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SOME BIVARIATE EXTENSIONS OF
THE GENERALIZED WARING DISTRIBUTION

EVDOKIA XEKALAKI

Summary

The bivariate gencralized Waring distribution results as a mixture of the double Poisson dis-
tribution. In this paper some probability models are considered that give rise to alternative bivariate
forms of the generalized Waring distribution.

1. Introcduction

The bivariate generalized Waring distribution with parameters a, k&, m and o

(B.G.W.D. (a: k, m; ¢)) defined by Xekalaki [7] is the distribution with proba-
bility function (p. £.) p,., given by

(.1 P = Quk+m) dpspkmep 1 T
4 i (a+Q)(k+m) (a+k+g+m)(r+l) rt I

r=201,2,..., =012, ..

where a, k,m, ¢=0 and op=I{(a+p)/I(x), «=0, BcR. The probability gener-
ating function (p.g.f.) of this distribution is

Qu+m)
G, )=—-—""_F(a; k,m, a+k+o+m; s,
s ) (a+Q)(k+m) 1( * @ )

where F,(a: b, b"; x, y) is the Appell function of the first kind defined by

Fi(a; b,b'; ¢c; x,9) = 2> ot Vo by X7 I
1 b b4 k4 -] L] _— - T " T
ant Cin+m) m! n!

a,b,b’,c—a—b—b" =0, (x,y)[-1,1]x[-1,1].

The marginal probability distributions of X and Y, the conditional distributions
of X|(¥Y=y) and Y|(X=x) as well as the distribution of X+Y are all of the
same form. Specifically, they are univariate generalized Waring distributions (U.G.
W.D.) with p.g.f.>s expressed in terms of the Gauss hypergeometric function obtained
from :

. . s (al)(r)--'(ap)(r) z
(12) qu(a15 a?.’ (AR ap, bls sz recy bqv Z) - rg('] (bl)(r)---(bq)(r) r!
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tor p=2, g=1. The U.G.W.D. is a member of the family of generalized hyper-
geometric distributions studied by, among others, Kemp and Kemp [2] and
Sarkadi [3]. (For more information concerning the structure, properties and
applications of the U.G.W.D. (g, k; @) the interested reader is referred to Irwin
[1] and Xekalaki [4], [5], [6], [8].)

Xekalaki [7] showed that the B.G.W.D. can arise as the joint distribution
of accidents incurred in two consecutive time periods by a group of people in situa-
tions where not only random factors are present, but, also, factors associated with
the individual’s exposure to external risk as well as psychological factors predisposing
the individual to accidents. In the same paper, except for providing a satisfactory
fit to ¢ccident data, the B.G.W.D. was shown to enable one to separately estimate
the variance components due to random, external and psychological factors so that
one can have a clue as to which kind of factors influenced the particular accident
situation the most.

The derivation of the B.G.W.D. in the context of the above-mentioned accident
situation was based on a mixed Poisson model. The mathematical nature of the
mixing processes involved suggests the possibility of obtaining some more general
forms of bivariate distributions with both marginals of the U.G.W.D. type. This
can be done by slightly altering the mixing mechanisms concerned.

In the sequel, we provide various mixed models which give rise to such distri-
butions. Some properties and limiting cases of these models are also considered.

2, Some bivariate extensions of the generalized Waring distribution

We first give a description of Xekalaki’s [7] model.

MobEeL 1 (Xekalaki, [7]). Let X;, X, be nonnegative integer valued random
variables (r.v.’s) whose joint distribution is the double Poisson with p.g.f.

2.1) g(s, t) = eAs-DF -1 Ay, Ay = 0.

