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Abstract

In this chapter, we implement Bayesian methods in regression
models which are an essential tool in modern statistical science.
They can be used for both interpretation of social or economic
phenomena and prediction of future outcomes which is of major in-
terest in risk analysis. Possible prior specifications are described in
detail. Posterior inference is illustrated focusing on the conjugate
case. Bayesian variable selection methods for the conjugate case
are also illustrated while more advanced topics such as variable
selection using MCMC and evaluation of the structural assump-
tions is briefly discussed accompanied with references for further
reading. The chapter closes with a short discussion and conclusion.

1.1 Introduction

One of the most important elements of statistical inference is regression anal-
ysis inspired by the original work of Sir Francis Galton in the late years of
the 19th century (Stanton, 2001). Regression models can be considered as
the core of econometrics. They are frequently met in risk analysis either in
their original form or using more realistic extensions which incorporate time
dependence.

Regression models are based on the idea that a variable of major interest
(response) exists for which we wish to find a way to explain or predict its
behavior. To do so, we need to identify some external factors (explanatory
variables) which help us to achieve this aim. Here we refer to normal regres-
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sion models whose response (or equivalently the error term) is assumed to be
normal.

In this chapter, we focus on different prior distributions and the corre-
sponding posterior inference for normal regression models. Conjugate analysis
is illustrated using a simple example. Details concerning model comparison
and variable selection are also presented with emphasis given in the conjugate
case. The chapter closes with a short discussion concerning certain extensions
of the normal linear model.

1.2 The Normal Linear Model

The Usual Formulation

In normal regression models, the response variable Y is considered to be a
continuous random variable defined in the whole set of real numbers. This
response variable can be decomposed in two parts: the systematic and the
stochastic. The first refers to the part of the response that can be accurately
identified in a systematic way via explanatory variables (also called covariates
or predictors) X1,X2, . . . ,Xp which are assumed to be fixed within the model
formulation. Although categorical covariates can be incorporated in the lin-
ear predictor using dummy variables, in this chapter we focus on numerical
explanatory variables. The stochastic part refers to a random error which is
assumed to follow a normal distribution with mean zero and variance σ2 (also
called residual variance). Although σ2 is often neglected, it is of prominent
importance for each regression model since it quantifies the uncertainty (and
indirectly the precision) of our predictions. It actually refers to the variance
of Y that cannot be explained or predicted by the systematic component of
the model. Hence, assuming p covariates denoted by X1, . . . , Xp, the model
can be written as

Y = β0 + β1X1 + · · ·+ βpXp + ε with ε ∼ N(0, σ2), (1.1)

where N(μ, σ2) is the normal distribution with mean μ and variance σ2. More-
over, the βj are referred to as the regression coefficients, specifically, β0 is the
intercept or the constant term. The systematic component of the above model
formulation, given by η = β0 +

∑p
j=1 βjXj , is simply the linear combination

of the covariates and is called linear predictor. An alternative formulation is
the following

Y |X1, . . . ,Xp ∼ N(μ, σ2) with μ = β0 + β1X1 + · · · + βpXp . (1.2)

From this formulation, it is clear that the linear predictor is equal to the
expected value of the response (under the assumed model).

Although (1.1) has a straightforward interpretation since the response vari-
able is simply expressed as the sum of the linear combination of the covariates
and an error term, expression (1.2) is more general and can be used to extend
the model by simply changing the distribution of the response or the function
connecting the linear predictor and the expected value of Y .
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Note that, when a finite i.i.d. sample (yi,Xi1, . . . ,Xip) for i = 1, . . . , n of
observations (or units or subjects) is given, a subscript i is added in (1.1) and
(1.2) to denote that the corresponding expressions hold for every individual i
of the sample. Hence, the model can be now written as

Yi = β0 + β1Xi1 + · · ·+ βpXip + εi with εi ∼ N(0, σ2)

or, equivalently,

Yi ∼ N(μi, σ
2) with μi = β0 + β1Xi1 + · · ·+ βpXip

for i = 1, . . . , n .

The induced model likelihood follows

f(y|β, σ2,X) = (2πσ2)−n/2 exp

⎛⎝− 1
2σ2

n∑
i=1

(
yi − β0 −

p∑
j=1

βjXij

)2

⎞⎠ ,

where β = (β0, β1, . . . , βp) is the vector of model coefficients, y = (y1, . . . , yn)
is the vector of the observed response data while the matrix X is the data
matrix of dimension n× (p+ 1) with the ith row corresponding to the values
of ith observation given by (1,Xi1,Xi2, . . . ,Xip).

Multivariate Representation

The above model can be compactly rewritten using a multivariate normal
distribution. This representation simplifies (especially in the conjugate case)
the computations involved in the posterior distribution. We write

y|β, σ2,X ∼ Nn(Xβ, σ2In) (1.3)

where Nd(μ,Σ) is the d-dimensional normal distribution with mean μ and
variance-covariance matrix equal toΣ. Note that the intercept β0, correspond-
ing to the column of 1’s in X, can be omitted if this is necessary without any
implication to the multivariate representation. Excluding the intercept from
the model assumes that the expected value of Y is equal to zero when all
covariates are equal to zero. In the following we denote by p the number of
columns of X to include both cases with or without the intercept correspond-
ing to p = p + 1 and p = p, respectively. The likelihood can be now written
as

f(y|β, σ2,X) = (2πσ2)−n/2 exp
(
− 1
2σ2

(y −Xβ)T (y −Xβ)
)

. (1.4)

Maximum Likelihood Estimation for Regression Models

Here we present the maximum likelihood estimates (MLE) which will be used
for comparison reasons with corresponding Bayesian outcomes. A straight-
forward calculation shows that the global maximum is given by

β̂ = (XT X)−1XT y and σ̂2 =
1
n
(y −Xβ̂)T (y −Xβ̂). (1.5)
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Note that β̂ is an unbiased estimate of β while σ̂2 is only approximately
unbiased estimate of σ2. Alternatively, we may write σ̂2 = 1

n

∑n
i=1 e2

i =
1
n

∑n
i=1(yi − ŷi)2; where ŷi = β̂0 +

∑p
j=1 β̂jXij is the fitted or predicted value

for yi, and ei := yi − ŷi is the residual value which can be considered as an
observed value for the error term εi. The covariance matrix of β̂ is given by
Covar(β̂|σ2,X) = (XT X)−1σ2 and is estimated by

̂Covar(β̂|σ2,X) = (XT X)−1σ̂2 . (1.6)

In order to be able to obtain a unique MLE solution for a given set of
data, we need to have det

(
XT X

) �= 0 which ensures the existence of the
inverse matrix of XT X involved in β̂. Therefore X must be of full rank (i.e.
rank(X)= p) and p < n. In the case of n = p we may obtain estimates for β
but not for σ2 which is not identifiable. When a covariate can be expressed
as the linear combination of the remaining covariates then no simple MLE
solution can be obtained. Even in the case that one covariate is not an exact
linear function of the remaining ones but can be efficiently described via a
regression model with very low residual variance (i.e. det

(
XT X

)
is close

to zero) we will still face problems regarding estimation of model parameters
since the variance of the MLEs given in (1.6) will be inflated and thus β̂ will
be inaccurate and unstable. This situation is described in the literature as
multi-collinearity problem.

Parameter Interpretation

One reason for the popularity of normal regression models is their straightfor-
ward interpretation of parameters. The effect of each covariate Xj is measured
by βj which accounts the expected increase of Y when Xj increases by one unit
and the rest of covariates remain the same. The sign of βj is also important
since it defines whether the effect of Xj is positive or negative on Y . Positive
association implies that changes of the explanatory variable Xj cause changes
of the same direction for variable Y while negative association implies that
changes of Xj cause changes of the opposite direction for Y .

