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Abstract

Inference for mixture models based on likelihood estimates su�ers from lack of robustness.
The presence of a few spurious observations may lead to incorrect decisions. In this paper
we consider robust alternatives to the likelihood inference for �nite Poisson mixtures based on
the minimum Hellinger distance estimates. A new test, the Hellinger deviance test, is proposed
for testing the Poisson hypothesis versus a Poisson mixture hypothesis. Moreover, diagnostics
based on the Hellinger gradient function in order to examine for the presence of a mixture are
described. Semiparametric estimation is also discussed. All these inferential procedures combine
both e�ciency when the model is correct and robustness when the model is incorrect, and
make the minimum Hellinger distance methodology a competitive alternative to the maximum
likelihood methodology. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Poisson distribution plays a prominent role in modeling discrete count data
mainly because of its descriptive adequacy as a model when only randomness is present
and the underlying population is homogeneous. Unfortunately, this is not a realistic as-
sumption to make in modeling many real data sets. Poisson mixtures are well-known
counterparts to the simple Poisson distribution for the description of inhomogeneous
populations. Of special interest are populations consisting of a �nite number of homo-
geneous subpopulations. In these cases the probability distribution of the population
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can be regarded as a k-�nite mixture of Poisson distributions de�ned by the probability
function

fPk (x) =
k∑
i=1
pi
exp(−�i)�xi

x!
; x = 0; 1; 2; : : : (1)

where Pk refers to the mixing distribution with k support points, which gives positive
probability pj to the point �j.
Rider (1962) described moment estimation for the parameters, while Hasselblad

(1969) proposed an iterative scheme for maximum likelihood (ML) estimation for
�nite Poisson mixtures, which is an EM type algorithm, described later more formally
by Dempster et al. (1977). The ML estimation su�ers from high variability when the
mixture components are close. However, the easily applicable EM algorithm has made
the ML estimation the most popular method of estimation.
Recently, Karlis and Xekalaki (1998) proposed minimum Hellinger distance (MHD)

estimation. MHD estimators are almost fully e�cient when the model is correct and
very robust when the model is not well speci�ed or when some outliers have contam-
inated the data. This makes the MHD method a viable alternative to the commonly
used ML method.
Apart from the estimation of the parameters, testing whether a mixed Poisson model

is more adequate than a simple Poisson model, has been considered. A variety of such
tests have been proposed in the literature. Among them the likelihood ratio test (LRT)
for �nite mixtures has been widely used. A detailed review of this test is given by
McLachlan and Basford (1988) and Karlis and Xekalaki (1999). In the sequel, this
test forms the basis for the development of inferential procedures using the Hellinger
distance.
Robustness issues for �nite mixtures have been overlooked in the Poisson case. There

are only a few papers (see, e.g., Cutler and Cordero-Brana, 1996; Markatou, 2000 and
the references therein) mainly focused on the case of normal mixtures. Our aim in this
paper is to develop inferential procedures based on the Hellinger distance that have
interesting robustness properties.
In Section 2 the MHD method for �nite Poisson mixtures is described. Some inter-

esting theorems for MHD estimation in �nite mixtures are shown, extending the MHD
method to the semiparametric case, where the number of support points is not known
a priori. A test procedure referred to as the Hellinger deviance test (HDT) for testing
the Poisson assumption against a 2-�nite Poisson assumption is proposed in Section 3.
Critical points of the null distribution of the test statistic derived via extensive simula-
tion are reported in Section 4. The power of the test is compared to the power of the
LRT in Section 5. The power of the HDT is almost the same as that of the LRT and
in some cases larger, making the HDT a preferable procedure. The robustness of the
HDT is examined in Section 6, while in Section 7 diagnostics for Poisson mixtures
based on the Hellinger gradient function are proposed. These are more robust than the
diagnostics proposed by Lindsay and Roeder (1992), and can thus be used in practice.
Concluding remarks are made in Section 8.
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2. Semiparametric estimation using the minimum Hellinger distance