Assume that 4, and A, are independent gamma r.v.’s with probability density func-
tions

v»—-k

@.2) f) = Fag e AT, k=0
and
,(2'3) g()uz) — 11’(—,/,1) e‘(”“)hl‘g"‘l’ m =0,

respectively. Then (2.1) becomes
2.4)
G(s 1):__"—k fe—(zlfv)(1+v(1—s))1§-1 a2 fwe~uz/v)<1+v(1—r>),1ga~l di, =
’ rk) ; YCK

=(1+v(1—-9))*Q+vA-0)",
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ie. (X;, Xo)lv follows a double negative binomial distribution with parameters
k,v/(14+v), m and v/(14v). Assume now that v has a beta distribution of the
second kind (beta II) with parameters ¢ and ¢ and p.d.f.

r@a+o ., -
A(V) = ———— V(1 f-v)"(eta), a, ¢ > 0.
O =Torw "™ )
Then the resulting distribution of X7, X, has p.g.f.
re+a) ¢ .., _ ) _ _
G (5, ) = e [ 1+ w)~ @O (1 4y —5)) ¥ (1 +v(1 =) "dv =
w0 = For@ J )=+ O(14v(1 =) (1+v(1-)

Qi+ m)
= 27" F(a; k,m; at+k+m+g; s, 1),
(a+9)(k+m) 1(
ie., (X1, Xp)~B.G.W.D. (a; k, m; o).
Xekalaki [8] has shown that under certain conditions the B.G.W.D.
(a; k, m; ¢) tends to the double negative binomial distribution with parameters

a . L ]
k,m, and , and to the double Poisson distribution with parameters
0 a+te
ak am " .. .
pory and PP Moreover, if the scale is at our choice, the B.G.W.D. can be
g

shown to tend to the bivariate beta II distribution with parameters k, m and g or
to an uncorrelated bivariate gamma distribution with parameters k, m, 1 and 1.

MopeL 2. Let X;, X, be non-negative discrete r.v.’s whose joint distribution
is the double Poisson with parameters Ap, and Ag and p.g.f. given by

(2.5) g(s, 1) = PG=Drae=1) 2 p g=>0, pt+g=L
Assume that 4 is a r.v. having a gamma distribution with p.d.f.
p
2.6) f(A) = -(%/(%)7 e~ @®ija-1" 2 a, b =>0.

Then (2.5) becomes

G( . I) — (a/b)a j‘ e—l(a/b)(1+(b/a)p(l—s)+(b/a)q(]—t))Aa—l di =
I'(a

0

2.7 )
=[l+—ab—{p(1—8)+q(l—l)}] ,

i, (X, Xp)|b follows a bivariate negative binomial distribution with parameters

a, bp/(a+bp) and bq/(a+ bq).
If we now let b have a Beta II distribution with parameters k, ¢ and p.d.f.

2.8) h(b) = %(&)H (1 +_ab—)—(o+k)

0>0,k=>0,b=0,a=0
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the final resulting joint distribution of X;, X, has p.g.f.
T'(o+k)a—! k—1 —-(g+k)
Gy, x. (5. 1) = EiCad) o f ( ) ( —)

IOEGH
2.9) b+_%p0—®+qﬂ—0}%db—
= (E%E:T(JJ‘(“’ k; a+k+g; 1—p—q-+ps+gb).
The generalized hypergeometric series in (2.9) is convergent for all (s, H€[—1, 11X
. [__I: ’c;]ﬁ be seen that
@2.10) Gy (s) = G,y 1) = (Ti(;_))m'zF‘(“’ k; a+k+g; 1—p+ps)

with a similar expression for the p.g.f. of X,.
G = -G 0) /-2 Gy (1,0) =
x| x:\8) = -E)}—x— X1X2(59 3;;; xlxz( ,U)=

1D
_ oFi(atxy, kt+xy; atk+o+x, 1—p—g+ps)

o (A + X, k+4Xg; a+k+04+Xx53 1—q)

with a similar expression for the p.g.f. of XX, and

(212)  Gyax,(8) = Gxy x, (5, 8) = e oFi(a ks at+k+o; 1+(p+q)(s—1)),
(@+ 0w
i.e., the marginals and the convolution have all the same form.