The constant β0 corresponds to the expected value of Y when all covari-
ates are equal to zero. This often has no meaningful interpretation since the
corresponding zero covariate values may be unrealistic in practice. Usually
the constant term is included in the model unless practice supports setting it
equal to zero or if it is simply not significant. A meaningful interpretation of
β0 can be obtained if we center each covariate Xj to its sample mean Xj . In
this case, the constant represents the expected value of Y for an individual
with all covariates equal to the sample means i.e. it provides the expected
response value for a typical individual of the sample.

Finally, it is of major interest to discriminate zero from non-zero coefficients
which correspond to unimportant and important (respectively) determinants
of Y . This is related to the variable selection problem which is a flourishing
area of research, especially during the last decade, due to the large number
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of available covariates. The size of available data has been tremendously in-
creased over the last years due to the increasing storing and computational
capabilities of personal computers and problems arising in sciences such as
genetics. In Bayesian theory, posterior model probabilities, odds and Bayes
factors are used to identify which effects should be removed or not from the
model (for a concise review see Kass and Raftery, 1995) in contrast to the
usual stepwise procedures using significance tests and p-values. Due to prob-
lems in the prior specification and in the computation of posterior model odds,
alternative approaches have been also proposed in the literature such as the
deviance information criterion (DIC), see Spiegelhalter et al. (2002), and the
use of posterior p-values (see for example in Bayarri and Berger, 2000). More
details concerning variable selection are provided in later in this chapter.

1.3 Prior Distributions for Normal Regression Mod-

els

1.3.1 The Conjugate Normal–Inverse Gamma Prior

The conjugate prior for [β, σ2] in the normal regression model is the normal–
inverse gamma distribution which is specified as

β|σ2,X ∼ Np(μβ,V σ2) and σ2|X ∼ IG(a, b), a, b > 0; (1.7)

where V is a p × p positive definite symmetric matrix controlling the prior
variances and covariances of β given σ2 and IG(a, b) is the inverse gamma
distribution with parameters a, b. Under this setup, the precision parameter
τ = σ−2, which is frequently used in Bayesian inference, is assumed to a-priori
follow the gamma distribution with mean a/b and variance a/b2. Among the
four hyper parameters, a, b,μβ and V , the latter is the most difficult to elicit.
This motivates Zellner’s g-prior which is discussed next. However, there are
methods to elicit V when prior information is available; see the Chapter of A.
Daneshkhah in this book for further discussion.

Zellner’s g-prior

As already mentioned, the specification of V is not an easy task. Therefore,
a special case of (1.7) is the popular Zellner’s (1986) g-prior given by

β|σ2,X ∼ Np(μβ , g(XT X)−1σ2) and f(σ2|X) ∝ 1/σ2 . (1.8)

This results from (1.7) if we set V = g(XT X)−1 and a → 0, b → 0. Note
that now V has the same structure as the variance-covariance matrix of the
ML estimator for β, see eq. (1.6). Although the limiting case of a→ 0, b → 0
actually refers to the original setup of Zellner, reference to this prior is also
given when the inverse gamma prior for σ2 (with non-zero parameters) is used.
In the case (1.8) the prior for σ2 is improper and provides no information on
the error variance; see also Jeffreys prior which follows.
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The parameter g determines the amount of prior information relative to
the empirical data. The information introduced by the prior can be measured
by the ratio n/g and can be considered in terms of a effective sample size of
the prior. Hence for g = n, the prior information will be equivalent to adding
one observation in our analysis (i.e. 1/(n+1) of the posterior distribution will
be due to the prior) while for g = 1, the prior information will be equivalent
to adding n observations in our analysis (i.e. 50% of the posterior distribution
will be due to the prior). The default choice of g = n is usually adopted when
no information is available since it has an interpretation of adding prior infor-
mation equivalent to one data point (Kass and Wasserman, 1995; Fouskakis
et al., 2009). The prior mean of β is usually set equal to zero in order to
shrink values towards to zero especially the ones that are not important for
the model.

This prior has been widely used in practice because it considerably simpli-
fies posterior computations. Generally, it allows us for a sensible default prior
choice reducing the number of unspecified prior covariance hyperparameters
to one (i.e. only the specification of g); see Fernandez et al. (2000) for com-
parison between different values of g and Liang et al. (2008) for discussion and
extensions concerning the g-priors. Finally, another reason for its popularity
it its connection (for g = n) to the Bayesian Information Criterion (BIC) as
is described later in this chapter.

Independent Coefficients

Another example for the case where no prior information is available, is by
considering independent normal distributions, i.e. V = g Ip with g large in
order to express prior ignorance (e.g., g = 100). Hence we can simply rewrite
the prior as

βj |σ2,X ∼ N(μβj
, g σ2) for j = 0, 1, . . . , p, (1.9)

where μβj
are the components of the prior mean vector μβ.

1.3.2 The conditional conjugate Normal–Inverse Gamma Prior

Alternatively to the conjugate prior distributions described in the previous
sections, we may consider a normal prior for β as in (1.7) but independent of
σ2 i.e. β ∼ Np(μβ,Σβ) and σ2 ∼ IG(a, b). This prior is not conjugate, and
hence it is not analytically tractable. Nevertheless, this prior setup is condi-
tionally conjugate since the posterior conditional distributions f(β|σ2,y,X)
and f(σ2|β,y,X) have the same form as the prior distributions (i.e. multi-
variate normal and inverse gamma, respectively). Thus we can construct a
simple but efficient Gibbs sampling algorithm in to obtain samples from the
joint posterior distribution and accurately estimate it. The components of
β can be obtained either in a single step by sampling β from a multivariate
normal distribution or from sequential univariate steps by sampling each βj

from the corresponding conditional normal distributions.
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An even simpler prior setup, which is well known for its connection to ridge
regression, is defined by assuming a priori independence on all parameters, i.e.

f(β, τ) =
p∏

j=0

f(βj)f(τ),

βj ∼ N(μβj
, gj) for j = 0, . . . , p and (1.10)

and the usual inverse gamma prior for σ2.

1.3.3 Non Conjugate Priors

Additional types of priors for β have been proposed in the related literature.
For example, the Student t distribution or the Cauchy distribution for β can be
used instead of the normal prior, but obvious differences in terms of posterior
inference are seldom observed when no prior information is available.

Cauchy is introduced in hypothesis testing or model comparison literature
by Zellner and Siow (1980). Jeffreys (1961) originally proposed Cauchy as a
better alternative to normal priors since this prior satisfies certain consistency
issues concerning model comparison and hypothesis testing. This prior setup
has never become popular due to the analytical computation of Zellner’s g-
prior. Another interesting feature of the Cauchy distribution is that it can be
written as a scale mixture of normal distributions with g following an inverse
gamma distribution with parameters 1/2 and n/2. This gave the motivation
for Liang et al. (2008) to develop mixtures of g priors which are useful in
variable selection problems.

Lately, the double exponential (DE) prior is discussed in the literature since
it is directly connected with the LASSO method (Tibshirani, 1996). Hence we
may use

βj ∼ DE

(
0,
1
λ

)
, for j = 1, . . . , p , (1.11)

with λ > 0 and density f(βj|λ) = λ
2 exp(−λ|βj |). The shrinkage parameter

λ controls the prior variance which is equal to 2/λ2. The level of shrinkage
towards zero of the posterior distribution of βj is specified via λ since the prior
distribution becomes more and more informative as λ increases.

Generally, the posterior distribution is not analytically available under this
prior and MCMC must be used. Introducing the regression error variance σ2

in the variance of the double exponential prior results in analytically tractable
results which are discussed in Hans (2009). The use of different shrinkage
parameters λj ’s and extending the hyrerchical structure of the model using
hyperpriors of the shinkage parameters is currently under investigation by
Lykou et al. (2010).

