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ABSTRACT

The paper proposes an approach to the two period inventory
problem for items that have heterogeneous Poisson demands. A model
is constructed whose  appealing features reveal aspects of the
nature of the optimal stocking problem that enable the manager to
assess the degree to which demand is affected by factors such as
the adopted promotional policy or the utility and inherent appeal
of the item. The forecasts obtained by the model are utilized in
the derivation of the opﬁmal inventory stocking policy from a

profit maximization standpoint.
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1. INTRODUCTION

In the context of inventory decision models, the problem of
deriving the optimal inventory stocking policy that will maximize
the expected profit during a period has received much attention.
The questions of when to place an order for additional material
and that of how much to order being of equal importance have
induced a considerable amount of research as reflected by a vast
number of articles in the management science, operational research
and  statistical literature (see, for example, Xekalaki (1983,
1986, 1990), Bradford and Sugrue (1990) and the references

therein).

As naturally expected, both aspects of the inventory problem
have been looked upon in terms of the distribution of demand whose
fluctuations affect at each point in time the amount of the on
hand stock and hence the determination of the time-to-order and

the amount-to-order.

This paper focuses attention on the latter aspect. In particu-
lar, it presents a model for the inventory planning and control of
a warehouse or a firm based on demand forecast. The model uses a
Bayesian procedure for forecasting the demand and updating model
parameters  which further allows us to get a deeper insight into
the mechanism that generates demand. More specifically, the paper
introduces a model for the so called two-period style-goods inven-
tory problem that assumes heterogeneous Poisson distributed demand
in a rather more general sense than that of Bradford and Sugrue
(1990) in that it assumes that heterogeneity in the aggregate
demand is the result of differences in the individual item market-
ing as well as differences in the individual item’s inherent
appeal to the consumer. So, apart from enabling us to forecast the
demand it allows us to assess the degree to which the above types
of differences across items affect a given situation. The model is
introduced and studied in sections 2 and 3. Section 4 goes on to
examine this model in relation to inventory planning by focusing
on the determination . of the optimal policy for stocking which



maximizes the expected profit over the period of observation. It
turns out that in certain cases the algorithm involved can be

considerably  simplified.

2. PREDICTING DEMAND DURING A PERIOD
ON THE BASIS OF DEMAND DURING THE
IMMEDIATELY PRECEDING PERIOD

As mentioned above, Bradford and Sugrue (1990) considered a
two-period  style-goods inventory problem on the hypothesis of
heterogeneous Poisson demand. They assumed in other words that
items  have constant but unequal probabilities to be  ordered.
Averaging out this heterogeneity in terms of a gamma distribution
they obtained a negative binomial distribution for the aggregate

déemand.

This heterogeneity hypothesis has been known in the statisti-
cal literature as the “apparent contagion hypothesis* since 1919
when it was introduced by Greenwood and Woods (1919), though not
in the context of inventory decision models. Making such a hypo-
thesis reflects the need to recognize the existence of factors
other than pure chance affecting the placement of an order for the
item and a gamma distribution for an appropriately chosen
parameter is usually assumed in an attempt to describe the way is
in which heterogeneity manifests itself.

It is obvious that much could be gained if one were to have
some insight into the extent in which various types of non-random
factors contribute to the observed demand. However, the effects of
the various types of these non-random factors are confounded and
unless extra information is available the mathematics alone cannot
lead us to a sound conclusion.



In the sequel, all non-random factors are assumed to be
further split into internal and external factors. The first type
encompasses factors that have to do with the item’s specific
features and qualities that appeal to the buyer and predispose the
consumer to buy it. (Al these item characteristics that pre-
dispose it to be a good or a poor seller). The second type on the
other hand refers to the item’s exposure in the market (eg to

factors relating to advertising, marketing, etc.).

In what follows we use the term "proneness” to refer to the
set of all intermal factors that predispose the item to success
and ‘liability" to refer to the set of all external factors that
affect the demand of the particular item and pertain to promotio-

nal activities, space allocation in the store etc.