We note that (2.10) is in fact a U.G.W.D. generalized by a binomial distribution
with index 1 and probability of success p and can arise in situations where sampling
is made with inclusion probability equal to p. Hence, (2.10) defines a more general
distribution which includes the U.G.W.D. as a special case (p=1). It is interesting
to see that the factorial moments of the distribution generated by (2.10) are given by

amk
2.13 U (X) = p 0 )
@1 R P

It is also of interest to remark that in the case p+g=1, (2.9) and (2.12) reduce to

(2.14) Gy, x, (S, t)Z(CI—_é:i‘Q’)—(;)—gFl(a,k: a+k+go; ps+qi)

and

Q)
215 G ()= — _ F(ak; atk+o; 5)~UGW.D. (a, k; o).
( ) XHXZ(S) (CH”Q)(k) 1 ( 0; s) ( 0)

Moreover, (8.1.7) becomes

F(a4+xs, k+x9; at+k+o0+xa3 ps
GX11X2(S) — 24 2 2 @+ Xz; ps)

oF1(@+Xxe, k+ x5 a+k+o+x:; P)
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which, provided that g=>x,, is a weighted U.G.W.D. (a+x,, k+x,; ¢—x,) and
can arise in cases where the sampling chance (weight) is proportional to p*™, p=1.

In the more general case when p+g=1 it can be shown, using an argument
similar to that used by Xekalaki [8] that

a <1, O<k<on, the distribution defined by (2.9)

(i) for Q—-»oo, a->oo,

oo , a
tends to the bivariate negative binomial distribution with parameters Kk, i PY |

ag a+g
ato’
(i) if we let a—~o, k>, g—o= while aQ -0 and a’_‘:@ <o, we obtain
ak
the double Poisson distribution with parameters akp d Z4

ate ™ axe

MopeL 3. Consider X, and X, to be two non-negative discrete r.v.’s whose
joint distribution is the double Poisson with parameters 4,, 4; and p.g.f. given by

(2.16) g(s, f) = eM—D+he-D  j 3 -

Assume that (4,, 4,) is a random vector having a bivariate gamma distribution -
with p.d.f.

—m ,—(1/b)As
(2.17) b~"e

f(h, A = TRTIm—k
b=0 m=k=0, A, =1 =0
Then, from (2.16) we have

A (A — )" -1

b—m T oA
) = ———— —(1/b)Ag(1+B(A—t)+ 41(1—3))
X M Ay —A)"* 1 ddy ddy =
1 ~ Ao ym—&k—1 )
[ e Gamatba-m (__2_) =5 3¢
raorm=0 ] b f/
A )k—1{ FR m—k—1 Ao, A . 1 oo —a Ib)(1+b(l—-‘))(}" m—1
<[ - 4Ty = Teresed <" 2 %

1
A
X of e—hw-sw{—l(l—al)mf*—ldald_; =

L7 e ()
—— . . ) — —(Az/BY(L+b(1—-1)) § 3 it S
F(m)olel(k, m; dg(s—1D)e [b) a7

.. _bs-D) )_
> 1+b(1-0)

= [1+b( =)™ **[1+b(1—)+b(l —s)|*

— +b (-1 F [k

12
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where F (a;b;z) and ;F,(a; ;z) are obtained from (1.2) for p=¢g=1 and
p=1, g=0, respectively.
If we now consider b~ Beta I (a; g), i.e.

I'(a+o0)

b*-1(1+b)-@+,  b=>0, a,¢=>0,

we obtain the final joint distribution of X, X as

I'@a+0) .- -
G ) = =~ [ b*1(14+b)" Ol +b(1 -] "X
30D = oy J B4Rl +b(-0)
(2.20)
S4+b(1—)+b(1—5)]*db = —2"_F(a; m—k, k; at+o+m; t,t+s—1).

(@a+@)m

Note that the F; series in (2.20) is convergent for (s, #)e[—1, 11x[—1, 1].
We have for the marginal distributions of X; and X,

Om)
le(s) (a+Q)(_m) l(aa m k’ > a+Q+ma ’ S)
(2.21)
Qe .
= —- L F(a, k; ato+k; s)~UGW.D. (a, k;
(G+Q)(k)21 Q ) @, k; 0
and
Q(m) . . . —
ze(t) = mﬁl(d, m—k, k, ato+m; I, t) =
(2.22)
=—ﬂ'£)— Fi(a, m; a+g+m; )~U.G.W.D. (a, m;
(a'*’Q)(ml’) 2 1( » » 44 ) ( > ] Q)s
respectively.

Thus, ,both marginal distributions of (2.20) are U.G.W.D.’s; This was expected
due to the fact that the distributions of 4, and 4; are, from 2. 17), gamma (k, b™%)
and gamma (m, b~"), respectively.