1.3.4 Jeffreys’ Prior

Jeffreys’ (1961) rule for obtaining flat non-informative prior distribution is well
known in Bayesian inference, see Chapter 1 of Robert and Rousseau in this
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book. The following prior distributions are frequently used

f(β, σ2) ∝ 1/σ2 or f(β, σ) ∝ 1/σ or f(β, τ) ∝ 1/τ

derived by independent a-priori treatment of the coefficients β (directly asso-
ciated with the mean of the response data) and dispersion parameters σ2 (or
σ or τ) (see Bernardo and Smith, 1994, p.361). Jeffreys’ rule is implemented
here separately for β and σ2 and the above prior is obtained by multiplying the
two independent priors (see also in p. 328–330 of Bernardo and Smith, 1994).

1.4 General posterior inference for the normal lin-

ear model

Parameter Estimation

Inference for the model parameters β and σ2 is based on the joint posterior
distribution f(β, σ2|y,X) or on the corresponding marginals f(β|y,X) and
f(σ2|y,X). Point estimates can be obtained by measures of central tendency
such as the posterior mean, median or mode. Although the posterior mean
is frequently used as a point estimate, this might not be the optimal choice
when the posterior distribution is skewed and in such cases, the posterior me-
dian is to be preferred. In normal regression models, the posterior distribution
f(β|y,X) is usually symmetric (unless the prior is highly skewed and informa-
tive) due to the shape of the likelihood. On the other hand, due to difficulties
in the analytical calculation of the posterior median, the posterior mean of
σ2 is often also reported as point estimate although the error variance σ2 is
skewed (for example the distribution is an inverse gamma in the conjugate
case).

For conjugate prior (1.7), the posterior distribution is of a known form
and the descriptive measures are analytically available. For the non-conjugate
cases, Markov chain Monte Carlo (MCMC) methodologies are used to obtain
a sample (

β(1), σ2(1)
)
,
(
β(2), σ2(2)

)
, . . . ,

(
β(T ), σ2(T )

)
(1.12)

from the posterior distribution of model parameters (β, σ2) . Therefore from
an MCMC sample we can estimate the posterior measures of interest; for more
details see in Ntzoufras (2009, Chap. 2).

Interval estimates are obtained by the so called credible intervals which can
be considered as the Bayesian analogous to the confidence intervals. Credible
intervals have a direct probability interpretation since the posterior probability
that the parameter of interest lies within this interval is equal to 1− a. When
the posterior distribution is estimated using MCMC, then the appropriate
credible intervals are estimated by the sample a/2 and 1 − a/2 quantiles cal-
culated by the posterior sample (1.12). More information on credible intervals
can be found in Chapter 1 of Robert and Rousseau in this volume.
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Evaluation of Important Covariate Effects

As we have already mentioned in the previous section, tracing “good” covari-
ates is an important issue especially when the number of potential covariates
is large. In an initial rough analysis, we can examine the importance of each
covariate by looking at the posterior distribution of βj . Posterior distributions
far away from the zero indicate an important contribution of Xj on the pre-
diction of the response variable. Within this approach, we can calculate the
following posterior tail-area probabilities:

π0
j = min

{
P (βj < 0|y), P (βj > 0|y)

}
. (1.13)

When zero lies at the center of the posterior distribution, then π0
j will be

close to 1
2 indicating that there is no clear positive or negative effect of Xj on

Y . When this probability is low (e.g., lower than 2.5%, 1%, or 0.5%), then
we may conclude positive or negative association depending on the sign of
the posterior location summaries. This procedure is vulnerable to problems
caused by collinear variables causing inflation of the dispersion of the posterior
distribution. Therefore important variables might not be traced in some cases.
Such problems can be avoided if formal Bayesian variable selection methods
are used instead. Nevertheless, such analysis can offer a first tool for tracing
important variables. Detailed description of formal model comparison and
evaluation based on posterior model odds and probabilities is given later in
this Chapter.

Fitted values and predictions

The estimated expected values of Y are considered as the fitted values of the
model under consideration. These expected values are given by the linear pre-
dictor μ = Xβ (see eq. 1.3) and can be described by the posterior distribution
f(μ|y,X). The posterior means E(μ|y,X) and the corresponding credible
intervals can be used to graphically compare them with the observed values y
and by this way also assess the quality of the model fit.

In the Bayesian approach predictions are solely based on the (posterior)
predictive distribution f(ynew|y,X,Xnew) in contrast to the fitted values ŷi

used in the classical approach; where ynew are the new (future) response values
(of size nnew) with explanatory variable values given by the (new) data matrix
Xnew (of dimension nnew × p). This predictive distribution is defined as

f(ynew|y,X,Xnew) =
∫

f(ynew|β, σ2,Xnew)f(β, σ2|y,X)dβdσ2, (1.14)

where f(β, σ2|y,X) is the joint posterior distribution of β and σ2 while
f(ynew|β, σ2,Xnew) is the model likelihood evaluated at the new response
values ynew with design matrix Xnew and, in regression models, is a multi-
variate normal density given by (1.3).

In the case that the predictive distribution is not analytically tractable,
we can easily generate a random sample y

(t)
new from this distribution when a
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posterior sample of the model parameters (β(t), σ2(t); t = 1, . . . , T ) is already
available. We simply need to

• sample y
(t)
new from N

(
Xnewβ(t), Innewσ2(t)

)
for t = 1, 2, . . . , T .

Residual values

Residual values can be simply obtained by e = y −Xβ while standardized
residuals by es = e/σ. Posterior samples of the residuals can be calculated
using Monte Carlo or MCMC methods by setting e(t) = y − Xβ(t) for all
t = 1, 2, . . . , T . Classical residual plots can be reproduced using posterior
means of each residual. Other residual based statistics can be used to trace
outliers or check model assumptions; see Spiegelhalter et al. (1996, pp. 40–47)
and Ntzoufras (2009, Chapter 10) for more details.

1.5 Posterior Analysis Using Conjugate Priors

Here we adopt the conjugate multivariate normal–inverse gamma prior given in
(1.7) and investigate the corresponding posterior distribution. We are mainly
presenting results without providing computational details.

1.5.1 The General Normal–Inverse Gamma Prior Setup

The multivariate normal–inverse gamma prior distribution (1.7) is conjugate
to the normal regression likelihood and will be denoted as

β, σ2 ∼ NIG(μβ,V , a, b).

The resulting posterior is also a normal–inverse gamma,

β, σ2|y,X ∼ NIG(β̃, Σ̃, ã, b̃),

or, more explicitly, β|σ2,y,X ∼ Np(β̃, Σ̃σ2) and σ2|y,X ∼ IG(ã, b̃) with
parameters

β̃ = Σ̃
(
XT y + V −1μβ

)
, Σ̃ =

(
XT X + V −1

)−1
, (1.15)

ã =
n

2
+ a and b̃ =

SS
2
+ b (1.16)

with SS = yT y − β̃
T
Σ̃
−1

β̃ + μT
β V −1μβ.

The posterior mean β̃ can be expressed as the weighted average of the prior
mean μβ and the maximum likelihood estimate β̂ given in (1.5)

β̃ = Wβ̂ + (Ip −W )μβ with W =
(
XT X + V −1

)−1
XT X.
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Using more algebra we can obtain the elegant expression of Atkinson (1978)
for the posterior sum of squares given by

SS = RSS +
(
β̂ − μβ

)T [ (
XT X

)−1
+ V

]−1(
β̂ − μβ

)
,

where

RSS =
(
y−Xβ̂

)T (
y−Xβ̂

)
= yT y−β̂

T
XT Xβ̂ = yT

(
I−X(XT X)−1XT

)
y

is the residual sum of squares in classical regression analysis. This expression
is useful because it gives insight concerning the meaning of SS, which is equal
to the traditional sum of squares and a measure of distance between the MLEs
and the prior mean.

