and ‘

E[UD)] = EUp(I)+Up(I)], (46)

where this expectation is over all possible cross-validation splits of the data. The number of possible cross-
validation splits is far too large to evaluate the expectation in (46) directly; in practice FD therefore use
Monte Carlo methods to evaluate it, averaging over N random modeling and validation splits.
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