

So every choice or decision is made upon **UNCERTAINTY**

STATISTICS is the Science which **QUANTIFIES UNCERTAINTY** and hence helps to decide which decision is optimal

WHAT IS STATISTICS?

And it is not just a matter of taking an umbrella or getting wet.

Sometimes involves matters of LIFE AND DEATH

WHAT IS STATISTICS?

REAL LIFE EXAMPLE [1]

- #1986: Challenger Space Shuttle exploded killing 7 astronauts.
- *The accident would have been avoided if they have done a simple Statistical analysis which indicated: HIGH PROBABILITY OF FAILURE IN LOW TEMPRETURE
- #(That day the temperature was 0 C)

WHAT IS STATISTICS?

REAL LIFE EXAMPLE [2]

₩1954: The POLIO VACCINE

Xaccine Trials were performed in 400,000 children

#Good Statistical Analysis have indicated the effectiveness of the vaccine and today POLIO is almost unknown

WHAT IS STATISTICS?

AREAS OF STATISTICS #MEDICINE #ECONOMETRICS (ECONOMICS) #MARKETING #PSYCHOMETRICS (PSYCOLOGY) #SPORTS (ATHLOMETRICS) #SOCIAL SCIENCES #ARCHAEOMETRICS (ARCHAELOGY) #AUTHOR IDENTIFICATION

WHAT IS STATISTICS?

AREAS OF STATISTICS

- #MEDICINE
 #ECONOMETRICS (ECONOMICS)
 #MARKETING
 #PSYCHOMETRICS (PSYCOLOGY)
 #SPORTS (ATHLOMETRICS)
- %SOCIAL SCIENCES
 %ARCHAEOMETRICS (ARCHAELOGY)
 %AUTHOR IDENTIFICATION

WHAT IS STATISTICS?

AREAS OF STATISTICS #QUALITY CONTROL #ELLECTION POLLS #ENVIROMENTAL MONITORING #RACIAL BIAS #LAW #PATTERN, IMAGE AND VOICE RECOGNICION

STATISTICS IS THE SCIENCE OF SCIENCES

MAIN DIVISIONS OF STATISTICS

%DATA ANALYSIS
%PROBABILITY THEORY
%MATHEMATICAL STATISTICS

WHAT IS STATISTICS?

#GOOD STATISTICAL ANALYSIS IS ALMOST IMPOSSIBLE IN DAILY LIFE
#BE CAREFUL WITH STATISTICAL STATEMENTS
#BOOK:"HOW TO LIE WITH STATISTICS"
#DON'T TRUST A STATISTICAL FINDING UNLESS IT IS REPEATED CONSISTENTLY IN LITERATURE

WHAT IS STATISTICS?

In what it follows I will try to present elements of Statistical Modelling as simple as possible.

All you need is ...

little Patience some Thought little bit of Maths

WHAT IS A STATISTICAL MODEL?

 STATISTICAL MODEL IS ANY GROUP OF MATHEMATICAL AND PROBABILISTIC EQUATIONS USED TO DESCRIBE, SUMMARIZE AND PREDICT REALITY
 USUALLY IT CONTAINS

 STOCHASTIC RELATIONSHIPS [Y~NORMAL]
 DETERMINISTIC RELATIONSHIPS [Y=Z+X]

 MOST POPULAR MODELS: GENERALISED LINEAR MODELS (GLM)

GENERALISED LINEAR MODELS

3.1. INTRODUCTION

- **3.2. DATA**
- **#3.3. THREE MAIN COMPONENTS**
- **3.4. TYPES OF GLM**
- **#3.5. GENERAL PRINCIPLES OF MODELLING**

GENERALISED LINEAR MODELS

3.1. INTRODUCTION

 #IT IS A GENERALIZATION OF THE REGRESSION MODELS
 #STARTED FROM LEGENDRE (1805) AND GAUSS (1809)

GENERALISED LINEAR MODELS

<u>3.2. DATA</u>

KRESPONSE VARIABLE (Y): also called dependent or endogenous variable
⊡Y is a random variable

#EXPLANATORY VARIABLES (X_j): Independent or Exogenous variables

 $\square X_j$ are usually assumed fixed by the experiment

GENERALISED LINEAR MODELS

3.3. THREE MAIN COMPONENTS

MODEL

#(1) RANDOM COMPONENT $\square Y_i \sim DISTRIBUTION (\underline{0})$ $\square \underline{0} : VECTOR OF MODEL PARAMETERS$ **#(2) SYSTEMATIC COMPONENT** $\square \eta_i = \beta_0 + \beta_1 X_{1i} + ... + \beta_p X_{pi}$ $\square \eta_i : LINEAR PREDICTOR OF THE$