By integrating out σ2, we obtain the marginal posterior distribution of β

as a multivariate Student t distribution with parameters β̃, Σ̃(SS+2b)/(n+
2a) and n+ 2a degrees of freedom. The density of a d–dimensional Student
t distribution MStd(μ,Σ, ν) is in general defined for a variable y as

fStd
(y;μ,Σ, ν) =

Γ
(

ν+d
2

)
Γ
(

ν
2

)
(ν π)d/2

det(Σ)−1/2

[
1 +

1
ν
(y − μ)T Σ−1(y − μ)

]−(ν+d)/2

(1.17)
with mean E(Y ) = μ (for ν > 1) and variance V (Y ) = Σ ν

ν−2 (for ν > 2). The
marginal posterior distribution of σ2 is simply an inverse gamma distribution
with the parameters ã and b̃ given by (1.16). Hence, summarizing, we have
that

β|y,X ∼ MStp
(
β̃,

SS + 2b
n+ 2a

Σ̃, n+ 2a
)

and σ2|y,X ∼ IG
(
ã, b̃

)
.

We often focus on the marginal posterior distributions f(βj |y,X), j = 0, ..., p,
which is univariate Student t distribution with

βj |y,X ∼ MSt1
(
β̃j ,

SS + 2b
n+ 2a

Σ̃jj, n+ 2a
)

following Nadarajah and Dey (2005, eq. 17, p.156) with βj expressed as βj =
Δjβ and Δj is a indicator vector with j element equal to one and all other
values equal to zero. Note that Y ∼ MSt1(μ, σ2, ν) is a non central scaled
Student t distribution which can be written as a linear function, Y = μ+ σT,
of a standard Student t random variable T with ν degrees of freedom.

From the above, we may report the posterior mean, standard deviation
and 95% credible intervals (usually obtained by 2.5% and 97.5% posterior
quantilies for simplicity and convenience) for each coefficient βj , the error
variance σ2 and the corresponding standard deviation σ. A summary of these
quantities is provided in Table 1.1. Note that the relation σ =

√
σ2 can be

used to calculate posterior quantiles of σ from the corresponding quantiles of
σ2 but it cannot be used to directly derive the posterior mean or variance of
σ and hence the corresponding integrals must be calculated analytically.

Predictions are based on the predictive distribution f(ynew|y,X ,Xnew) as
defined in (1.14); where ynew are the future (to be predicted) data under the
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Table 1.1: Equations for typical posterior summaries in the conjugate case

Posterior Summaries
Model
Parameter Mean Variance q-th Quantile

βj β̃j
b̃

ã− 1
Σ̃jj

∗ β̃j + t2ã,q

√
b̃

ã
Σ̃jj

∗∗

σ2 b̃

ã− 1
†

( b̃

ã− 1

)2 1
ã− 2

‡ 1/Γã, b̃; 1−q

σ b̃1/2Γ(ã− 1/2)
Γ(ã)

†† b̃

ã− 1
− b̃

(Γ(ã− 1/2)
Γ(ã)

)2 † 1/
√
Γã, b̃; 1−q

β̃ and Σ̃ are given by (1.15); ã and b̃ are given by (1.16)
∗ Σ̃jk is the jth row and kth column element of matrix Σ̃ given by (1.15)
∗∗ tν; q: q quantile of the Student t distribution with ν degrees of freedom
† for ã > 1 ⇔ n > 2− 2a; ‡ for ã > 2 ⇔ n > 4− 2a ; †† for ã > 1/2 ⇔ n > 1− 2a

design matrix Xnew. The resulting predictive distribution is a multivariate
Student t distribution with parameters

Y new|y,X,Xnew ∼ MStnnew

(
Xnewβ̃,

SS + 2b
n+ 2a

(
Innew +XnewΣ̃XT

new

)
, 2ã

)
where nnew is the size of the future data ynew. For the case a, b → 0, the
posterior parameters of the inverse gamma now simplify to ã = n/2 and
b̃ = SS/2.

1.5.2 Zellner’s g-Prior Setup

For the Zellner’s g-prior, we substitute V = g(XT X)−1 resulting in

β, σ2|y,X ∼ NIG
(

wβ̂ + (1− w)μβ, w(XT X)−1, ã, b̃
)
,

with weight w = g/(g + 1). The parameters ã and b̃ have similar definitions
as in (1.16) but now the posterior sum of squares SS simplifies to

SS = RSS +
1

g + 1
(
β̂ − μβ

)T
XT X

(
β̂ −μβ

)
.

If we additionally set the prior mean equal to zero, this further simplifies to

SS = yT
(
I − wX(XT X)−1XT

)
y. (1.18)

The marginal posterior distributions are then given by

β|y, X ∼ MStp
(
wβ̂, w(XT X)−1σ̃2, n

)
and σ2|y, X ∼ IG

(
n/2, SS/2

)
,

where σ̃2 = SS/n tends to σ̂2 = RSS/n for large n or g. Finally, the predictive
distribution can be expressed as

Y new|y, X, Xnew ∼ MStnnew

(
wXnewβ̂,

(
Innew + wXnew(XT X)−1XT

new

)
σ̃2, n

)
.
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1.5.3 Jeffreys’ Prior

The resulting posterior distribution under Jeffreys’ prior is also a normal in-
verse gamma distribution, NIG(β̃, Σ̃, ã, b̃), with parameters obtained by (1.15)
and (1.16) if we set V −1 = 0, a = −p/2 and b = 0. Using the above values,
the posterior distribution is now given by

β, σ2|y,X ∼ NIG
(
β̂, (XT X)−1, n−p

2 , RSS
2

)
while the marginals and the predictive distributions will be given by

β|y,X ∼ MStp
(
β̂, (XT X)−1σ̂2

U , n− p
)
, σ2|y,X ∼ IG

(
n−p

2 , RSS
2

)
.

and

Y new|y, X, Xnew ∼ MStnnew

(
Xnewβ̂,

(
Innew +Xnew(XT X)−1XT

new

)
σ̂2

U , n− p
)

,

where σ̂2
U = RSS

n−p is the classical unbiased estimator of σ2.

1.5.4 An Illustrative Example from Operational Risk

The following data are taken from Mun (2007) [also see in Mun (2006)] and
are monthly key risk indicators of a bank for a period of 50 months. The
aim here is to assess how the monthly losses (expressed in million dollars) are
affected by the following explanatory variables

• X1: Cycle time and Timeliness of Transactions

• X2: Transaction Volume

• X3: Hiring and Training Costs

• X4: Customer Satisfaction index

• X5: IT Network Downtime

We start our analysis by presenting results for the linear model using the
following three priors

1. Independent conjugate priors (1.9) with μβj
= 0 for all j = 0, 1, . . . , p,

g = n = 50 and a = b = 0.01,

2. Zellner’s g-prior with μβ = 0, g = n = 50 and a = b = 0.01,

3. Jeffreys’ prior.

The resulting posterior summaries are presented in Table 1.2. Obviously, the
posterior statistics for all three prior setups are similar indicating that they
introduce only low prior information to our analysis.

