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ON THE AéSOCIATION OF THE PARETO
AND THE YULE DISTRIBUTION

XEKALAKI E,, PANARETOS J.

1. Introduction. Engel and Zijlstra [3] investigating problems in the area of demand.
and supply analysis showed that the distribution of the number of orders for a product
during a lead time of such production quantities is negative binomial if and only if the-
lead time has a gamma distribution. They showed this by rederiving Feller's [4] interes-
ting result that by means of the Poisson process each probability distribution on [0, - o],
is mapped on a discrete probability distribution defined on {0, 1, 2, . . .} and that the
mapping is one-to-one. The result was then used to obtain characterizations of the expo-
pential distribution corresponding to existing characterizations of the geometric distri-
bution, :

The analogy that exists between the studied characterizations of the exponential
distribution and those of the geometric distribution is noteworthy because of the fact
that the exponential distribution is the continuous analogue of the geometric distribu~
tion. The Pareto distribution and the Yule distribution (see [10]) comprise another pair
of distributions that relate to each other in theé*same manner. In particular, the Pareto-
distribution is the continuous analogue of the Yule distribution. Both of these distributi-
ons have numerous applications. The Pareto distribution, for example, has been used ex-
tensively in the economics literature to model distributions of income. The Yule distri-
bution on the other hand has been employed in the context of problems in biology, lingu~
§stics, economics, bibliographic research (see, e.g., (6, 9]). Furthermore, the Yule distri~
bution was shown by Xekalaki [7] to arise as a demand distribution. This combined with.
the fact that the Yule distribution is an exponential mixture of the geometric distributi-
on while the Pareto distribution is an exponential mixture of the exponential distributions
makes one wonder whether it is possible to derive characterizations of the Pareto distri-
bution corresponding to existing characterizations of the Yule distribution. ;

In this paper it is shown that indeed this is the case. In section 2 two characterization.
theorems are proved for the Pareto distribution: In section 3 it is pointed out that gene—
ralized T-convolutions (in Thorin’s [5] sense) can be characterized by generalized nega-

. tive binomial convolutions (in Bondesson’s [2] sense). It is further shown that the results:
of section 2 can also be derived as a consequence of a general result associating the mixing
distribution in the mixture representation of a generalized I-convolution to the generali-
zed negative binomial convolution on which the former is mapped through a Poisson pro-
cess. :

2. Some char acterizations of the Pareto distribution. Let us first introduce some no-
tation and terminology. A non-negative, integer-valued random variable (r. v.) X is said
to have the Yule distribution with parameter a > 0 (Yule(a)) if its probability function.
(p.f.) is given by ' :

P (X = 2) = azll(a + {(pqy = = 0, 4,2 .. (2.1)-

where a(B)=I‘(a+ﬁ)/l"(a),a>0, = R. Pee i . .
Xekalaki [8] dealing with a problem in reliability theory showed that a non-negative,.
integer-valued r. v. X has the Yule distribution with p.f.given by (2.1) if and only it

e PX=R|X>KH=dEtat ) k=012 . @2

We now prove a characterization theorem concerning the Pareto distribution. " -~

“Theorem 2.1, Let Y, X, X3, . . . be independent non-degenerate r. v.'s with probability

‘density functions (p.d.f's) defined on [0, +o0). Assume that X, i =1, 2 70, has the Pareto .

distribution with parameter 1 and distribution function (d. f.)- " - |

o r R : S tEe L it T ' i
and let Y, ='Z X r= 1,. 2, ... Yy=0. Then Y has the Pareto distribution with para— -

o Fowe] .
meter a >0 and d.f. ~

v

F@=1—0+27 - (23)'

Fy@=A—WHpo . 24

e




Bty for k=04, 2+ P> Y ={ P (Y >0y, () dy where fy, (1) denotes
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dfandanlyif - s . e L

P S Ve P> Y=k UG+t 0, k=002 .. @5

P r oof. ’Relafionship_(i.sl)’ is ohviduslj'equivaleﬂt to oI o
P> Te) =@ DGk NP FS T =0 k=04 2 ...

- Shig ia'a first order differénice equation in P (¥ > Yi) with a unique solution “(under. L
“the condition P (Y > 0) = 1) givenby = - STEEET e e T T e

2T P> Yi) = ke Dy — & =0, 4, 2.0 @8

h oo Coprmeswasn,stt R 7S _,,1.(1.’.’;, .

° -
the p.d.f. of the distribution of Y. This is a Pearson type VI distribution (beta ot the
second kind) with parameters k and 1. Therefore, (2.5) holds if and only if

_ k-1 B L —

«One solution to this equation is given by (2.4) and it is unique by the completenes of

" -the Pearson type VI family of distributions. This establishes the result.

N o t e 1. Relationships of type (2.5) may be of interest in problems in the area of
.reliability theory. The r.v. Y, for example, can be considered as representing the strength
.of a component subjected to an accumulation of stress from r independent environmental
factors denoted by ¥y = X; + . . . + Xr (X; represents the stress administered by the
-th factor). Then, according to Birnbaum's [1] definition of the reliability function,
P (Y > Ygui | Y>> Y%) denotes the reliability of the component to survive the cumula-

" itive stress Y., given it has survived Y. .

