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1.4.3 Modelling Approaches

New modeling aspects expressed in terms of four models of the problem of outstanding claims

are presented in this section. For comparison purposes, we present a Bayesian analysis of two

models used in the past, the log-normal (model 1.1) and the state space model (model 1.3).

We enhance these models by simultaneously modelling claim amounts and counts and using

the total claim counts to specify appropriate parameter constraints. These modifications

result in Models 1.2 and 1.4.

1.4.3.1 Model 1: Log-Normal Model

The simplest model for the data in Table 1.1 is a log-normal (anova-type) model. This model

was investigated by Renshaw and Verrall (1994), Renshaw (1989) and Verrall (1991, 1993,

1996). Verrall (1990) produced Bayes estimates for the parameters of this model. The model

is given by the formulation

Υı = log
Yı
infı

, Υı ∼ N(µı, σ
2), µı = b0 + aı + b, ı,  = 1, . . . , r (1.1)

where Υı are called log-adjusted claim amounts and N(µı, σ
2) denotes the normal distri-

bution with mean µı and variance σ2. In Taylor and Ashe (1983) and Verrall (1991, 1993,

1996) the alternative parametrization Υı = log(Yı)− log(infı × Eı) with Υı ∼ N(µı, σ
2)

is used, where Eı is a measure of exposure (for example size of portfolio for year ı). This

reparametrization can be easily adopted for all following models. Finally, (1.1) requires

appropriate constraints to achieve identifiability of the parameters, so here we adopt the

usual sum-to-zero parametrization, that is,
∑
ı

aı =
∑


b = 0. Consequently, expression

(1.1) assumes that the expected log-adjusted claim amount µı originated at year ı and paid

with delay of  − 1 years is modelled via a linear predictor which consists of the average

log-adjusted claim amount b0, a factor which reflects expected changes due to origin year aı,

and a factor depending on the delay pattern b.

To complete the Bayesian formulation we use the priors

b0 ∼ N(0, σ2
b0), aı ∼ N(0, σ2

aı
), b ∼ N(0, σ2

b), ı,  = 2, ..., r, τ = σ−2 ∼ G(aτ , bτ )

with G(a, b) denoting gamma distribution with mean a/b. For the kind of problems we are
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interested in, vague diffuse proper priors (Kass and Wasserman, 1996) are produced by using

σ2
b0
= 1000, σ2

aı
= 100, ı = 2, ..., r, σ2

b = 100,  = 2, ..., r, aτ = bτ = 0.001.

A disadvantage of the above model is that it does not use any information from the

observed counts. That is, any prediction of the missing claim amounts will be based only on

the observed claim amounts. As a result, a source of information for a year (or cell) such as

a sudden increase of accidents will not affect the prediction of the claim amounts.

1.4.3.2 Model 2: Log-Normal & Multinomial Model

We suggest here a two stage hierarchical model which uses both data sets in Tables 1.1 and

1.2 and the can be written, assuming nı > 0 for all ı, , in the two stage formulation

Υı = log
Yı
infı

, Υı ∼ N(µı, σ
2), µı = b0 + aı + b + log(nı),

(nı1, nı2, . . . , nır)
T ∼Multinomial(p′1, p

′
2, . . . , p

′
r;Tı), log(p′/p

′
1) = b∗ (1.2)

where (nı1, nı2, . . . , nır)
T are the number of claims originated at year ı and p′ is the probability

for a claim to be settled with a delay of − 1 years. For the first stage of the model we use

as in Model 1 sum-to-zero constraints. Compared to (1.1), the linear predictor in this stage

has been enhanced with the term log(nı). As a result, b0 represents the average log-adjusted

amount per claim finalized and aı, b reflect expected differences from b0 due to origin and

delay years respectively. For the second stage we use corner constraints (b∗1 = 0) to facilitate

its straightforward interpretation: b∗ represents the log-odds of an accident to be paid with

a delay of − 1 years versus an accident paid without delay.