Minimum distance estimation methods have attained a lot of attention as alternative
methods of estimation to the commonly used ML method. In general, minimum distance
estimation methods are appealing since they can be both robust and e�cient. This
trade o� between robustness and e�ciency is sometimes very useful for parametric
estimation. Lindsay (1994) demonstrated how a general family of minimum distance
estimation methods could be used for the estimation of discrete probability functions.
The MHD method is an interesting competitor to the ML method. Its study has

revealed appealing e�ciency and robustness properties, as can be seen from the results
of Beran (1977) for parametric models, Eslinger and Woodward (1991), for normal
models, Simpson (1987) and Lindsay (1994), for discrete distributions, Cutler and
Cordero-Brana (1996) and Woodward et al. (1995), for normal mixtures and Karlis
and Xekalaki (1998), for �nite Poisson mixtures.
Suppose that d(x) is the relative frequency of the value x from a sample of size n and

f�(x) is the probability under the assumed model that the random variable X takes the
value x, where � denotes the vector of parameters of interest. The MHD estimators for
discrete mixing distributions can be de�ned through the vector �min which minimizes
the Hellinger distance D given by

D(d; f�) =
∞∑
x=0

[
√
d(x)−

√
f�(x)]

2 (2a)

or equivalently by

D(d; f�) = 2− 2
∞∑
x=0

√
d(x)f�(x): (2b)

In the sequel, we refer to the estimation of the mixing distribution rather than to the
estimation of the vector of parameters. Estimation of the mixing distribution requires
minimizing (2a) or (2b) or equivalently maximizing the function

’(P) =
∞∑
x=0

√
d(x)fP(x): (3)

The representation in (3) is very useful since it allows for a comparison to the
likelihood method where maximization of the function

L(P) =
∞∑
x=0

d(x) ln(fP(x)) (4)

is required.
We may extend the MHD method so as to be applicable to the case of semiparametric

estimation of the mixing distribution (see Lindsay and Roeder, 1995). By the term
semiparametric we refer to the case where the number of support points is unknown.
The case of semiparametric ML estimation for mixture models has been treated by
several authors (Simar, 1976; Laird, 1978; Lindsay, 1983; Lesperance and Kalb
eisch,
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1992; Bohning, 1995 among others). The development of semiparametric estimation
methods based on the MHD method is based on the similarity of (3) to (4).
Lindsay (1983a, b) provided the General Mixture Maximum Likelihood Theorem

which gives su�cient and necessary conditions for the application of the ML estimation
method in mixture models. If the mixing distribution is assumed to be continuous, we
are restricted to estimate a �nite-step approximation of the mixing distribution (see,
e.g. Laird, 1978). Lindsay (1983a, b) provided the conditions for both, the case of
a known number of support points and the case of an unknown number of support
points. In fact, his theorems are generalizations of the general equivalence theorem for
designs, given by Whittle (1973).
If k, the number of support points, is known, the aim is to maximize (3) with

respect to all measures P with k support points. If k is unknown, maximization is
considered over all measures P with a �nite support. Whittle (1973) considered the
case of concave distances �, showing that[

d2

de2
�[(1− e)P + eG]

]
e=0
60

for all measures P, and G is a su�cient condition for their concavity.
It can be veri�ed that the Hellinger distance � satis�es this condition. Hence, the

results of Whittle (1973) can be extended so as to lead to a general theorem on
minimum Hellinger estimation for mixtures. It is very helpful to de�ne the directional
derivative of a general distance � at P to the direction of an alternative measure G by

D(P;G) = lim
e→0

�((1− e)P + eG)− �(P)
e

: (5)

For the Hellinger distance, the directional derivative H (P;G) is given as

H (P;G) =
∞∑
x=0

√
d(x)

[
fG(x)− fP(x)√

fP(x)

]
:

Of special interest is the case where the measure G is a degenerate distribution at
�, i.e. it gives positive probability only at the point �. In this case, the directional
derivative is given by

H (P; �) =
∞∑
x=0

√
d(x)

[
f(x | �)− fP(x)√

fP(x)

]

=
∞∑
x=0

√
d(x)

[
f(x | �)√
fP(x)

−
√
fP(x)

]
: (6)

In the sequel, we refer to (6) as the Hellinger-gradient to distinguish it from the
gradient function used in ML estimation and is de�ned by

DLIK(P; �) =
∞∑
x=0

d(x)
[
f(x | �)
fP(x)

− 1
]
: (7)
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In both (6) and (7), f(x | �) denotes the probability function of the simple Poisson
distribution. The Hellinger gradient function can play an important role in minimum
Hellinger estimation. The following theorem generalizes the results of Whittle (1973)
and Lindsay (1983a):

Theorem 1. The mixing distribution P is the MHD estimate of the mixing distribu-
tion if and only if
(a) H (P; �)60; for all �;
(b) H (P; �) = 0; for all � in the support of P;
(c) H ′(P; �) = 0 for all � in the support of P and
(d) H ′′(P; �)60 for all � in the support of P;

where the primes denote derivatives with respect to �.