N ote 2. The characterization of the Pareto distribution by theorem 2.1 1s a vari-
-ant of Xekalaki’s [8] characterization of the Pareto distribution by the form of the hazard

-rate. .
In the context of a problem of income underreporting Xekalaki [7] showed that a

‘non-negative, integer-valued r.v. X with p.f. px = P (X = z) has a Yule distribution
4f and only if - o : .

1\ P | |
1—po 2 Tz = P r=0,1,2,... (2'8)
Xamr-4-1 - . ]

_ The following theorem can now be shown concerning the Pareto distribution.
Theorem 2.2. Let Y, Xy, X3, . . . and Y, be r.v.'s defined as in theorem 2.1. Then Y
/has the Pareto distribution with parameter (1 — c)/c if and only if '

1 PV, <Y<Y,

z

=cP (Y, <Y <Yy k=0,1,2,..., (2.9)
x=k-+1 '
where ¢ =P (Y > 7Y,). _ _ , . .
Proof. «If» part. Denote P (Y <<Y < Y4 by P, k= 0, 1, 2, ... Specia-
Qizing (2.9) for k=rand k =r + 1 and subtracting the resulting equations we obtain
. Pr+l/r+1=c(Pr—Pr+l),r=0,1,2,0a-’
«which is equivalent to . ’
Pra—(c(r+D(ct+1)+1)Pr=0,r= 0,1,2 000
“This is a first order difference equation in P, with a unique solution given for r =0, 1,
2,...by ' .
. 'Pr = (1 — C) T!/(i + 1/5)(.‘.), r= 07 11 27 v o i (2.10)
Recalling that Pr = P (Y, <Y < Yry) =P (Y > Y7 — P (Y > Yr4) we obtain

. =1

) ) ‘ B -_—_il_—_ =- . - ' .
4 P(Y>Yr)=l—(i——c);“_i_uc)m, r 1,2... o (2.11)
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But
i il T +1e)T (=141
b (1 +1/c)y — T (4/e) T (1/c) o
130 .
rl E - (r+1)g e ol P(rr14+1/)T(—141/c)
—T+ 1/e)ry & (r+141je); '»— 1/c—17 (1 + 1/6)¢ry T ({(c) T (f' + 175y =
i ¢ rl

=1~ 1—=¢ A+
Hence (2.11) reduces to )
P(Y>Y,) =crl/(l + 1/c)(r_1), r=1,2.,. (2.12y

Combining (2.10) and (2.12) we get - : _ L
P <Y<LYr)=(U—f(r+ 1) P (¥ > YY), r=0,1,2,...,
which is equivalent to relationship (2.5) of theorem 2.1. Hence ¥ has a Pareto distributiom
with parameter (¢ — c)/e. ‘ . _
«Only if»part. Suppose that Y has a Pareto distribution with parameter b >
> 0. Then it follows from (2.7) that , T
PY>YR)=kI(b+ 1), k=012 ...

This, in turn, implies that -~ - :
Pk <Y <Yiu) = 0kU(b+ 1)y, k=0,14,2,... , (2.13)

But the right hand side of (2.13) represents for k = 0,1, 2,...the p.f. of the Yule distri~
bution. Hence by Xekalaki’s result [7] relationship (2.9) is satisfied. This completes the-
proof of the theorem. oo

3. Characterization of probability distributions by generalized negative binomial
convolutions. In this section it will be shown that our results of section 2 can alternati-
vely be obtained by using a unifying result that connects two general families of distri—
butions. These are the family of generalized negative binomial convolutions (see {2]) and
the family of generalized I'-convolutions (see [5]). .

It is interesting that Bondesson [2] obtained a result concerning these two families-
of distributions which can be considered as a special case of Feller’s [4] and Engel and Zijl-
stra’s [3] results on the identifiability of compound Poisson distributions. This, employing-
Engel and Zijlstra’s [3] terminology, states that for a homogeneous Poisson process-
{N (), t > 0} with parameter A = 1, the distribution of the number ¥ (Z) of points in»
the time interval [0, Z), with Z as a non-negative r. v. independent of {N (z), ¢ > 0}, is- -
a generalized negative binomial convolution if and only if the distribution of Z is a gene-
ralized I-convolution. Furthermore, it was shown that every generalized I'-convolution:
is a scale mixture of the gamma distribution with p-d.1.

;{(z)=ST(ﬁ‘§‘le‘“dF(a), 2>0, B>0,
) .

where F is a distribution function. This result is of central importance to our discussi~-
on because as indicated by the theorem that follows it leads to a one-to-one. correspondence-
between the mixing distribution ¥ and the distribution of N 2. e
- Theorem 3.1. Let {N (t), t>>0} be a homogeneous Poisson process with parameter A = 1..
Let Z,, Z, be two independent, non-negative r.v.'s that are distributed. independently of
V), 8200 with pod. fls. oo wie oo e ne o
IR ":.‘.: ‘;‘- f‘..." ‘oo v' a B'-a ~ v", .'.“.x , ..: IEREAT N R
Ch e ey LBl =GB g Gt Ar et T3 ae o
R OE S T Zﬁ) 1, “ffdfl (@), 'z, 8>0,""1=
. B - 0 - R - . .. : :

Dt ‘(3-..715’

v

LT

Then F, is equal to F, if .and only if N (Z,) and N (Z,) are identically distributed.