The second (multinomial) stage of Model 1.2 is equivalent, to the log-linear model

nı ∼ Poisson(λı), log(λı) = b∗0 + a∗ı + b∗

under the constraints
r∑

=1
nı = nı. = Tı,

r∑
=1

λı = λı. = Tı, where b∗0 and a∗ı are nuisance

parameters; for more details see Agresti (1990). Under the assumption that nı > 0 for all

ı,  it is precise to assume that nı follows a ‘truncated at zero’ Poisson(λı). However, for

the size of the data we are interested in, the above distribution is practically identical to

Poisson(λı). Had we assumed that Tı is unknown, we would have used the above log-linear

model without constraints on λı and nı. This could be useful, for example, if some kind
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of exposure measure is available, say the size of portfolio. Then, Model 1.2 without the

constraints on λı and nı is appropriate for predicting ‘incurred but not reported claims’.

We suggest similar prior distributions as Model 1.1

b0 ∼ N(0, σ2
b0), aı ∼ N(0, σ2

aı
), ı = 2, ..., r, b ∼ N(0, σ2

b),  = 2, ..., r,

τ = σ−2 ∼ G(aτ , bτ ), b∗ ∼ N(0, σ2
b∗ ),  = 2, ..., r.

The same values for σ2
b0
, σ2

aı
, σ2

b as in Model 1.1 can be used. For the additional parameters

b∗ we suggest σ
2
b∗ = 100, for  = 2, ..., r.

1.4.3.3 Model 3: State Space Modelling of Claim Amounts

An alternative modelling perspective for this kind of problems is the state space (or dynamic

linear) models where the parameters depend on each other in a time recursive way. A general

description of MCMC in dynamic models is given by Gamerman (1998). Carter and Kohn

(1994) describe how to use Gibbs sampler for general state space models and Carlin (1992)

applies Gibbs sampler for state space models for actuarial time series. For application of

state space models in claim amounts problem see De Jong and Zehnwirth (1983) and Verrall

(1989, 1994). The state space model can be written as

Υı = log
Yı
infı

, Υı ∼ N(µı, σ
2), µı = b0 + aı + bı (1.3)

with the recursive associations

bı = bı−1,j + εı, εı ∼ N(0, σ2
ε), ı = 2, ..., r,

aı = aı−1 + ζı, ζı ∼ N(0, σ2
ζ ), ı = 2, ..., r

and corner constraints a1 = bı1 = 0, ı = 1, 2, . . . , r.

Comparing Model 3 with Model 1 we first note that b has been replaced by bı. Thus,

the delay effect on the log-adjusted claim amounts changes with the origin year. Second,

the introduced recursive associations express the belief that the parameters aı and b evolve

through time via known stochastic mechanisms. In fact, these mechanisms are determined

by the disturbance terms εı and ζı; as σ2
ε approaches zero (1.3) degenerates to Model 1,

whereas when σ2
ζ approaches zero the parameters aı tend to zero. The corner constraints
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imply that b0 is the expected log-adjusted claim amount for the first origin year paid without

delay and aı and bı are interpreted accordingly.

In (1.3) we only need to define prior distributions for the first state space parameters;

for more details see Carlin et al. (1992), Carlin (1992) and Gamerman (1998). We propose

priors b1 ∼ N(0, σ2
b1
) and b0 ∼ N(0, σ2

b0) with σ2
b1

= 100 and σ2
b0 = 1000. The prior for the

precision τ = σ−2 is a G(aτ , bτ ) density as in Model 1.1. We additionally use non-informative

gamma priors for the parameters σ−2
ε ∼ G(aε, bε) and σ−2

ζ ∼ G(aζ , bζ) with proposed values

aε = bε = aζ = bζ = 10−10. Finally, as in Model 1.1, we note that this model does not use

any information from claim counts.

1.4.3.4 Model 4: State Space Modelling of Average Claim Amount per Accident

Here we generalise the Model 1.3 by incorporating information from data in Table 1.2.

Assuming that nı > 0 for all ı, , we suggest

Υı = log
Yı
infı

, Υı ∼ N(µı, σ
2), µı = b0 + aı + bı + log(nı),

(nı1, nı2, . . . , nır)
T ∼Multinomial(p′1, p

′
2, . . . , p

′
r;Tı), log(p′/p

′
1) = b∗ , b∗1 = 0 (1.4)

with the recursive associations

bı = bı−1, + εı, εı ∼ N(0, σ2
ε), ı = 2, ..., r,

aı = aı−1 + ζı, ζı ∼ N(0, σ2
ζ ), ı = 2, ..., r.