Consider items of proneness v and liability )\llv over the
first half of a selling period [0,2t] and assume that the demand
X for these items (in number of units ordered) follows a Poisson
distribution with mean M and probability generating function
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Then, for items with the same proneness v but varying liabili-
ties the distribution of demand over period {0,t] will have proba-

bility generating function given by
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So assuming that period 1 is of arbitrary unit length, the

probability function of the demand for items of the same proneness
v is

k+x-1 1Y (v )*
P(X=x|v) = [ ) ] [1—;] [1—;/] . ox =01, (2.4)

Suppose further that the proneness parameter v has a beta dis-
tribution of the second kind (Pearson type VI) with parameters a
and @ defined by the density function
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Then the unconditional distribution of demand for period 1 has
probability generating function given by
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Therefore, the probability function of the aggregate demand X is
given by
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The distribution of X is in other words the generalized, Waring
distribution with parameters ak and p (UGWD(ak; p)). (For more



information about this distribution the reader is referred to
Xekalaki (1981, 1983a,bc, 1984a,b) and the references therein).
Then, utilizing this demand distribution  through a Bayesian type
of argument one can predict future demand conditional on the

realized demand of a previous period.

Bradford and Sugrue (1990) working along these lines consider-
ed a Bayesian model which predicted the demand for an item with
respect to a time period based on the distribution of the hetero-
geneity parameter A as this evolved through information acquired
on it in the form of the realized demand X=x during an immediate-
ly preceding period. Starting thus, with a Poisson distributed
demand, whose parameter A fluctuated as a result of heterogeneity
according to a gamma distribution with parameters a and p, they
ended up with a negative binomial distribution for the aggregate
demand in the first period of observation. They then derived the
conditional period 2 demand distribution given the demand X of
period 1 as a mixture of a Poisson distribution whose mean A con-
ditional on the period 1 realized demand had a gamma distribution
with updated parameters a+1 and r+x. The result was again a nega;
tive binomial distribution leading to a linear regression of the
period 2 demand on the period 1 demand. A

Both the unconditional (period 1) and conditional '(period 2)
negative binomial distributions appear to adequately describe
aggregate demand and the authors incorporate this result into an
optimal stocking policy model that they suggest. It seems however,
that the demand model suggested by the above authors is somewhat
restrictive as it implies identical unconditional period 1 and
period 2 distributions. Moreover, it implicitly assumes that
heterogeneity in the demand is manifested through the fluctuations
of A in both periods. Analdgous are the implications of the model
considered in the present péper if one decides to adopt a similar

approach in predicting conditional future demand.



Indeed, as suggested by model (2.6), at the beginning of
period 1 when no previous knowledge on the demand X| (A |Vv) of an
item exists, the best estimate of its prior mean would be the mean
of A. This is given by E(E()\1|v))=kE(v)=ak/(g-l) as the distri-
bution of A, is assumed to be a scale mixture of the gamma distri-
bution where the scale parameter v has a Pearson type VI distri-
bution (beta of the second type) as defined by (2.5). (The choice
of the latter form for the distribution of v was based on the fact
that it implies a beta distribution of the first kind (Pearson
type I) on (0,1) for the parameter q = v/(1+v) of the negative
binomial distribution of X|v).

At the end of period 1 the realized aggregate demand X=x pro-
vides further information on the distribution of v and hence of A
as one can study their distribution among items whose demand was x

in period 1.

So, the predicted distribution of v for period 2 has probabi-
lity density function
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f =
vl =x)(v) P(X=x)
k(x) *ryor
(x) [ v ] [ ] . (a+p) (L @0
x! {1+v 1+4vj I'(a)T(e)
) a k

®x) (x) () 1

(a+g)(k) (a+k+ 9)(k) x!

r(a +k+g_+ x) vo.+x-1(l+v)-(a+k+p*x) .

T T(e+K)T{a+x)

This implies that the posterior distribution of v|(X=x) is a Pear-
son type VI (Beta of the second type) distribution with parameters



a+x and p+k. This, in turn, implies that A|(v,X=x) has a posterior
distribution defined by the probability density function
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ie A|(wX=x) has a gamma distribution with parameters k+x and

l+—-;—.