The tail-area probabilities were calculated using equation (1.13). These
probabilities are low for the variables “Volume” and “Costs” (X2 and X3)
indicating nonzero effects. Although this is not a formal Bayesian evaluation
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Table 1.2: Posterior summaries [mean ± standard deviation (tail-area proba-
bility of zero)] for the prior setups 1–3 using the original variables

Prior Setup
Parameter Zellner’s g = 50 Independent g = 50 Jeffreys’
β0 56.82 ± 111.42 (0.30) 57.36 ± 105.82 (0.29) 57.96 ± 114.10 (0.30)
β1 × 103 -3.47 ± 3.61 (0.16) -3.54 ± 3.44 (0.14) -3.54 ± 3.69 (0.16)
β2 × 10 4.55 ± 2.60 (0.04) 4.65 ± 2.48 (0.03) 4.64 ± 2.66 (0.04) *
β3 24.74 ± 14.46 (0.04) 25.22 ± 13.80 (0.03) 25.24 ± 14.81 (0.04) *
β4 × 103 -8.40 ± 104.02 (0.47) -8.71 ± 99.28 (0.46) -8.56 ± 106.52 (0.47)
β5 16.23 ± 15.16 (0.13) 16.62 ± 14.42 (0.12) 16.56 ± 15.52 (0.13)
σ2 22971.38± 4788.82 20528.11± 4279.48 23468.46± 5247.71
σ 150.78± 15.42 142.53± 14.58 152.29± 16.66
∗ Indicates coefficients with tail-area probability between 2.5% and 5%.
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Figure 1.1: Plots for residual values evaluated at the posterior mean of β
where it is evident that the assumption of normality is violated.

of the importance of each covariate, this is a first indication that these two
covariates may be important determinants of “monthly impact losses”.

A quick look at the residual values evaluated at the posterior mean (see Fig-
ure 1.1) provide indications that the assumption of normality may be violated.
This is actually usual in financial data which are frequently highly skewed (as
the data of this example). For this reason, we may consider the logarithmic
transformations of the original data in order to correct for deviations from
the regression assumptions such as normality and homoscedasticity of errors
or linearity of effects. In the following we proceed presenting results on the
log-transformed data which is a usual practice in financial and operational
risk data. In this example, this transformation improved the corresponding
picture of the residual values (it is not included here to save space).

Posterior summaries for the three prior setups (which are also considered
for the original data) are presented in Table 1.3 while the 95% credible in-
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tervals are depicted in Figure 1.2. A first comment is that now the posterior
summaries of the three prior setup provide different estimates which is an
indication that the choice of g = 50 for the Zellner’s and the independence
prior may be informative for the logarithmic data. More specifically, for Zell-
ner’s g-prior the posterior means of β are similar to those of Jeffreys’ prior.
In contrast, these priors yield different results for the standard deviations.
Major differences are observed in the posterior means of the error variance
which is four times the corresponding one obtained under the Jeffreys’ prior.
Moreover, if in Zellner’s g-prior we consider the maximum likelihood estimate
as the prior mean of the model coefficients, i.e. μβ = β̂, then the posterior
results are the same as in Jeffreys’ prior (these results are not presented in
Table 1.3 to save some space). Although this approach is not fully Bayesian
because we use data to specify a hyper parameter (here, the prior mean), it
is frequently used in practice as a low information prior since it adds minimal
information (equal to one datapoint in the case of g = n) to our posterior
analysis. On the other hand, for the independent prior we observe differences
in the posterior means of model coefficients β from the corresponding ones
when Jeffreys’ prior is used. For a comparison of the 95% credible intervals
see Figure 1.2.

Table 1.3: Posterior summaries [mean ± standard deviation (tail-area proba-
bility of zero)] for the prior setups 1–3 using the log-transformed data.

Prior Setup
Zellner’s g = 50 Independent g = 50 Jeffreys’

β0 5.565 ± 5.815 (0.16) 3.201 ± 2.200 (0.07)† 5.676 ± 3.087 (0.03)∗

β1 -0.442 ± 0.535 (0.20) -0.241 ± 0.215 (0.12) -0.450 ± 0.284 (0.05)∗

β2 0.543 ± 0.438 (0.10) 0.676 ± 0.198 (0.00)∗∗∗ 0.554 ± 0.232 (0.01)∗∗∗

β3 0.711 ± 0.511 (0.08)† 0.529 ± 0.208 (0.01)∗∗∗ 0.725 ± 0.271 (0.00)∗∗∗

β4 0.008 ± 0.133 (0.47) -0.015 ± 0.065 (0.41) 0.008 ± 0.071 (0.45)
β5 0.189 ± 0.533 (0.36) 0.261 ± 0.263 (0.15) 0.193 ± 0.283 (0.24)
σ2 0.860 ± 0.179 0.215 ± 0.045 0.236 ± 0.053
σ 0.923 ± 0.094 0.461 ± 0.047 0.483 ± 0.053
Symbols indicate coefficients with tail-area probability between:
∗∗∗less than 1%; ∗2.5% and 5%; †5% and 10%.

The fact that the Zellner’s g-prior is informative for the choice of g =
n = 50 is also depicted in Figure 1.3 where we observe that the credible
intervals of β are stabilized only for g ≥ 5n. The effect of the prior on the
posterior distribution is even more evident for the error variance (and standard
deviation) which are stabilized only for g ≥ 30n.

Based on the posterior means of the Jeffreys’ prior (which is considered
here as the less informative prior) we may write our model using the following
expression

log(Impact losses)= 5.67−0.45 log(Cycle) + 0.55 log(Volume) + 0.72 log(Costs)
+0.08 log(Customer Satisfaction) + 0.193 log(IT) + ε

with ε ∼ N(0, 0.4832).
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The interpretation of the model coefficients here is more complicated since
the effects are actually multiplicative. Detailed description of the interpreta-
tion of model coefficients is available in the electronic Appendix of this chapter
available on the authors webpage.

Finally, from the tail-area probabilities (≤ 0.01) in Jeffreys’ prior setup, we
can see that the log-transformed variables “Transaction Volume” and “Costs”
(X2 and X3) are possibly significant covariates. A similar conclusion can be
drawn for the constant β0 and the coefficient of the log-tranformed “Cycle
Time” (X1) with tail-area probabilities within 2.5% − 5%. Finally, the pos-
terior distributions of the coefficients for “Customer Satisfaction Index” and
“IT Network Downtime” variables do not seem to differ from zero indicating
that may be irelevant for the model. Note that the corresponding results for
the Zellner’s g-prior are different here since (as we have seen) this prior is in-
formative and the posterior standard errors are much wider than in the case of
Jeffreys’ prior which is considered as noninformative. More formal approach of
Bayesian variable selection and comparison is presented later in this Chapter.

1.6 Posterior Analysis Using MCMC

If a non-conjugate prior is selected, then the posterior distribution may not
be tractable. In such cases, MCMC methods can be used to obtain a sample
(β(t), σ2(t)) of the model parameters (β, σ2) and estimate the posterior distri-
bution using this sample. If the conditional conjugate prior is selected, then a
Gibbs sampler can be used to obtain the posterior sample by generating values
from the conditional posterior distributions which are also normal and inverse
gamma for parameters β and σ2 respectively. In all other cases, Metropolis-
Hastings algorithm or Metropolis-within-Gibbs sampler can be used instead.
The proposal distributions can be built from the posterior distributions ob-
tained in the conjugate case. Extensive details of the use of MCMC methods
can be found in the Chapter 1 by and Rousseau in this volume and in Gilks
et al. (1996). Moreover, WinBUGS software (Spiegelhalter et al., 2003) can
be used to generate samples (using MCMC) from the posterior distribution
of normal (or even more complicated) models; for details and extensive WiN-
BUGS illustations of normal models, see in Ntzoufras (2009, Chap. 5 & 6).