In analogy with Model 2, we have added the term log(nı) in the linear predictor. Thus,

b0 represents the log-adjusted amount per claim finalized for the first origin year paid without

delay, and aı, bı are interpreted accordingly. The multinomial second stage formulation is

interpreted exactly as in Model 2. The priors can be defined similarly as in Models 1.2 and

1.3.

1.4.4 A Real Data Example

The following data came from a major Greek insurance company. Tables 1.3-1.5 give the

claim amounts, the claim counts, the total counts for car accidents and the inflation factor.

Due to their nature, the main source of delay is due to claims that are notified but settled
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after the accident year. Liabilities that have arisen but reported later are assumed to be

minimal. Moreover, the assumption of no partial payments is plausible since only a small

proportion of car accident claims are paid in more than one installments.

B

Year 1 2 3 4 5 6 7

1989 527003 220645 130250 84085 72182 21656 49868

1990 715247 341364 166001 99845 108648 91958

1991 1166119 428365 166410 155376 191644

A 1992 1686294 647331 335290 427069

1993 2780948 961010 444610

1994 3619446 1328151

1995 4002087

Table 1.3: Outstanding Claim Amounts from a Greek Insurance Company(thousands drach-

mas).

The analysis of the data above was initiated by deinflating the data in Table 1.3 using

the inflation factors in Table 1.5. Therefore, the resulting predictive amounts presented in

this section should be multiplied by the corresponding inflation factor to represent amounts

for a specific year (for example multiply by 257/100=2.57 to get the inflated amount for year

1996).

Posterior summaries of Models 1-4 are given in Tables 1.7 and 1.8. Note the striking

difference of our proposed models 1.2 and 1.4 when compared with the existing approaches

expressed by Models 1.1 and 1.3 for outstanding claim amounts for 1991 and 1992. This

deviation is easily explainable if we examine carefully the data in Table 1.4. The remaining

outstanding claims for 1991 are only 132 and account for the 1.05% of the total claim counts

(12,601). This percentage is comparably much smaller than the corresponding outstanding

claim counts of 1989 and 1990 which were 3.03% and 4.48% respectively. This decrease is

being taken into account by our models and the produced estimates for 1991 are appropriately

adjusted.

Table 1.9 gives the posterior summaries for variance components for all models. For the
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B

Year 1 2 3 4 5 6 7 Total

1989 6622 1943 489 138 61 223 66 9542

1990 6943 2133 632 154 162 390 10496

1991 8610 2216 736 651 256 12601

A 1992 9791 3167 1570 624 15565

1993 11722 3192 1773 17735

1994 13684 3664 19746

1995 13068 18600

Table 1.4: Outstanding Claim Counts from a Greek Insurance Company.

Year 1989 1990 1991 1992 1993 1994 1995 1996

Inflation (%) 100.0 120.4 143.9 166.6 190.6 214.2 235.6 257.0

Table 1.5: Inflation Factor for Greece.

Year

Model 1990 1991 1992 1993 1994 1995

1 1107(17) 1374(22) 1904(69) 2505(118) 3026(238) 3112(556)

2 1105(19) 1322( 6) 1787(48) 2400(121) 2892(271) 2950(698)

3 1103(13) 1379(27) 1896(68) 2533(167) 3013(282) 3091(475)

4 1101( 3) 1330( 2) 1789( 8) 2433( 31) 2752( 59) 2767(168)

Table 1.6: Posterior Mean (Standard Deviation) for Total Claim Amounts Paid for Each

Accident Year (million drachmas; adjusted for inflation).
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Year

Model 1990 1991 1992 1993 1994 1995

1 34(17) 65(22) 215(69) 409(118) 773(238) 1413(555)

2 32(19) 13( 6) 97(48) 304(121) 639(271) 1251(698)

3 30(13) 70(27) 206(68) 436(167) 760(282) 1393(475)

4 28( 3) 21( 2) 99( 8) 336( 31) 498( 59) 1068(168)

Table 1.7: Posterior Mean (Standard Deviation) for Total Outstanding Claim Amounts of

Each Accident Year (million drachmas; adjusted for inflation).