Proof. From conditions (a) and (b) it follows that all the support points are max-
ima of the gradient function. Hence, conditions (c) and (d) also hold. Since the only
assumption of concavity is met, the theorem has been established.

This theorem provides the conditions for the mixing distribution P to be the semi-
parametric MHD estimate. In this case the support is not restricted. In the case of
restricted support (i.e. the case of a �xed number of support points), the following
theorem can be shown:

Theorem 2. The mixing distribution P is the MHD estimate of the mixing distribu-
tion with restricted support size if the following conditions are met:
(a) H (P; �) = 0; for all � in the support of P.
(b) H ′(P; �) = 0; for all � in the support of P.

Proof. For a k-�nite Poisson mixture the estimating equations are derived by equating
the �rst partial derivatives of (2a) with respect to the parameters with 0. Hence, the
estimating equations are

∞∑
x=0

√
d(x)
f�(x)

(f(x | �j)− f(x | �k)) = 0; j = 1; 2; : : : ; k; (8)

and

∞∑
x=0

√
d(x)
f�(x)

pj(f(x − 1 | �j)− f(x | �j)) = 0; j = 1; 2; : : : ; k; (9)

where f(x | �) = exp(−�)� x=x!, i.e. the probability function of a simple Poisson
distribution.
From (8) we may derive easily that

∞∑
x=0

√
d(x)
f�(x)

f(x | �j) =
∞∑
x=0

√
d(x)
f�(x)

f(x | �k): (10)
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Table 1
The number of defaulted instalments in a Spanish bank (Dionne et al., 1996)

x Frequency x Frequency x Frequency x Frequency

0 3002 9 53 18 8 27 0
1 502 10 41 19 6 28 1
2 187 11 28 20 3 29 1
3 138 12 34 21 0 30 1
4 233 13 10 22 1 31 1
5 160 14 13 23 0 32 0
6 107 15 11 24 1 33 0
7 80 16 4 25 0 34 1
8 59 17 5 26 0

Also multiplying (8) with pj and summing up we obtain that

∞∑
x=0

√
d(x)
f�(x)

f�(x) =
∞∑
x=0

√
d(x)
f�(x)

f(x | �k): (11)

Combining (10) and (11) we obtain that

∞∑
x=0

√
d(x)
f�(x)

(f(x | �j)− f�(x)) = 0 for j = 1; : : : ; k

which is the Hellinger gradient function, i.e. we have proved the �rst condition.
Since for the Poisson distribution it holds that f′(x | �)=f(x− 1 | �)−f(x | �) then

(9) reduces to the second condition, i.e. to that the derivative of the Hellinger gradient
function is 0 for all j.

The key idea in Theorems 1 and 2 is that in the case of the unrestricted support the
support points are the maxima of the Hellinger gradient function, while in the case of
restricted support, the support points are not necessarily maxima, but they may also be
minima or saddle points.
Note also that Bohning and Ho�man (1982) described distance-type estimation meth-

ods for probabilities and they gave theorems which simply require the concavity of
these distances.

Example. Consider the data used in Dionne et al. (1996) concerning the number of
defaulted installments in a �nancial institution in Spain, presented in Table 1. The
data show great overdispersion. Thus, a Poisson mixture seems to be plausible for
modeling the situation. In Fig. 1, one can see the Hellinger gradient function, plotted
for several values of k. The semiparametric MHD estimate of the mixing distribution
has k = 6 support points. For k = 6 all the support points are the local maxima of
the Hellinger gradient function. Considering any additional support points would be
redundant as either their mixing probabilities would be equal to 0 or the new support
points would coincide with existing points. Fig. 1 shows that the MHD estimate of the
mixing distribution cannot have more than six support points.
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Fig. 1. The Hellinger gradient function plotted for the data of Table 1, for di�erent values of k.