GENERALISED LINEAR MODELS

∺(3) LINK FUNCTION

□ LINKS RANDOM COMPONENT AND LINEAR PREDICTOR □ $\square g(\underline{\theta}) = η_i = β_0 + β_1 X_{1i} + ... + β_p X_{pi}$

□USUALLY **<u>0</u>** IS THE MEAN OF Y

GENERALISED LINEAR MODELS

3.4. TYPES OF GLM: NORMAL MODEL

RANDOM COMPONENT \square Y QUANTITATIVE VARIABLE (WEIGHT) \square Y_i ~ NORMAL(μ_i , σ^2), E(Y)= μ , V(Y)= σ^2 **#** SYSTEMATIC COMPONENT: \square X_j QUANTITATIVE or QUALITATIVE **#** LINK FUNCTION \square $\mu_i = \eta_i = \beta_0 + \beta_1 X_{1i} + ... + \beta_n X_{ni}$

GENERALISED LINEAR MODELS 3.4. TYPES OF GLM: NORMAL MODEL #QUANTITATIVE X's: REGRESSION MODEL #QUALITATIVE X's: Analysis of Variance (ANOVA) Model #BOTH TYPES OF X's: Analysis of Covariance (ANCOVA) Model #All normal models are (sometimes) referred as Regression Models

GENERALISED LINEAR MODELS

3.4. TYPES OF GLM: BERNOULLI MODELS

***** RANDOM COMPONENT \bigtriangleup Y BINARY VARIABLE (0/1, e.g. die/survive) \Biggl Y_i ~ Bernoulli (p_i), E(Y)=p ***** SYSTEMATIC COMPONENT: \Biggl X_j QUANTITATIVE or QUALITATIVE ***** LINK FUNCTION \Biggl log (p_i/(1- p_i)) = η_i = β₀+β₁X_{1i}+...+ β_pX_{pi} \Biggl g(p)=logit(p)

GENERALISED LINEAR MODELS

3.4. TYPES OF GLM: BINOMIAL MODELS

***** RANDOM COMPONENT $\square Y$ # of successes in a total of n trials $\square Y_i \sim Binomial (p_i, n_i), E(Y)=np$ ***** SYSTEMATIC COMPONENT: $\square X_j$ QUANTITATIVE or QUALITATIVE ***** LINK FUNCTION $\square \log (p_i/(1-p_i)) = n_i = \beta_0 + \beta_1 X_{1i} + ... + \beta_p X_{pi}$ $\square g(p)=logit(p)$

GENERALISED LINEAR MODELS

3.4. TYPES OF GLM: BINOMIAL MODELS

\# OTHER LINK FUNCTIONS: \square g(p)=logit(p):

 \square q(p)= Φ^{-1} (p):

LOGIT FUNCTION PROBIT

FUNCTION ⊠g(p)=LOG(-LOG(1-p)) COMPLEMENTARY LOG-LOG

PRACTICAL EXAMPLES

- 4.1. EXAMPLE 1: Study of the Relationship Between Estriol and Birthweight
- 4.2. EXAMPLE 2: The case of Challenger Explosion

Statistical Modelling: An Introduction to Genaralised Linear Models

ESTIMATE THE EFFECTS USING A STATISTICAL PACKAGE: FOR EXAMPLE SPSS

Birthweight ~ Normal(μ , 14.61) Expected Birthweight= μ = 21.52 + 0.608 × Estriol_i

Note: The model holds only for range of values of ESTRIOL observed in sample

 R^2 = % of variance explained by our model = 61%

PRACTICAL EXAMPLES

Birthweight ~ Normal(μ , 14.61) Expected Birthweight= μ = 21.52 + 0.608 × Estriol_i

INTERPRETATION OF PARAMETERS

% If ESTRIOL= Mean(estriol)=17.2 => Expected Birthweight = (21.52+0.608 × 17.2) × 100= 3198 grams

 $\begin{array}{l} \mbox{Birthweight} \sim \mbox{Normal(} \ \mu, \ 14.61) \\ \mbox{Expected Birthweight} = \ \mu = \ 21.52 \ + \ 0.608 \ \times \ \mbox{Estriol}_i \end{array}$

INTERPRETATION OF PARAMETERS

If two women differ by one unit of ESTRIOL=> Expected difference of Birthweight = 0.608 × 100= 60.8 grams

Hypothesis Test: Is the effect of ESTRIOL important for the Determination of BIRTHWEIGHT?

H₀: β=0 vs. H₁: β≠0

USE Statistical Functions and p.values If p.value<0.05 the reject $\ensuremath{\text{H}_0}$

Here p.value=0.000<0.05 so reject H_0 What is H_0 ? H_0 : β =0 What does this mean? The effect of ESTRIOL level is significant for the Determination of BIRTHWEIGHT!