So, the posterior distribution of A|(X=x) is again a scale mixture
of the gamma distribution whose scale parameter has a Pearson type
VI . distribution implying that the conditional expected demand for
period 2 given the realized demand for period 1 is (k+x)(a+x)/

(k+p-1).

However, although a distinction is considered between endoge-
nous and exogenous factors influencing demand, no such distinction
is implied between period 1 and period 2 exogenous or endogenous
factors.  So, again the model implicitly assumes no differences in
"proneness" or ‘liability" between the two periods. Taking into
account the fact that the térm proneness reflects the item’s inhe-
rent appeal to the buyer, such an implication may not be unreaso-
nable at least for a limited period of time. A constancy implicat-
ion on the exogenous factors can, however, be regarded as restri-
ctive. Thus, a model that can be more flexible by allowing for



differences in the external factors from period to period might
be preferable. Next section deals with this problem by developing
a model that looks into the manner in which period 1 and period 2

demands fluctuate jointly.

3. PREDICTING DEMAND ON THE BASIS OF
A TWO PERIOD MODEL

Consider items of "proneness® v  and ‘“liability" ki|v for a
period i of observation. Assume that over two non-overlapping time
periods the numbers X, Y of units demanded follow a double Poisson
distribution with probability generating function

G(x,Y)nl,xz,v(sv‘) = €x (x1|v)(s-1)+(x2|v)(t.1)} (3.1)

xl,xz >0.

Let the liability parameters A |v, A |v  be independently dis-
tributed as gamma (k;v) and gamma (m;v) respectively, i.e,
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Then for items with the same "proneness" but varying “liabili-
ties' the joint distribution of demand over the two periods consi-
dered has probability generating function given by
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Therefore, items with the same proneness are jointly demanded
according to a double negative binomial distribution. If we now
let the “proneness” parameter v vary from item to item according
to a beta xdistributionf of the second type as defined by (2.5), the
probability generating function of the joint distribution of
demand over the two periods is
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where

, © 2 BoPm
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is Appell’s hypergeometric function of the first kind.

Then, the joint probability function of demand over the two
periods is given by

Cemy %(x+y) K™ 11

P(X=x, Y=y) = —_——
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This is the probability function of the bivariate generalized
Waring distribution with parameters akm and ¢ (BGWD(a;k,m;p))
introduced by Xekalaki (1984a) in a different context.

By its definition, this model allows not only for differences
in the exogenous (external) factors from item to item within each
subperiod, but also for differences in the exogenous factors affe-
cting the same item from period to period. The item’s "proneness"
is regarded as constant throughout out the entire period of obser-
vation. By no means of course does the model imply that the item’s
inherent appeal to the buyers will remain constant for ever as the
buyers’ preferences are expected to change as their perception of
handiness and/or beauty changes within very long periods. More-
over, the choice of a gamma form for the distribution of each of
the liability parameters and of a beta form for the distribution
of the "proneness" parameter is analogous to that of the univaria-

te case.

Note that the period 1 and period 2 demand distributions of X
and Y respectively as well as the distribution of total demand X+Y
over the entire period are of the univariate generalized Waring
type as given by (2.7). In particular, X has the UGWD (ak; @), Y
has the UGWD (a,m; ) while X+ Y has the UGWD (a,k+m; p). Moreover,

11



the conditional period 2 distribution given the observed period 1
demand is UGWD (a+x,m; g+k). In other words

(e+k) () (@¥x) pymy

P(Y=y|X=x) =

1
—,y=012. (38)

!
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from which it follows that the period 2 conditional expected
demand given the aggregate demand X=x at the end of period 1 is a

linear function of x. In particular,

(a+x)'m
E(Y|X=x) = ———— . 3.9)
e+k-1

Applying (3.7) to the data set used by Bradford and Sugrue
(1990) on the demand for framed and unframed poster art sold by a
small retail firm yields the results summarized in Table 1. As the
above authors mention, the data were split into two consecutive
and non overlapping 4-month periods. However, they only provided
the:period 1 observed frequency distribiu 19& So, the model (3.7)
cannot be judged otherwise but only indirectly through the close-
ness of the calculated period 2 average conditional demand to the

corresponding observed one.