Year

Model 1996 1997 1998 1999 2000 2001 Total

1 1222(338) 679(177) 470(140) 299(110) 152( 59) 88(54) 2909(670)

2 1085(450) 582(215) 375(171) 191(109) 66( 40) 37(29) 2336(806)

3 1166(289) 677(225) 496(227) 310(179) 161(154) 85(99) 2895(834)

4 937(136) 456( 70) 353( 78) 179( 43) 87( 24) 41(20) 2052(226)

Table 1.8: Posterior Mean (Standard Deviation) of Total Claim Amounts to be Paid in Each

Future Year (million drachmas; adjusted for inflation).
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data we analysed, we noticed that the state space model for claim amounts (Model 1.3) did

not differ very much from the simple log-normal model. This is due to the small posterior

values of σ2
ε and may imply that no dynamic term is needed when modelling the total claim

amounts. On the other hand, incorporation the claim counts (Model 4) resulted in a posterior

density of σ2
ε which gives evidence for a non-constant dynamic term. Therefore, Model 3

implies that the total payments have a similar delay pattern across years while Model 4

implies that ‘payments per claim finalized’ for origin year ı and delay year  change from

year to year.

Model Parameters

Posterior σ2 σ2
ε σ2

ζ

Value Model 1 Model 2 Model 3 Model 4 Model 3 Model 4 Model 3 Model 4

mean 0.0893 0.1366 0.0623 0.00008 0.0379 0.1249 0.1091 0.0150

median 0.0816 0.1231 0.0603 0.00008 0.0002 0.1197 0.0777 0.0112

st.dev. 0.0409 0.0596 0.0399 0.00002 0.0777 0.0324 0.1227 0.0145

Table 1.9: Posterior Summaries for Model Parameters σ2, σ2
ε and σ2

ζ .

1.4.5 Discussion

In this case study we developed new models in order to analyse the well known problem of

outstanding claims of insurance companies using Bayesian theory and MCMC methodology.

The models fitted can be divided in two categories. The first category contains models

that use only the information from claim amounts (Table 1.1) while the second exploits both

claim amounts and counts (Tables 1.1 and 1.2). Thus the enriched family attempts to model

the average payment per claim finalized or paid; this is the approach we advocate, and we

believe that it improves the predictive behaviour of the model.

The models dealt with in this illustrated example can be generalised by adding other

factors in the first (log-normal) stage. For example, we may assume that the variance of

Υı depends on the claim counts of the corresponding cell. Since our suggested models are

already multiplicative in the error, this adjustment will improve, at least in our data, only
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slightly the fit.

Finally, we would like to mention that the Bayesian paradigm used in this case study did

not utilize the advantage of using informative prior densities. By illustrating our results with

non-informative priors, we only provide a yardstick for comparison with other approaches.

However, any prior knowledges can be incorporated in our models using usual quantification

arguments.

1.4.6 Full Conditional Posterior Densities of Case Study

Conditional posterior distributions needed for the MCMC implementation of the four models

presented in Section 1.4.3 are given here in detail. Iterative samples from these conditional

densities provide, after some burn-in period and by using an appropriate sample lag, the

required samples from the posterior density.

1.4.6.1 Computations for Model 1

The model described in Section 1.4.3.1 includes parameters b0,a, b, σ
−2. The claim amounts

and counts are divided in known/observed (data) for i + j ≤ r + 1 and unknown missing

(parameters) for i+ j > r+1. Denote by ΥU the observed (inflation adjusted) log-amounts

by ΥL the missing (inflation adjusted) log-amounts and by Υ the matrix containing both

observed and missing claim (inflation adjusted) log-amounts. Assuming that the missing

data ΥL are a further set of parameters, the parameter vector is given by (b0,a, b, σ
−2,ΥL)

and the data vector is given by (ΥU). Using Bayes theorem and denoting by f the prior,

conditional and marginal densities, the posterior distribution is given by

f (b0,a, b, σ−2,ΥL|ΥU) ∝
∝ f (ΥU |b0,a, b, σ−2,ΥL)f (b0,a, b, σ−2,ΥL)

∝ f (ΥU |b0,a, b, σ−2)f (ΥL|b0,a, b, σ−2)f (b0,a, b, σ−2)

∝ f (Υ|b0,a, b, σ−2)f (b0)f (a)f (b)f (σ
−2)

where b = (b2, . . . , br) and a = (a2, . . . , ar).