1.7 Bayesian Variable Selection for the Normal Model

1.7.1 A Short Introduction to Bayesian Variable Selection

Posterior model probabilities and weights

In Bayesian paradigm, comparison and selection between a set of models
m∈M is performed via the posterior model probabilities or weights f(m|y)
given by

f(m|y) = f(y|m)f(m)∑
m′∈M f(y|m′)f(m′)

(1.19)
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where f(m) is the prior model probability (or weight), which has to be de-
termined by the experimenter or risk manager, and f(y|m) is the marginal
likelihood of model m given by

f(y|m) =
∫ ∫

f(y|βm, σ2
m,m)f(βm, σ2

m|m)dβmdσ2 (1.20)

in the normal linear regression model, i.e. it is the integral of the likelihood of
model m over the prior distribution of this model. Hence, the marginal model
likelihood does not depend on the model parameters, implying that parameter
uncertainty for each model is accounted for. The subscript m in the model
parameters denotes the corresponding model in which they are defined. To
simplify things, we may assume the same error variance σ2 (attached with the
same prior) for all models under consideration.

Integral (1.20) is analytically tractable when the normal–inverse gamma
prior (1.7) is adopted. For other priors, numerical or MCMC methods must
be used instead.

Bayes Factor and Posterior model odds

Posterior model weights are sensitive to the number of models to be compared.
For this reason, relative posterior model probabilities (called posterior model
odds) are used for pairwise comparisons. If we wish to compare more than two
models, then we may select a reference model m0 ∈M and calculate

POk0 =
f(mk|y)
f(m0|y) =

f(y|mk)
f(y|m0)

× f(mk)
f(m0)

= Bk0 × f(mk)
f(m0)

for all mk ∈M,

(1.21)
which is said to be the posterior model odds of model mk versus model m0.
Bk0 is the Bayes factor of model mk versus model m0 defined as the ratio of
the “marginal” likelihoods f(y|mk) and f(y|m0). The Bayes factor can be
expressed as the posterior odds divided by the prior odds of two compared
models. Therefore, it quantifies the prior to posterior change of relative evi-
dence for the two compared models. Note that the posterior probabilities can
be directly obtained from posterior model odds using the expression

f(mk|y) = POk0∑
m�∈M

PO� 0
=

1∑
m�∈M

PO�k
.

Bayes factors are of utmost importance within Bayesian model compari-
son and hypothesis testing and play a role equivalent to likelihood ratios in
classical statistics. Moreover, if equal prior model probabilities are considered
(which sometimes is the default choice when no information is available), pos-
terior model odds become equal to Bayes factors. For this reason, frequently,
Bayesian model comparison is solely based on Bayes factors.

Posterior model odds PO10 (and Bayes factors B10) allow for a straightfor-
ward Bayesian model comparison and testing according to Jeffreys’ interpreta-
tion. For PO10 > 1 (or B10 > 1) we have evidence in favor of model m1 which
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is can be denoted as: negligible (“not worth than a bare mention”) if they lie
within the interval 1− 3, positive if they lie within the interval 3− 20, strong
if they take values between 20 and 150 and very strong for values greater than
150. For PO10 < 1 (or B10 < 1) we have evidence in favor of model m0 using
similar interpretation for PO01 = 1/PO10 (or B01 = 1/B10); for more details,
see Kass and Raftery (1995).

Before closing this short subsection, we should mention that an important
problem of Bayesian model comparison: marginal likelihoods and the resulting
Bayes factors are sensitive on the dispersion parameters of the priors f(βm|m).
This problem is widely known as the Lindley–Bartlett or Jeffreys paradox
(Lindley, 1957; Bartlett, 1957). Hence the specification of the prior parameters
in variable selection problems becomes a very important issue which is partially
confronted using Zellner’s g-prior setup.

Posterior Probability of Variable Inclusion

In variable selection literature, the model indicator m is usually substituted
by a vector of binary indicators γ of size p. Each γj corresponds to βj with
γj = 1 if Xj is included in the model (i.e. βj �= 0) and γj = 0 otherwise.
We usually include the constant term in all models, hence γ0 = 1 with prior
probability equal to one.

As the size of the model space is given by |M| = 2p, even a moderate
number of potential covariates results in a large number of models from which
the best one has to be selected. For example for p = 20 covariates more than
one million models have to be considered. In such cases, all posterior model
weights will be low even if a small group of models is much better than the
remaining ones. Alternatively, we may select a model based on the posterior
inclusion probabilities

f(γj = 1|y) =
∑

γ\j∈{0, 1}p−1

f(γj = 1,γ\j |y). (1.22)

In practice, this probability is the sum of posterior probabilities for all models
which include covariate Xj in their linear predictor.

Selection of Models and Covariates

Selection of a single model. If we wish to select a single “best” model
then we choose the one with the maximum posterior probability f(m|y) or
identically f(γ|y). This model is called the maximum a posteriori (MAP)
model . Alternatively, we may use the posterior variable inclusion probabilities,
to trace the median probability (MP) model, which is defined as the model with
all covariates having f(γj = 1|y) > 0.5. The MP model has better predictive
performance than the MAP model under certain conditions; for details, see
Barbieri and Berger (2004).

Reporting of a set of best models. An advantage of Bayesian model com-
parison is that we can evaluate posterior probabilities and hence also quantify
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the uncertainty concerning the best fitted models. If we wish to report a group
of best models, following the suggestions of Kass and Raftery (1995), we may
report models mk that are similar in terms of posterior evidence to the MAP
model. Hence we may restrict attention and report models with posterior
model odds POMAP,k < 3, i.e. models which have a posterior probability that
is a least 1/3 of the posterior probability of the MAP model.

Bayesian Model Averaging. In certain cases we do not wish to select a
specific model but rather want to make inference or predictions by taking into
account model uncertainty in our analysis. Hence we may obtain the model
averaged posterior density of any quantity of interest ξ by considering the
posterior distributions f(ξ|m,y) weighted by the corresponding model weights
f(m|y). The set of models we include in the model averaging procedure may
be remarkably reduced by considering only the ones with POMAP,k < 3 or
by including models with covariates having posterior inclusion probabilities
higher than 0.5.

1.7.2 Bayesian Variable Selection for the Conjugate Normal
Model

The Marginal Likelihood in the Conjugate Case

In the case that we use the conjugate prior (1.7), the marginal likelihood (1.20)
can be calculated analytically and is given by the density of a multivariate
Student t distribution,

f(y|m) = fStn

(
y ; Xmμβm

,
bm

am

(
In +XmV mXT

m

)
, 2am

)
, (1.23)

where fStd (y ; μ,Σ, ν) is the density function of a d-dimensional Student t
distribution given by (1.17). Note that in the above equation we consider
prior distribution (1.7) with a subscript m added to indicate each model. In
practice we a-priori assume that am = a and bm = b for all m ∈M.

Zellner’s g-prior and the Bayes Information Criterion (BIC)

If we use the conjugate prior (1.7) with am = bm = a for all models, prior mean
μβm

= 0 and V m = g(XT
mXm)−1 for all m, then the marginal likelihood of

model m is given by

f(y|m) = fStn

(
y ; 0, Λ−1

m , 2a
)
with Λm =

[
In −wXm

(
XT

mXm

)−1
XT

m

]
.

(1.24)
Adopting uniform prior on the model space, i.e. f(m) = 1/|M| for all models
(meaning that all models are a priory equally likely), then f(m|y) ∝ f(y|m).
Considering the logarithm of the posterior model probabilities we obtain from
(1.24)

log f(m|y) = C +
1
2
log |Λm| −

(
a+

n

2

)
log

[
2a+ yTΛmy

]
,
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with the constant being equal to C = log Γ
(
a + n/2

) − log Γ(a) − n
2 log π +

a log(2a)− log |M|.
The term yTΛmy is equal to the posterior sum of squares SSm of model

m as given by (1.18). Moreover, following Sylvester’s determinant theorem
(Kollo and von Rosen, 2005, pp. 7–8, Prop. 1.1.1) we further obtain

−2 log f(m|y) = constant +
(
2a+ n

)
log

(
2a+ SSm

)
+ pm log(g + 1).