The bivariate generalized Waring distribution has been fitted
by a moment method that utilizes the first and second order mome-
nts of the distribution whose sample estimates are provided by
Bradford and Sugrue. In particular, the estimating equations used
are J

_ ak
X = —
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v

o-1
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. a(a+g-1)[k(o+k-1)+m(p+m-1)]
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where S:/ denotes the sample estimate of the variance of the random
variable W.

The estimates obtained from this system are

2R Y (S;+S$) 2. 7
o a = -
2 2 2y 0. o
2,y Sk - Sy) &Y X+Y
A 2 A - A
2a Sxay * (a-1) (X+Y7) (a+X+Y)
9 = ~ 2 A
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a
A Y A
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X

On the basis of the fact that the average demand for the total
season was 3.015 units and the standard deviation 3236 units
while the corresponding sample values for periods 1 and 2 were
1517 units with standard deviation 1.803 units and 1498 units
with standard deviation 1924 units respectively, the aboveb_ equat-

ions yield the following parameter estimates:

@ = 1471 o= 19812 k=19405 m = 19.162
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Hence the predicted period 2 expected demands can be calculated
through (3.9). Table 1 summarizes the results. Also included in
table 1 are the period 2 calculated forecasts for the negative
binomial model (NBD) of Bradford and Sugrue (1990). For comparison
purposes the generalized Waring model forecasts have been multi-
plied by the correction factor 0.9872 by which Bradford and Sugrue
multiplied their estimate to reflect the observed change in aggre-
gate demand from 1012 units in period 1 to 999 units in period 2.

Table 1

Expected period 2 demand given period 1 demand

Estimated period 2

Actual demand x  Observed period 2 conditional
(period 1) conditional average demand
average demand

NBD UGWD

0 0.688 0.728 0.699

1 1.182 1223 1.225

2 1.840 1.718 1.752.
3 2.424 T 2213 2278

4 2.907 2.708 2.805

5 2.773 3.203 3.331

6 3.176 3.698 3.858

27 5.909 - -

As seen from table 1 the generalizedl Waring distribution produced
reasonably accurate forecasts  which are not appreciably different
from those provided by the negative binomial model. The null
hypothesis that the joint distribution over the two periods is the
bivariate generarlized Waring -distribution cannot be tested as the
observed joint frequencies are not provided. = However, the close-
ness of the period 1 observed frequency distribution to the corre-
sponding expected  marginal frequency distribution of demand as
calculated  through the probabilities of the UGWD(ak, p) (the
period 1 marginal of the BGWD(o; k,m; o) for 3:1.471, £=19.405,

14



and p=19.812) is indicative of the adequacy of description provi-
ded by the bivariate model (see table 2).

Table 2
Period 1 demand distribution

Actual demand 0 1 2 3 4 5 6 =27
Observed frequency 260 154 94 66 43 22 17 11
Expected frequency 246 173 105 61 35 20 11 16

If we disregard the fact that the parameter estimates of the
bivariate model were utilized in calculating the expected frequen-
cies in table 2 and calculate the value of the chi-squared good-
ness of fit criterion we obtain x2=10.9994. Following, for compa-
rison purposes, Bradford and Sugrue (1990) in overlooking the fact
that we have estimated parameters and considering thus having 7
degrees of freedom yields a p-value of 0.1386. The corresponding
x2 value given by Bradford and Sugrue (1990) for their NBD model
is 921 with 7 degrees of freedom yielding a p-value of 0.238.
Hence, the results are far from indicating an appreciable differ-
ence between the two models considered as descriptors of the fre-
quency of demand and of the expected conditional period 2 demand

for the given data.