The full conditional distributions are therefore given by

1. f (b0|.) ∝ f (Υ|b0,a, b, σ−2)f (b0)
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2. f (a|.) ∝ f (Υ|b0,a, b, σ−2)f (a)

3. f (b|.) ∝ f (Υ|b0,a, b, σ−2)f (b)

4. f (σ−2|.) ∝ f (Υ|b0,a, b, σ−2)f (σ−2)

5. f (ΥL|.) ∝ f (Υ|b0,a, b, σ−2)

In the above posterior the conditional f (Υ|b0,a, b, σ−2) is the full likelihood assuming

that there are no missing data in the claim amount table; therefore,

f (Υ|b0,a, b, σ−2) = (2πσ2)−r
2/2exp


− 1

2σ2

r∑
ı=1

r∑
=1

[Υı − b0 − aı − b)]
2




Thus, the resulting conditional distributions are

1.

f (b0|.) = N

(
Υ..

r2 + σ2/σ2
b0

,
σ2

r2 + σ2/σ2
b0

)
, (1.5)

where Υ.. =
r∑
ı=1

r∑
=1

Υı.

2. [a]

f (aı|.) = N



Υı. −Υ1. − r

∑
k �=1,i

ak

2r + σ2/σ2
aı

,
σ2

2r + σ2/σ2
aı


 , ı = 2, . . . , r, (1.6)

where Υı. =
r∑

=1
Υı.

[b] Set a1 = −
r∑
ı=2

aı.

3. [a]

f (b|.) = N



Υ.j −Υ.1 − r

∑
k �=1,j

bk

2r + σ2/σ2
b

,
σ2

2r + σ2/σ2
b


 ,  = 2, . . . , r, (1.7)

where ln.j =
r∑
ı=1

log(nı) and Υ.j =
r∑
ı=1

Υı

[b] Set b1 = −
r∑

=2
b.

4.

f (τ = σ−2|.) = G(aτ + r2/2, bτ + SS/2), (1.8)

with SS =
r∑
ı=1

r∑
=1

(Υı − µı)
2 and µı = b0 + aı + b).
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5.

f (Υı|.) = N(µı, σ
2), ı = 2, . . . , r,  = r − ı+ 2, . . . , r, (1.9)

with µı = b0 + aı + b.

1.4.6.2 Computations for Model 2

The model introduced in 1.4.3.2 is more complicated and includes parameters b0,a, b, σ
−2

from stage one, and b∗ from stage two. Similar to above, the claim (inflation-adjusted) log-

amounts and counts are divided in known/observed (data) for i + j ≤ r + 1 and unknown

missing (parameters) for i+j > r+1. Denote by NU and ΥU the observed claim counts and

amounts, respectively, by NL and ΥL the missing claim counts and amounts, respectively,

and by N and Υ the matrices containing both observed and missing claim counts and

amounts, respectively. Assuming that the missing data NL and ΥL are a further set of

parameters, the parameter vector is given by (b0,a, b, σ
−2, b∗,NL,ΥL) and the data vector

is given by (NU ,ΥU). Using Bayes theorem and denoting by f the prior, conditional and

marginal densities, the posterior distribution is given by

f (b0,a, b, σ−2, b∗,NL,ΥL|NU ,ΥU) ∝

∝ f (NU ,ΥU |b0,a, b, σ−2, b∗,NL,ΥL)f (b0,a, b, σ−2, b∗,NL,ΥL)

∝ f (NU ,ΥU |b0,a, b, σ−2, b∗)f (NL,ΥL|b0,a, b, σ−2, b∗)f (b0,a, b, σ−2, b∗)

∝ f (N ,Υ|b0,a, b, σ−2, b∗)f (b0)f (a)f (b)f (σ−2)f (b∗)

∝ f (Υ|b0,a, b, σ−2,N)f (N |b∗)f (b0)f (a)f (b)f (σ−2)f (b∗)

where b = (b2, . . . , br), a = (a2, . . . , ar) and b∗ = (b∗2, . . . , b
∗
r).