Further considering the usual improper prior for σ2 assuming a→ 0, simplifies
the above expression to

−2 log f(m|y) = constant + n logSSm + pm log(g + 1).

Note that these posterior probabilities can be calculated without any problem
since the constant terms (in which a is involved) cancel out in (1.19). Setting
as usual, g = n, and considering that for a large sample size n SSm ≈ RSSm

we may write

−2 log f(m|y) = constant + n logRSSm + pm log(n+ 1), (1.25)

which is equivalent to the Bayes information criterion (BIC) defined as:

BIC(m) = −2 log f(y|β̂m, σ̂2,m) + pm log n = K + n logRSSm + pm log n,
(1.26)

where K is a constant term which is common for all models. BIC penalizes
the twice maximized log-likelihood by a penalty term which is equal to log n
multiplied by number of estimated parameters which stands for the model
complexity, i.e. each estimated parameter adds to BIC a penalty term equal to
log n. In the expression of the log-posterior probability (1.25) the BIC penalty
log n is naturally substituted by log(n + 1) since information equivalent to
one additional data point is inserted via the prior. Hence the Zellner’s g-prior
with g = n is closely connected to BIC (with a slight modification on the
penalty function). BIC is generally considered as a rough approximation of
the log-marginal likelihood (and hence we can obtain a rough approximation
of the log–Bayes factor) under a wide family of prior distributions; see Kass
and Wasserman (1995) and Kass and Raftery (1995) for more details.

1.7.3 The Akaike Information Criterion (AIC) and Posterior
Model Odds

The AIC statistic was introduced by Akaike (1973) as an approximation of the
expected Kullback–Leibler distance between a true model and an estimated
model. The AIC can be obtained from (1.26) by substituting log n with 2.
The penalty induced by AIC is lower than the BIC penalty for a reasonable
sample size (n > 7), and hence AIC supports less parsimonious models than
BIC.

Model weights based on AIC can be obtained for large n by the expression

f(m|y) = exp
[− 1

2AIC(m)
]∑

m′∈M exp
[− 1

2AIC(m
′)
] , (1.27)
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where AIC(m) is the AIC value for model m and is given by

AIC(m) = −2 log f(y|β̂m, σ̂2,m) + 2pm = K + n logRSSm + 2pm. (1.28)

Model weights (1.27) correspond to posterior model probabilities obtained by
the Zellner’s g-prior with g = n and prior model weights

f(m) ∝ exp
(pm

2
{
log(n+ 1)− 1

})
.

Similar arguments were used by (Burnham and Anderson, 2004) for the general
approximate case.

Since AIC can be obtained as a posterior model probability, interpretation
based on the arguments of Kass and Raftery (1995) can be used. In this lines,
Burnham and Anderson (2004) suggest that all models with an AIC difference
less than 2 to the best one should be reported as equally “good” and having
substantial support (evidence) against the remaining ones.

1.7.4 Example (continued).

In this section we present results for Bayesian model selection according to
the approaches presented for the operational risk example discussed previously
in this Chapter. We will use the log-transformed data in combination with
the conjugate prior setup. The five covariates (p = 5) result in 25 = 32
candidate models. Hence using (1.23) we can evaluate analytically the marginal
likelihoods for all models and the corresponding posterior model probabilities.
Here we present the following prior setups

Prior 1: Zellner’s g-prior (1.8) with μβ = 0 and g = n,

Prior 2: Zellner’s g-prior (1.8) with μβ = β̂ and g = n,

Prior 3: Independent normal prior setup (1.10) with prior means equal to the
maximum likelihood estimates and variances equal to the corresponding
standard errors multiplied by n (Empirical Independent Normal).

The first prior is not using any information from the response data y (i.e.
the stochastic part of the model), and for this reason can be considered as
a pure Bayesian approach. Although this choice is the most common one in
Bayesian variable selection, as we have already seen earlier in this Chapter,
for the data at hand, this prior is informative in terms of estimation of model
parameters. For this reason, we also illustrate prior setups 2 and 3 which
use information from the response data y through the MLE estimates and
their standard errors. Although these choices can be thought as empirical
Bayes approaches (since they use empirical information from data to specify
the prior), this empirical information is reduced to a minimum because it
only corresponds to one single data point. Finally, results based on BIC and
AIC are additionally provided in the same Table. The corresponding posterior
weights (1.27) are calculated for AIC while for BIC we use the same expression
substituting AIC with BIC calculated by (1.26)
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Table 1.4 provides the highest a-posteriori models for the prior setups de-
scribed above. For the first prior setup, the four highest a-posteriori models
are equivalent in terms of posterior evidence (i.e. with posterior odds, when
compared to the MAP model, is lower than 3). The best model is the one in-
cluding only the third variable (costs) while the second and the third models
also include covariates X2 or X1 (cycle time and transaction volume) addi-
tionally to X3. Finally, the fourth model includes only variable X2. The
support of four models with different covariates may imply that there is large
uncertainty about which covariates must be finally added in the model and
therefore Bayesian model averaging may be preferred. For prior setups 2 and
3, the picture is more clear since the model with all these three variables is the
MAP with posterior weight 0.67 and 0.34 respectively. For the independent
normal empirical Bayes setup, the model with covariates X2 and X3 is also
very close to the MAP model. BIC provides similar results to prior setup 3
with the posterior weights of the two best models very close but with inverse
sequence of support. Finally, AIC supports less parsimonious models than
BIC as expected.

An even more clear picture is given in Table 1.5 with the posterior inclusion
probabilities for each variable. We may summarize our finding by the following
comments

• The first covariate (cycle time) is fully supported by the 2nd prior setup
(posterior probability 0.988) but for the rest of the prior setups there is
a lot of uncertainty since the corresponding posterior probabilities range
from 0.32 to 0.72.

• The second covariate (transaction volume) has high posterior inclusion
probability (> 0.88) for all priors used except the first one (posterior
probability ∼ 0.4).

• Covariate X3 (costs) is supported in all prior setups (posterior probabil-
ity > 0.98 for all setups except for the first one which was considerably
lower and equal to 0.61).

• Covariates X4 and X5 (customer satisfaction index and IT network time)
are not important determinants of “monthly impact losses” in all setups

Generally the first prior setup supports more parsimonious models than the
rest of the setups while AIC supports less parsimonious models.

1.7.5 MCMC Based Variable Selection and Model Search Al-
gorithms

When the number of covariates p is large, the size of the model space becomes
enormous and therefore it is infeasible (or in some cases simply inefficient) to
evaluate the marginal likelihoods for all 2p models under consideration. In such
cases, MCMC methods can be used to trace best models and variables without
having to evaluate the whole model space. When the marginal likelihood is
given in closed-form as in the case of the normal linear model, one can use
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Table 1.4: Posterior model probabilities for equivalently best models (with
posterior odds < 3 when compared to the MAP model) for prior setups de-
scribed in the text using the log-transformed data.