The advantage, however, of the generalized Waring model in
this situation is not to be sought only in the fit the model
provides compared to that of another model. It is to be sought in
the features of the model that allow us to have an insight into
the extent in which the various factors affect the demand for an
item. This can be achieved by making use of the fact that, as
Xekalaki (1984a) has pointed out, under the bivariate generalized
Waring model the total variance of the observations for the total
period and for each of the two subperiods can be written in the
form of a sum of three components: one due to randomness (o;) one
due to the exogenous factors (oi) and one due to the endogenous

15



factors (03). In particular, the total variance for period i can
be written in the form -

where c, is a positive constant expressed in terms of the parame-

ters of the model. Table 3 demonstrates this potential.

Table 3

The components of the variance of the bivariate
generalized Waring model

Component ~ Marginal variance ~ Marginal variance Variance of X+Y
due to of X o of Y
(period 1) (period 2) (total period)

Random ak am a(k+m)

factors o-1 o-1 o-1
Proneness Ka(a+p-1) mZa(a+g-1) (k+m)2a(a+p-1)
(endogenous  ————- — 3

factors) (e-1)" (e2) (e-1)" (e2) (e-1)"(e-2)
Liability ak(a+1) am(a+1) a(k+m)(a+1) :
(Grogenal®  (e-1)(e2) (e-1)(e-2) (e-1)(e-2)

ak(p+k-1)(p+a-1) am(p+m-1)(p+a-1) a(k+m)(p+k+m-1)(p+a-1)
(e-D(e-2) (e-1)e-2) (e-1) *(e-2)

Total

By estimating the parameters of the bivariate generalized
Waring distribution we can arrive at estimates of the variance
components as specified by Table 3 and hence assess the contribut-
ion of each of the three demand factors in any particular situat-

ion.

Applying this analysis to Bradford and Sugrue’s (1990) data
yields Table 4.

16



Table 4

Estimates of the components of the variance of
the generazized Waring distribution of demand

for Branford and Sugrue’s (1990)

unframed poster art data

Component Period 1 Period 2 Overall
‘ period

Random 1.517 (43.2%) 1.498 (43.5%) 3.015 (28.8%)
Proneness 1.782 (50.8%) 1.737 (50.5%) 7.038 (67.2%)
(endogenous

factors)

Liability 021 (6%) 0.208 (6%) 0.418 (4%)
(exogenous

factors)

Total 3.509 (100%) 3.443 (100%) 10.471 (100%)

Inspection of this table indicates that proneness, reflecting
the inherent appeal of the item to the buyer, is by far the domi-
nating In both  subperiods and in the total
period its contribution is above 50% with a noticeable percentage
of 67.2% in the total period.

"causing” factor.

Random factors have had a contribution reflected by the larg-
est share of the remaining percentage in all the three periods
leaving the effect of exogenous factors a 6% of the total variat-
ion in each of the two subperiods and a 4% in the total period.
therefore, that in this situation proneness and
factors other  than liability-
factors) had a higher effect with proneness to be accounted for
the fact that the demand
others. The low contribution of liability to the total  variation

It seems,
(encompassed in the term random

for some items than for

was greater

might reflect a relatively equal market exposure of the items.
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4. THE EFFECT OF A GENERALIZED WARING
DISTRIBUTED DEMAND ON THE STOCKING POLICY

The purpose of this section is to look into the question of
determining the best order quantity. The problem will be approach-
ed from a profit maximization standpoint, ie., the determination
of the optimél stocking policies in periods 1 and 2 will be cen-
tered upon maximizing the total profit during the entire selling
period.

Assume that an "order up to" policy is adopted and that orders
are placed at the beginning of periods 1 and 2 with no restriction
on the size of the order and with instantaneous replenishment lead
time. Following Bradford and Sugrue (1990) we further assume that
the cost of overstocking in period 1 is deferred until the end of
the selling season when any remaining stock is considered to be a

total loss.