The full conditional distributions are therefore given by

1. f (b0|.) ∝ f (Υ|b0,a, b, σ−2,N)f (b0)

2. f (a|.) ∝ f (Υ|b0,a, b, σ−2,N)f (a)

3. f (b|.) ∝ f (Υ|b0,a, b, σ−2,N)f (b)

4. f (σ−2|.) ∝ f (Υ|b0,a, b, σ−2,N)f (σ−2)
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5. f (ΥL|.) ∝ f (Υ|b0,a, b, σ−2,N)

6. f (b∗|.) ∝ f (N |b∗)f (b∗)

7. f (NL|.) ∝ f (Υ|b0,a, b, σ−2,N)f (N |b∗)

In the above posterior the conditional f (Υ|b0,a, b, σ−2,N) is the full likelihood for the

first stage assuming that there are no missing data in the claim amount table; therefore,

f (Υ|b0,a, b, σ−2,N) = (2πσ2)−r
2/2exp


− 1

2σ2

r∑
ı=1

r∑
=1

[Υı − b0 − aı − b − log(nı)]
2




The full likelihood f (N |b∗) of the second stage, assuming no missing claim counts, can

be written as

f (N |b∗) = exp


 r∑
ı=1

log(Tı!)−
r∑
ı=1

r∑
=1

log(nı!) +
r∑

=2

n.jb
∗
 − n..log(

r∑
k=1

eb
∗
k)


 ,

where n.. =
r∑
ı=1

r∑
=1

nı =
r∑
ı=1

Tı and n.j =
r∑
ı=1

nı. Thus, the resulting conditional distribu-

tions are

1.

f (b0|.) = N

(
Υ.. − ln..

r2 + σ2/σ2
b0

,
σ2

r2 + σ2/σ2
b0

)
, (1.10)

where ln.. =
r∑
ı=1

r∑
=1

log(nı) and Υ.. =
r∑
ı=1

r∑
=1

Υı.

2. [a]

f (aı|.) = N



Υı. −Υ1. − (lnı. − ln1.)− r

∑
k �=1,i

ak

2r + σ2/σ2
aı

,
σ2

2r + σ2/σ2
aı


 , ı = 2, . . . , r, (1.11)

where lnı. =
r∑

=1
log(nı) and Υı. =

r∑
=1

Υı.

[b] Set a1 = −
r∑
ı=2

aı.

3. [a]

f (b|.) = N



Υ.j −Υ.1 − (ln.j − ln.1)− r

∑
k �=1,j

bk

2r + σ2/σ2
b

,
σ2

2r + σ2/σ2
b


 ,  = 2, . . . , r, (1.12)

where ln.j =
r∑
ı=1

log(nı) and Υ.j =
r∑
ı=1

Υı

[b] Set b1 = −
r∑

=2
b.
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4. f (τ = σ−2|.) is given by (1.8) with µı = b0 + aı + b + log(nı).

5. f (Υı|.) is given by (1.9) with µı = b0 + aı + b + log(nı).

6. [a]

f (b∗ |.) ∝ exp

(
b∗n.j − n..log(

r∑
k=1

eb
∗
k)− 0.5b∗2 /σ2

b∗

)
,  = 2, . . . , r, (1.13)

where n.j =
r∑
ı=1

nı.

[b] Set b∗1 = 0.

To obtain a sample from (1.13) we may use either Metropolis-Hastings algorithm or

Gilks and Wild (1992) adaptive rejection sampling for log-concave distributions. Both

methods provide similar convergence rates.

7. The full conditional posterior of the missing counts nı for  = r − ı + 2, . . . , r − 1,

ı = 3, . . . , r is complicated since

f (nı|.) ∝ f (Υ|b0,a, b, N )f (N |b∗)

The constraint Tı =
r∑

=1
nı reduces the above posterior to

f (nı|.) ∝ f (Υı|b0, aı, b, nı,Υır)f (Υır|b0, aı, br, nır)f (nı|b∗ , nır)f (nır|b∗r)

where nır = Tı −
r−1∑
=1

nı. Therefore,

f (nı|.) ∝
[p′]

nı

nı!

[p′r]
Ωı−nı

(Ωı − nı)!
exp (Ψı(nı) + Ψır(Ωı − nı)) (1.14)

where Ωı = Tı − ∑
k �=j,r

nık and Ψı(nı) = − 1
2σ2 (Υı − b0 − aı − b − log(nı))

2.