Proof. The only if part is straightforward. For the'if part observe that by Feller's-
[4] result N (Zy) and NV (Z,) are identically distributed if and only if Z,, Z, are identical=
1y distributed, i. e. if and only if hz (z) = kg, (z). The result then follows by the unique-
cess of the Laplace transform. : - . )




RO PP,

The theorem that has just been proved implies that when Z has a distribution of the
form (3.1) i.e. Z ~ gamma (a, B)AF (a), the distribution of N (Z) uniquely determines

_the mixing distribution F. (Here /\ denotes mixing with respect to a.) Therefore the form

of 'a ‘generalized negative binomial convolution characterizes the mixing distribution
involved in the representation of the associated generalized I'-convolution as a mixture of

' gamma distributions. As an illustration, consider the folloWijxg characterization ‘of Pear-
Sk son ‘type VI distributions by the generalized Waring distribution. (The generalized Waring
- distribution is a generalized negative binomial convolution that has applications in many

TR PN

‘diverse"',_,'fields'(see, e.gey [B).) F Fei, L T T
. __ Corollary 3.1 (Characterization of the Pearson type VI distribution). Let {N (), t >

>0} and Z be defined as in theorem 3.1. Then the distr tbution of N (2) is the generalized

Waring ‘distriyu._tion witi}s{ p-f.

a . b c! B 1,.,; .. . : '.;\' . . -»‘.‘ ‘ o
) @@ __ 4 5,e>0, z=0,1,2:.. (32

pn Lo (@ ) (@4+b+c)y 2’

if and only if F is the distribution function of the Pearson type V1 distribuion with parameters

a and b as defined by the p.d.f.
’ T'(a+0d)
fo) =TT e :
) Proof. The proof of this corollary follows immediately from theorem 3.1 if one obser-
ves that the generalized Waring distribution can result from a Poisson (A) distribution
whose A has a gamma distribution with a scale parameter that is itself a r.v. having the
Pearson type VI distribution.
) Corollary 3.2 (Characterization of the Pareto distribution). The- distribution of N (Z)
is the Yule with parameter a if and only if F is the distribution function of the Pareto distri-
bution with parameter a. : ’ ' :
Proof. The result follows from corollary 3.1 since the Yule distribution is a spe-
cial case of the generalized Waring distribution as given by (3.2) for b=c=1. ‘
N o t e. Obviously, for a generalized negative binomial convolution (g. n.b.c) we

WP (1 4wy, u>0.

‘have: g.n.b.c. ~ Poisson A generalized I'-convolution, g.n. b. ¢.~ Poisson A gamma A #,

g.1n.b.c. ~ negative binomial A F. Therefore, corollaries 3.1 and 3.2 illustrate the fact
that by means of the negative binomial distribution theorem 3.1 establishes a one-to-one
mapping of probability distributions on [0, ++oo) on discrete probability distributions on
{0, 1,2, ...} .

Let us now give a brief description of the way in which theorem 3.1 along with corol-
lary 3.2 unifies the derivation of the results of theorems 2.1 and 2.2 by connecting them
to the characterizations of the Yule distribution mentioned in section 2.

The r.v. X in relationships (2.2) and (2.8) can be thought of as representing the image
N (2) of a non-negativer.v. 2 whose distribution is a scale mixture of a gamma distribu-
tion (Z ~ gamma (a, b) A\ F (a))- Theorem 3.1 implies that the mixing distribution F
can be uniquely determined while corollary 3.2 specifies that it is of a Pareto form. It
has been shown [8] that for a Yule (@) r.v. X, P (X > k) = kli(a 4 1)y It can now be
checked easily that the right hand side of this equation is equal to P (Y > X, + ..
... Xi) where Y is a Pareto (a) r.v. and X;,i=1,2,...k, are mutually indepen-
dent Pareto (1) r.v.’s independent of Y. This is a consequence of the fact that

R (-]
P(Y>Xit...+X)=k{ FH 0+ " ap.
.

"1t follows then that relationships (2.2) and (2.8) are equivalent to relationships (2.5) and

(2.9) respectively, and hence the results of theorems 2.1 and 2.2 can be derived through

 the corresponding characterizations of the Yule distribution.

It is obvious from the previous argument that if X, Y, X;, X5, - - . are defined as abo-
ve then . .
P(X}k)=P(Y>X,_+...+Xk), »k=1,2,'-_-- 3.3)
The same relationship holds also when Y is an exponential r. V. and X;, X, . . . are inde~
pendent -r.v.’s that are exponentially distributed independently of ¥ with parameter 1
while X is geometric. This implies that mixing each of the r.v.'s involved with the same
exponential distribution does not affect their interrelationship. ’

4 , )
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