The conditional distributions of X,X;, X;|X, and the dlstnbutlon of X;+X,,
however, are not of a U.G.W.D. form. Norare they of a more general form containing
the U.G.W. -asa particular case.

1t is int restmg to see that for a—co, g—~oo while p

the distribution in (2.20) t_ends to a distribution with p.g.f.

aQ -g=<1, O<k, m<o

{1+q=0/p} "t {1+qlQ=+A =)} p=1-4g.
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a ak

Moreover, for a-»oo, k—>co, ii—oo, g—>oo while -0, <o and
’ ¢ a+e a+g
AM _ o it reduces to the double Poisson distribution with parameters
a+to a+te
and 22
a4

MobpeL 4. Let X;, X, be non-negative discrete r.v.’s and let their joint distri-
bution be the double Poisson with parameters 4,, 4, and p.d.f. given by (2.16).
Assume that

re+k)b= (LY A ) erw
(2.23) AIN% b‘] (1+ 1] , M=0, 0,kb=0

T'(g+m)b-? ().2 )"“1 ( Ay )“°+’"’
2.24) 4, T@T () 5 1+-i)—- s Ay =0, o,m,b=0.

Then (2.16) becomes

_Te+RI(e+m) ¢ oy (At} PR
G(s, 0= {F(g)}zl“(k)l‘(m) Of et1s—1) (T) (1+__b_ TX
(2.25) f eAa(t—2) (/12) (1 12 —(e+m) I}: _
_ I'(e+k)IT'(e+m) e o
T Vs 10 A=9b)y(m; 1-0; (1-1b)

where ¥ is the confiuent hypergeometric function of the second kind defired by

Y(as ¢c; 2) = f P+ lem 2 dt, a>0, c—a=0.

1
I'(ae) ;
Letting b be a r.v. with p.d.f.

(2.26) f) = I‘( ) e b1, a=0,b=0

we obtain the p.g.f. of the final resulting distribution of (X,, X,) as

le-xz(s’ t) = r({glj_(’;;}l;l(ﬂg(:)m)&f e_bba—lw(k; 1—g; b(l—s))x

Xy (m; 1—e; b(1—9)db.

., Ira-o
y(a; c; Z)—m

It can be shown that
1Fi(a; ¢; 2).

12%
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Then, ,
1 o0
G §,0) = —— | e 1 Fk; 1—0; b(1-95))X
60 = oy WFu(ks 15 b(1-5))
(2.27 X1 Fy(m; 1—g; b(1—1£))db =
1 k(r)m(l) (l_s)r (l_t)l r —b 1— ]
= e~bpetr+i-14p —
I'(a) i1 (1"9)(r))(1—9)(1) r! f :
a£r+z)k(r)m(1) A-sy (11—
= = Fy(a; k,m; 1—p,1—90; 1—5,1—t
r,zl' (I—Q)(r)(l—Q)(z) r! I 2( ¢ 2 )

where F, 1s as defined by
a b b’ xm 4
Fya; b, b’ ¢, ¢5 x,p) = 3 2o mlw 27
o C(my € (n) m! n!

The region of convergence for the p.g.f. given by (2.27) is |1 —s|+|1—¢|<1.
Clearly, (2.16), (2.23), (2.24) and (2.26) imply that

(2.28) X, ~Poisson (4,) ~ Betall (k; @) ~ gamma (a; )~U.G.W.D. (a, k; 0),
(2.29) X, ~Poisson (1,) ~ Beta Il (m; ¢) ~ gamma (a; 1)~U.G.W.D. (a, m; ¢).

Again, the convolution X;+JX, and the conditional distributions of X,}X],
X;| X, are not U.G.W.D.’s.

We note that the double negative binomial and the double Poisson can be
obtained as the limit of (2.27) for suitable limiting values of the parameters. In

particular, for @— oo, 9—oo while

ig <1, 0<k<o and O<m<, the double

. . . a a e .
negative binomial [k, m; ato’ ateo ] distribution arises. Also, for a-—eo,
. a ak .
koo, m—>oo, g—oc while -0, oo and M o we obtain the
a+te a+to e
ak am

double Poisson ( ] distribution.

atpe’ a+p
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