We sample from f (nı|.) by using the following Metropolis-Hastings step. Propose

missing n′
ı and n′

ır = Ωı − n′
ı, with ı = 3, . . . , r and  = r − ı+ 2, . . . , r − 1 from

Binomial(p′′ ,Ωı), p′′ =
p′

p′ + p′r
= (1 + exp(b∗r − b∗ ))

−1.

Accept the proposed move with probability

a = min{1, exp(Ψı(n
′
ı) + Ψır(Ωı − n′

ı)−Ψı(nı)−Ψır(Ωı − nı))}. (1.15)
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1.4.6.3 Computations for Model 3

The dynamic model described in Section 1.4.3.3 is an extension of model of Section 1.4.3.1

includes parameters b0,a, b, σ
−2, σ−2

ε , σ−2
ζ , where b = (b12, . . . , b1r, b22, . . . , b2r, . . . , brr). Using

Bayes theorem the posterior distribution is given by

f (b0,a, b, σ−2, σ−2
ε , σ−2

ζ ,ΥL|ΥU) ∝

∝ f (Υ|b0,a, b, σ−2)f (b0)f (a|σ−2
ζ )f (b|σ−2

ε )f (σ−2)f(σ−2
ε )f(σ−2

ζ ).

The full conditional distributions are therefore given by

1. f (b0|.) ∝ f (Υ|b0,a, b, σ−2)f (b0)

2. f (a|.) ∝ f (Υ|b0,a, b, σ−2)f (a|σ2
ζ )

3. f (b|.) ∝ f (Υ|b0,a, b, σ−2)f (b|σ2
ε)

4. f (σ−2|.) ∝ f (Υ|b0,a, b, σ−2)f (σ−2)

5. f (σ−2
ε |.) ∝ f (b|σ−2

ε )f(σ−2
ε )

6. f (σ−2
ζ |.) ∝ f (a|σ−2

ζ )f(σ−2
ζ )

7. f (ΥL|.) ∝ f (Υ|b0,a, b, σ−2)

Similar to Model 1, the conditional f (Υ|b0,a, b, σ−2) is the full likelihood assuming that

there are no missing data in the claim amount table; therefore,

f (Υ|b0,a, b, σ−2) = (2πσ2)−r
2/2exp


− 1

2σ2

r∑
ı=1

r∑
=1

[Υı − b0 − aı − bı)]
2




Thus, the resulting conditional distributions are

1.

f(b0|.) = N

(
Υ.. − r2ā− r2b̄

r2 + σ2/σ2
b0

,
σ2

r2 + σ2/σ2
b0

)
, (1.16)

where ā = r−1∑
ı aı and b̄ = r−2∑

ı bı.
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2. [a] Set a1 = 0.

[b]

f(aı|.) = N

(
Υı. − rb0 − bı. + (aı+1 + aı−1)σ

2/σ2
ζ

r + 2σ2/σ2
ζ

,
σ2

r + 2σ2/σ2
ζ

)
, ı = 2, . . . , r − 1

(1.17)

where bı. =
∑

 bı.

[c]

f(ar|.) = N

(
Υr. − rb0 − br. + ar−1σ

2/σ2
ζ

r + σ2/σ2
ζ

,
σ2

r + σ2/σ2
ζ

)
. (1.18)

3. [a] Set bı1 = 0 for ı = 1, . . . , r.

[b]

f(b1|.) = N

(
Υ1 − b0 + b2σ

2/σ2
ε

1 + σ2/σ2
ε + σ2/σ2

b1

,
σ2

1 + σ2/σ2
ε + σ2/σ2

b1

)
,  = 2, . . . , r. (1.19)

[c]

f(bı|.) = N

(
Υı − b0 − aı + (bı−1, + bı+1,)σ

2/σ2
ε

1 + 2σ2/σ2
ε

,
σ2

1 + 2σ2/σ2
ε

)
, (1.20)

for ı = 2, . . . , r − 1,  = 2, . . . , r.

[d]

f(br|.) = N

(
Υr − b0 − ar + br−1,σ

2/σ2
ε

1 + σ2/σ2
ε

,
σ2

1 + σ2/σ2
ε

)
,  = 2, . . . , r. (1.21)

4. f(τ |.) is given by equation (1.8), using µı = b0 + aı + bı.

