pbivpois{bivpois} |
R Documentation |
Returns the probability the probability (or the
log) of the bivariate poisson distribution for values x and y.
pbivpois(x, y,
lambda = c(1, 1, 1), log=FALSE)
x, y |
single values containing which values should evaluated |
lambda |
Vector (of length 3) containing values of the parameters ë1, ë2 and ë3 of the bivariate poisson distribution. |
log |
Logical argument for calculating the log probability or the
probability function. The default value is false (calculates the probability
function) |
This function
evaluates the probability function (or the log) of the bivariate Poisson distribution
with parameters ë1, ë2 and ë3. Much faster than bivpois.table since it avoid
`for-loops' and does not use recursive relations.
A single value
of the probability of PD(ë1, ë2 , ë3.) evaluated at (x,y)
when log=TRUE or the log-probability of PD(ë1, ë2 , ë3.) evaluated at (x,y)
when log=FALSE
1.
Karlis, D. and Ntzoufras, I. (2004). Bivariate Poisson and Diagonal
Inflated Bivariate Poisson Regression Models in S. (submitted). Technical
Report, Department of Statistics, Athens University of Economics and Business,
Athens, Greece.
2.
Karlis, D. and Ntzoufras, I. (2003). Analysis of Sports Data Using
Bivariate Poisson Models. Journal of the Royal Statistical Society, D,
(Statistician), 52, 381 – 393.
1.
Dimitris Karlis, Department of Statistics, Athens University of
Economics and Business, Athens, Greece, e-mail: karlis@aueb.gr
.
2.
Ioannis Ntzoufras, Department of Statistics, Athens University of
Economics and Business, Athens, Greece, e-mail: ntzoufras@aueb.gr .
bivpois.table, simple.bp, lm.bp, lm.dibp
.
pbivpois(3, 1) #
probability function of (x,y)=(3,1) for ë1=1, ë2=1, ë3=1
pbivpois(3, 1,
lambda=(3,1,1)) # probability
function of (x,y)=(3,1) for ë1=3, ë2=1, ë3=1
pbivpois(3, 1,
lambda=(3,1,1), log=T) # log-probability function of (x,y)=(3,1) for ë1=3,ë2=1, ë3=1