Model Posterior
Code Marginal Posterior Odds

Prior Setup Model (m) log-likelihood Weights (MAP vs. m)
Zellner’s g-Prior1

(Zero prior mean) X3 5 -77.35 0.225 1.00
X2 +X3 7 -77.95 0.123 1.82
X1 +X3 6 -78.34 0.083 2.69
X2 3 -78.39 0.079 2.83

Zellner’s g-Prior1

(MLE prior mean) X1 +X2 +X3 8 -44.44 0.668 1.00
Empirical
Independent X1 +X2 +X3 8 -44.08 0.342 1.00
Normal2 X2 +X3 7 -44.28 0.280 1.22

Model Model Approximate Posterior
Selection Code Marginal Posterior Odds
Criterion Model (m) log-likelihood3 Weights4 (MAP vs. m)
BIC X2 +X3 7 -78.96 0.305 1.00

X1 +X2 +X3 8 -78.97 0.303 1.01
AIC X1 +X2 +X3 8 -75.15 0.308 1.00

X1 +X2 +X3 +X5 24 -75.82 0.157 1.96
X2 +X3 7 -76.10 0.119 2.58
X1 +X2 +X3 +X4 16 -76.10 0.119 2.59

1 g = n
2 βj ∼ N(β̂j , nσ̂2

βj
); β̂j are MLE estimates from the full model and σ̂βj is their

standard error
3 For BIC and AIC, the approximate log-marginal likelihoods are given by the AIC
and BIC values multiplied by −1/2. BIC and AIC values are calculated from (1.26)
and (1.28), respectively.
4 Posterior weights for AIC are calculated using (1.27). For BIC we use the same
expression substituting AIC with the corresponding BIC value.

the MCMC model composition, MC3 (Madigan and York, 1995). Variants of
MC3 were used in normal linear models by Hoeting et al. (1996), Raftery et al.
(1997) and Hoeting et al. (2002). MC3 is a simple Metropolis algorithm which
facilitates us to explore the large model spaces. Let us denote by j(m,m′) for
all m,m′ ∈M the probability of proposing model m′ given the current model
m. Then, the algorithm can be summarized by:

1. For any current modelm, we propose modelm′ with probability j(m,m′).

2. Calculate and store the marginal likelihood f(m′|y) of the proposed
model m′.
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Table 1.5: Posterior variable inclusion probabilities for the prior setups de-
scribed in the text using the log-transformed data.1

Prior Setup Model
Zellner’s g-Prior2 Empirical Selection

Prior Mean Indep. Criteria
Variable (in log scale) Zero MLE Normal3 BIC AIC
X1: Cycle time 0.317 0.988 0.579 0.539 0.718
X2: Transaction Volume 0.398 0.988 0.885 0.884 0.937
X3: Costs 0.608 0.996 0.980 0.970 0.981
X4: Customer Satisfaction Index 0.145 0.133 0.137 0.141 0.290
X5: IT Network Downtime 0.150 0.215 0.170 0.175 0.348

1 Posterior inclusion weights are calculated using (1.22) and corresponding posterior
weights (the highest posterior weights are presented in Table 1.4).
2 g = n
3 βj ∼ N(β̂j , nσ̂2

βj
); β̂j are MLE estimates from the full model and σ̂βj is their

standard error.

3. Accept the proposed model with probability

α = min
(
1,

f(m′|y)
f(m|y) ×

j(m′,m)
j(m,m′)

)
.

4. Store the current value of m as the currently visited model.

5. Repeat steps 1–4 until a sufficient number of models is visited.

Posterior model weights can be estimated by considering the marginal like-
lihoods of the visited and proposed models stored in step 2. Alternatively,
the relative frequencies of visited models obtained by the MCMC output pro-
vide accurate estimates of the posterior model weights. Gibbs versions of this
algorithm can be also adopted using γ instead of m and updating each γj

iteratively.
In the non-conjugate cases, MC3 can be still used by substituting the

marginal likelihoods with their Laplace or BIC based approximations. Further
methods have been developed over the last 20 years (for the normal model
originally but they are also used for more complicated models) including the
stochastic search variable selection of George and McCulloch (1993), the Kuo
and Mallick (1998) sampler, and the Gibbs variable selection of Dellaportas
et al. (2002). Here we should also add the reversible jump MCMC (Green,
1995), which is a general model comparison algorithm, but has been widely
used for variable selection.

MC3 can be directly implemented in the statistical computing software R
using the BMA package of Raftery et al. (2009). A more recent package which in-
corporates latest advances in the Bayesian variable selection research is the BAS
package developed by Clyde et al. (2009), which implements Bayesian model
averaging for linear models using stochastic or deterministic sampling without
replacement from the posterior distributions. The user can choose among the
simple Zellner’s g-prior and mixtures of g-priors including the Cauchy prior of
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Zellner and Siow (1980), and the prior of Liang et al. (2008). It further allows
to select between the usual uniform and the beta-binomial prior for models
under consideration.

Variable selection can be also implemented in WinBUGS. Details can be
found in Dellaportas et al. (2000), Ntzoufras (2002) and Ntzoufras (2009,
Chap. 11). The WinBUGS jump interface, recently developed by Dave Lunn,
can be also used for implementing variable selection for normal and generalized
linear models; for more details, see Lunn et al. (2005, 2006) and the manual
for this interface.

1.8 Discussion: Extending the Normal Regression
Model

The normal linear model can easily accommodate categorical covariates in its
setup by suitably defining the data matrix X using dummy variables. Gen-
erally model parameters, especially when mixed types of covariates and inter-
actions are used, must be carefully interpreted since underlying relationships
may change for different levels (or combinations) of the categorical covariates.
For a detailed description of the topic, see Chapter 6 of Ntzoufras (2009).

Econometric and financial data are highly skewed resulting in violation of
the “normality” of errors assumption which is essential for the normal regres-
sion model. Violations of this assumption can be handled by (a) transforming
the response variable or (b) changing the assumed distribution of the response
variable or (c) changing the error distribution. The first approach is the sim-
plest one and was also illustrated in the operational risk example presented
in this Chapter. Usually transforming the response variable resolves many
of the violations of the normal model. Although the normal linear model
holds for the transformed data, neither the assumed distribution for the orig-
inal response is normal nor the association between the covariates and the
response is linear. Comparison between models with transformed responses
is not straightforward and the interpretation usually becomes cumbersome.
For example, when the logarithmic transformation is used, the distribution
of the response is now log-normal while the association between the expected
values of the response and the covariates (and the error term) is not linear
but multiplicative. In the second approach, the distribution of the response is
changed which will also lead to a modified error distribution. This action does
not ensures the linear relationship between the response variable and the error
terms. Finally, changing the distribution of the error term does not affects the
linearity and may lead to more robust models if distributions with fatter tails
(such as the Student’s t distribution) or asymmetric distributions are adopted.

Another obvious extension of the normal model is achieved via the general-
ized linear models (GLM) setup introduced by McCullagh and Nelder (1989).
Interpretation of model parameters is similar but it is not solely based on ex-
pectations but in suitable transformations of the location parameter of each
distribution used to describe the response variable. In the Bayesian analysis
of GLMs, we directly work using MCMC methods since posterior distribu-
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tions are rarely conjugate. Further details concerning the Bayesian analysis of
GLMs can found in Dey et al. (2000) and Ntzoufras (2009, Chapters 7–8).

Finally, hierarchical and random effect models can be also considered as
natural extensions of the normal linear model. In these models random pa-
rameters are added in the linear predictor to incorporate additional structural
properties in the model. This structure may be used to change the response
distribution or add dependence between different values of the response vari-
ables (as for example when repeated measures for the same individuals are
collected). An excellent description of Bayesian hierarchical models can be
found in Gelman and Hill (2006) while a short introduction with simple ex-
amples is available in Chapter 9 of Ntzoufras (2009).

1.9 Conclusion

To sum up, the Bayesian paradigm is a strong tool for statistical inference.
It can be efficiently used for any type of statistical model. Here we have il-
lustrated its use to the normal linear regression model. We have presented a
variety of possible prior setups but we focus on the posterior analysis of the
conjugate case. The variable selection problem, which is an important prob-
lem in modeling, is also introduced and described in detail. An operational
risk example was used to illustrate the presented theory. A brief discussion
about the non-conjugate case was also added. The chapter closes with a short
discussion concerning certain extensions of the normal linear model.
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