5. f(Υı|.), for i+ j > r + 1, is given by equation (1.9) using µı = b0 + aı + bı.

6.

f(σ−2
ε |.) = G


aε + (r − 1)2/2, bε +

r∑
ı=2

r∑
=2

(bı − bı−1,)
2/2


 . (1.22)

7.

f(σ−2
ζ |.) = G

(
aζ + (r − 1)/2, bζ +

r∑
ı=2

(aı − aı−1)
2/2

)
. (1.23)
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1.4.6.4 Computations for Model 4

The first stage of Model 4 is similar to model 3 but we substitute Υı by Υ∗
ı = log[Yı] -

log[nıinfı] in all conditional distributions (1.16 - 1.21). The stage two is equivalent to the

second stage of Model 2. In more detail we have

1. f(b0|.) is given by (1.16) if we substitute Υı by Υ∗
ı.

2. [a] Set a1 = 0.

[b] f(aı|.) for ı = 2, . . . , r − 1 is given by (1.17) if we substitute Υı by Υ∗
ı.

[c] f(ar|.) is given by (1.18) if we substitute Υı by Υ∗
ı.

3. [a] Set bı1 = 0 for ı = 1, . . . , r.

[b] f(b1|.) for  = 2, . . . , r is given by (1.19) if we substitute Υı by Υ∗
ı.

[c] f(bı|.) for ı = 2, . . . , r − 1,  = 2, . . . , r is given by (1.20) if we substitute Υı by

Υ∗
ı.

[d] f(br|.) for  = 2, . . . , r is given by (1.21) if we substitute Υı by Υ∗
ı.

4. f(τ |.) is given by equation (1.8), using µı = b0 + aı + bı − log(nij).

5. f(Υı|.), for i+ j > r+1, is given by equation (1.9) using µı = b0 + aı+ bı− log(nij).

6. f(σ−2
ε |.) is given by (1.22).

7. f(σ−2
ζ |.) is given by (1.23).

8. f (b∗ |.) is given by (1.13).

9. The full conditional posterior of the missing counts f(nı|.) for  = r− ı+2, . . . , r− 1,

ı = 3, . . . , r is given by (1.14) with Ψı(nı) = −0.5σ−2[Υı − b0 − aı − bı − log(nı)]
2.

In order to achieve to achieve an optimal acceptance rate we propose a simultaneous

updating scheme of nı, bı and bır when ı = 3, . . . , r and  = r − ı + 2, . . . , r. The

corresponding joint full conditional posterior of these parameters is given by given by

an equation of type (1.14) substituting Ψı with Ψ∗
ı(nı, bı) = −0.5σ−2[Υı − b0 − aı −

bı − log(nı)]
2 − 0.5σ−2

ε [(bı − bı−1,)
2 + (bı+1, − bı,)

2].
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We used the following metropolis step. We propose candidate n′
ı, b

′
ı, n

′
ır from the

proposal densities

q(n′
ı, b

′
ı, b

′
ır|nı, bı, bır) = q(n′

ı|nı, bı, bır)q(b′ı|n′
ı, nı, bı, bır)q(b

′
ır|n′

ı, nı, bı, bır)

with

q(n′
ı|nı, bı, bır) = Binomial([1 + exp(b∗r − b∗ )]

−1,Ωı)

q(b′ı|n′
ı, nı, bı, bır) = N(bı + log(nı)− log(n′

ı), σ̄
2
ı),

q(b′ır|n′
ı, nı, bı, bır) = N(bır + log(Ωı − nı)− log(Ωı − n′

ı), σ̄
2
ır)

where σ̄2
ı and σ̄2

ır are metropolis parameters that should be calibrated appropriately

to achieve a desired acceptance rate.

Accept the proposed move with probability

α = min

{
1,

exp[Ψ∗
ı(n

′
ı, b

′
ı) + Ψ∗

ır(Ωı − n′
ı, b

′
ır)]q(bı, bır|nı, n′

ı, b
′
ı, b

′
ır)

exp[Ψ∗
ı(nı, bı) + Ψ∗

ır(Ωı − nı, bır)]q(b′ı, b′ır|n′
ı, nı, bı, bır)

}
. (1.24)