Statistical Modelling: An Introduction to Genaralised Linear Models

Shuttle

4.2. EXAMPLE 2

- #All crew members were killed
- Billions of Dollars were lost
- ∺The whole NASA program delayed
- **#**WHAT HAPPENED IN THE MOST AMBITIOUS AND EXPENSIVE RESEARCH PROGRAM?

PRACTICAL EXAMPLES

4.2. EXAMPLE 2

- #A Presidential Commission was appointed to determine the cause of accident
- $\ensuremath{\texttt{H}}\xspace{\mathsf{H}$
- Commission included: scientists+members of space exploration community.
- #KEY PERSON: Richard Feynman (physicist)

4.2. EXAMPLE 2

- *The commission examined the accident and the events leading to the accident
- **#**Two Volume Report: *Report of the Presidential Commission on the Space Shuttle Challenger Accident* (1986)

PRACTICAL EXAMPLES

4.2. EXAMPLE 2

BACKGROUND INFORMATION:

O-rings:

- #37-foot (11.27 m) circles made of rubber
- # designed to seal the booster sections of the rocket
 # Prevent release of hot gases produced during combustion.
- Each joint between the segments contains two Orings positioned concentric with the Solid Rocket Boosters (1 primary and 1 secondary).

4.2. EXAMPLE 2

BACKGROUND INFORMATION:

- ${\it \ensuremath{\mathbb H}}$ Each Booster contains three Primary O-rings
- In the previous 23 flights they examined the hardware for O-ring damage (one was lost in the sea)
- * The Forecasted temperature was 31 °F (-0.6 °C) while the coldest previous launch was on 53 °F (11.7 °C -ONE MAJOR MISTAKE)

PRACTICAL EXAMPLES

<u>4.2. EXAMPLE 2</u>

BACKGROUND INFORMATION:

- # THE SENSITIVITY OF O-RINGS TO TEMPRETURE WAS WELL-KNOWN!!!
- # WARM O-RING => Quickly Recover its shape after removal of compression
- ₭ COLD O-RING => Does not Recover its shape which may lead to gas leak and explosion!

4.2. EXAMPLE 2

RESULTS

%p=probability of at least one damaged Oring %log(p/(1-p)) = 7.61 - 0.418 × ⁰C

PRACTICAL EXAMPLES

4.2. EXAMPLE 2

RESULTS

- #ODDS= p/(1-p) [Odds of at least one damaged O-Ring]
- % Increase one 1 °C decreases the odds of at least one damaged O-ring by 34.2% [=(1-0.658) × 100]

PRACTICAL EXAMPLES

4.2. EXAMPLE 2

RESULTS

₩For -0.56 ^oC the model predicts

$$#p = e^{7.61 - 0.418 \times (-0.56)} / [1 + e^{7.61 - 0.418 \times (-0.56)}]$$

<mark>∺</mark>p = 0.99961 !!!!

 #The probability to have at least one damaged O-Ring is almost 1.

 #=> P(# O Rings ≥ 3) = 0.957

4.2. EXAMPLE 2

#3rd Step: Logistic Regression (Binomial) #Y (response):

- \sim % of damaged O-rings (out of total 6)
- [₩]X (explanatory): Temperature in ⁰C

4.2. EXAMPLE 2

RESULTS

∺p=proportion of damaged O-rings

BEWARE THIS P IS DIFFERENT THAN THE P IN 2nd STEP MODEL

#E(Y)=np = Expected damaged O-Rings

#log(p/(1-p)) = 1.386 - 0.208 × ⁰C

PRACTICAL EXAMPLES

4.2. EXAMPLE 2

RESULTS

- #ODDS= p/(1-p) [odds of damaged O-rings]
- $\text{HODDS} = \exp(-0.208) = 0.812$
- #Increase one 1 °C decreases the odds of damaged O-rings by 18.8% [=(1-0.812) × 100]

PRACTICAL EXAMPLES

<u>4.2. EXAMPLE 2</u>

CONCLUSIONS:

 **ALL SERIOUS ANALYSIS LED TO THE CONCLUSION OF HIGH RISK OF EXPLOSION
 **7 LIVES AND BILLIONS OF DOLLARS WERE LOST BECAUSE NONE HAS DONE A SERIOUS ANALYSIS OF THE DATA

CLOSING REMARKS

STATISTICS ARE USEFUL TOOLS

- **#WITH STATISTICAL MODELS:**
 - ☑WE CAN SEE RELATIOSHIPS
 - DESCRIBE REALITY
 - MAKE PREDICIONS
- XA GOOD STATISTICAL ANALYSIS IS A GOOD ADVISOR