Let R, v, g and B denote the retail selling price, the acqui-
sition cost, the salvage value and “the lost sale cost per poster
title respectively. Suppose that at the beginning of period 1 the
management decides to stock S, units while at the end of peﬁod 1
(beginning of period 2) it decides to bring the stocking level up
to 82 units. Then under the generalized Waring model of section 3,
the total expected profit for the entire season is

S S

1 2 : . ©
I(s,S,) = R{ ) XP(X=x) + } yP(Y=y)} + R{sl Y P(X=x)+ s,
x=0 y=0

’-B{ Z (x-S )P(X=x) + Z (y-SZ)P(Y=y)} t

x=S +1 : y=S,+1
S2 Sl '
+g ) (S,)P(Y=y) - vS, - v ) xP(X=x) 4.1)
y=0 x=0

where (X,Y) ~ BGWD(a; km; o).

8

x=Sl+1 y=

) P(Y=y

SZ+1

|



The optimal solution to (4.1) may be found by determining the
values of S1 and S2 that maximize I'I(Sl,Sz). These will be the
values for which the partial differences Ag I’I(Sl.Sz) = H(Sl+1,32)-

1

H(Sl,Sz) and AS2H(51’52) = H(Sl,Sz+1)-H(Sl.Sz) become negative for

the first time.
From (4.1) we have for the first partial difference

TS, +18,) - TI(SS,) = R(S,+ DR(X=S +1) +

R{ Y P(X=x) - slp(x=s1+1)} +

x=Sl+2

B{ Y P(X=x) + p(x=sl+1)} - (S, + )P(X=S +1)
x=Sl+2
ie,

AgTI(S,S,) = (B+R-v(S +1)P(X=S +1)+(R+B)P(X>S +1) . (42)
1

Similarly
IS8, + D-I(S,,S,) = R(S,+ )P(Y=S,+ 1) +

R{ D P(Y=y)-SzP(Y=Sz+1)} + B{ Y P(Y=y)+P(Y=Sz+1)} +
y=82+2 y=Sz+2

Sz+1 S

. 2
g{ Y (S,+1y)P(Y=y) - } (sz-y)P(Y=y>} - v
y=0 y=0

i.e.,

AGTI(S,S) = (R+B-gP(Y=S5,+1) + (R+bglP(Y>S,+1) + g - v(43D)
2 . B : .

Therefore, the optimal stocking policy would be: stock Sl units at
the beginning of period 1 and S, units at the beginning of period
- 2 where Sl and S2 are the lowest values for which

(R+B)P(X=S, +1) - V(S,+1)P(X=S +1) < 0
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and
(R+B-G)P(stz+1) +g-v<o0

where (X,Y) ~ BGWD(a; km; p).

Iterating over various values of S and 5, is a straightfor-
ward process which can be further simplified in certain special
cases of the BGWD. As an illustration, consider Bradford and
Sugrue’s (1990) data. The BGWD was applied to these data using a
moment estimation procedure which led to an estimate of a close to
unity. So, if for simplicity we consider the joint demand distri-
bution over the two periods to be the BGWD(1; k,m; p), the inequa-
lities in (4.4) reduce to

SI(R+B-vg) < vp - (R+B)(k+p+1)

(v-ge #3)

P(Y=52+1)(Sz+g+m+1) <
R+B-g

This is a consequence of the fact that since X ~ UGWD(1k; p) and

Y ~ UGWD(1,m; p) S
P(X>Sl+1) = P(X=S +1)
0 1
and (4.6)
m+Sz+1
P(Y>Sz+1) T e P(Y=Sz+1)
e

(see Dimaki and Xekalaki (1992)).

Hence dividing both sides of the first inequality in (4.4) by
P(X=Sl+1) and of the second inequality by P(Y=§,+1) and using
(4.6) we arrive at (4.5).

In concluding, it should be emphasized that the model conside-
red in this paper provides an innovative tool to the manager of a
warehouse or a firm as apart from being an alternative to the
negative  binomial model it allows separate estimation of the
effects of non-random factors pertaining to the inherent appeal of
the items and to their market exposure. In addition to these mana-
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gerial insights into the nature of the stocking problem consider-
ed here, the BGWD offers ease of calculation of the optimal stock

levels.
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