3. The Hellinger deviance test (HDT)

The LRT computes the statistic L=2[L1−L0], where Li; i=0; 1, are the maximized
loglikelihoods for the hypotheses in Hi. However, in the case of mixtures the asymptotic
result for a �2 distribution with degrees of freedom equal to the di�erence in the
numbers of parameters under the two hypotheses does not apply because the parameters
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in the alternative hypothesis lie on the boundary of the parameter space whence the
regularity conditions do not hold. Self and Liang (1987) showed that the asymptotic
distribution is a mixture of a degenerate distribution at 0, and a �2 (1) distribution.
Bohning et al. (1994) and Lindsay (1995) showed that this approximation is not valid
in general. In order to overcome this problem of a null distribution of an unknown
form, many authors tried to construct it via simulation (see, e.g., Symons et al., 1983;
Bohning et al., 1994).
The robustness of the Hellinger distance makes it a potential tool for constructing

a test statistic. It would be helpful to derive a test statistic, which would measure the
improvement of the Hellinger distance if one new component were added. Since the
in
uence of an outlier on this distance is much less than on the likelihood, a test based
on the Hellinger distance is expected to be more robust against outliers.
Simpson (1989) proposed the use of the Hellinger distance analogues of the likeli-

hood ratio tests for parametric inference. The Hellinger deviance test (HDT) statistic
proposed is given by

HDT = 4n[H0 − H1]

where Hi ; i=0; 1, are the minimized Hellinger distances for the distributions under the
two hypotheses (see Simpson, 1989). Under some regularity conditions, the asymptotic
distribution of the HDT is a �2 distribution with degrees of freedom equal to the
di�erence in the numbers of parameters under the two hypotheses. This resembles the
well-known LRT, discussed above. Again, however, the regularity conditions are not
satis�ed, making the asymptotic result irrelevant. Simpson (1989) showed that the HDT
converges in probability to the LRT. This property indicates that the two tests have
asymptotically the same properties.
The ambiguity for the distribution of the test statistic limits the usefulness of the test.

In order to overcome this di�culty we propose the use of a bootstrap test. This means
that we construct the null distribution via parametric bootstrap. The test proceeds as
follows:

Step 1: Find the MHD estimates of the parameters of the simple Poisson distribution
and the 2-�nite Poisson mixture, say �H and �2 respectively and calculate the
HDT statistic, say Hobs. The estimates can be easily obtained via the iterative
algorithm given in Appendix A.

Step 2: Simulate B bootstrap samples of size n (n is the sample size of the data
set) from the Poisson distribution with parameter �H , and for each bootstrap
sample calculate the value of the HDT statistic, say Tj; j = 1; : : : ; B.

Step 3: The p-value of the test will be the proportion of the values Tj of the HDT
statistic that exceed the observed value Hobs.

The above scheme can be extended to test H0: the data come from a k-�nite Poisson
mixture, against H1: the data come from a (k + 1)-�nite Poisson mixture, by replac-
ing �H by �k and �2 by �k+1. We focus our attention to testing the simple Poisson
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hypothesis. Note that Beran (1988) has shown that bootstrap tests cannot be inferior
to tests based on asymptotic results, recommending the use of bootstrap tests in cases
where an exact result for the null distribution is not available.
From the general minimum Hellinger distance estimation theorem given above one

can see that, for certain cases, the Hellinger distance cannot be minimized any further
by adding a new component. This means that the HDT statistic is equal to 0; similar is
the case for the LRT statistic. The identi�cation of these cases can substantially reduce
the computational e�ort required for applying the HDT via the bootstrap proposed in
this section.
For the LRT, we found after extensive simulations that the LRT is 0 in all cases

where the sample variance was less than the sample mean, i.e. if

s2¡ �x: (12)

This is also the necessary condition derived from the General Mixture Maximum
Likelihood Theorem. Unfortunately, the above result has not been proved analytically.
For the HDT statistic to be equal to zero the necessary condition can be found by

checking if the second derivative of the Hellinger gradient function is negative. From
the de�nition of the Hellinger gradient function it can be shown that

H ′(P; �) =
∞∑
x=0

√
d(x)√
fP(x)

f(x | �)
(
x − �
�

)

and

H ′′(P; �) =
∞∑
x=0

√
d(x)√
fP(x)

f(x | �)
[(
x − �
�

)2
− x
� 2

]
:

Using Theorem 1, if the Hellinger distance in (2) has been minimized (or equivalently
the distance in (3) has been maximized) by a k-support points mixing distribution P,
the second derivative of the Hellinger Gradient function ought to be negative for all
the support points. Hence, the following relation must hold for all the support points:

∞∑
x=0

√
d(x)√
fP(x)

f(x | �)(x − �)2¡
∞∑
x=0

x
√
d(x)√
fP(x)

f(x | �)x;

for all � in the support of P. In particular, for if k = 1, i.e. for testing the simple
Poisson distribution against a 2-�nite Poisson mixture, the above condition reduces to

∑∞
x=0

√
d(x)f(x | �H )(x − �H )2∑∞
x=0

√
d(x)f(x | �H )

¡�H ; (13)

where �H is the MHD estimator of the simple Poisson distribution which is the solution
of the equation �H =

∑∞
x=0

√
d(x)f(x | �H )x=

∑∞
x=0

√
d(x)f(x | �H ). Relation (13) is

analogous to the one given above for the ML case in (12). The left-hand side is a
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Fig. 2. The proportion of zeros calculated via 10 000 simulations for each value of Poisson mean and
sample size.

weighted second moment around �H , corresponding to the sample variance in expres-
sion (12) for the ML case where the estimate of � is the sample mean.
Again extensive simulation revealed that in all cases where (13) was satis�ed, the

HDT had a zero value.
For the LRT statistic, the proportion of zero values is near 0.5, as has been shown in

Bohning et al. (1994). The proportion of 0 values of the HDT statistic is much higher.
The proportion of 0 values was estimated via simulation for several sample sizes and
values of the Poisson parameter. For each combination, 10 000 values were obtained
and the probability of a 0 value was estimated as the proportion of 0 values among
these 10 000 replications. It can be seen from Figs. 2a–d that the HDT statistic has a
larger proportion of zero values. This proportion tends to increase with the value of
the parameter of the Poisson distribution and to decrease with respect the sample size.
Another interesting question would be to prove the following conjecture:

Conjecture. If the LRT statistic is 0 then the HDT statistic is also 0. The opposite
is not necessarily true.

We have not succeeded in proving the above conjecture, but we have run more
than 100 million simulations with varying con�gurations of sampling distributions and
sample sizes and there has not been any case with a 0 value for the LRT statistic and
a nonzero value for the HDT statistic. We hope to be able to report a formal proof of
the above conjecture soon.
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Table 2
The 90th percentiles of the distribution of the HDT statistic generated via simulation

Mean Sample size

20 50 100 200 250 500

0.3 0.69 0.76 0.83 1.04 1.07 1.16
0.5 0.72 0.88 1.05 1.17 1.19 1.22
0.75 0.85 0.99 1.14 1.26 1.29 1.29
1 0.92 1.06 1.19 1.33 1.32 1.28
1.5 0.94 1.09 1.25 1.36 1.38 1.28
2 0.89 1.08 1.22 1.34 1.34 1.16
2.5 0.83 1.00 1.17 1.28 1.26 1.12
3 0.74 0.94 1.10 1.18 1.19 1.07
5 0.11 0.35 0.60 0.79 0.80 0.83
7 0.01 0.07 0.22 0.37 0.42 0.56

Table 3
The 95th percentiles of the distribution of the HDT statistic generated via simulation

Mean Sample size

20 50 100 200 250 500

0.3 1.33 1.43 1.65 1.89 1.95 2.09
0.5 1.36 1.66 1.85 2.06 2.11 2.23
0.75 1.56 1.85 2.04 2.22 2.25 2.33
1 1.76 1.93 2.13 2.35 2.32 2.42
1.5 1.85 2.07 2.26 2.41 2.46 2.58
2 1.88 2.09 2.28 2.46 2.50 2.48
2.5 1.83 2.03 2.25 2.46 2.46 2.42
3 1.75 1.96 2.20 2.36 2.42 2.39
5 0.94 1.32 1.66 1.93 1.97 1.95
7 0.49 0.69 0.99 1.26 1.34 1.43

4. Critical values for the HDT statistic

As has been previously mentioned, the distribution of the test statistic of the HDT
is not known in closed form. The asymptotic results of Simpson (1989) do not apply
and thus we need to estimate the null distribution via the parametric bootstrap. To do
so we used the following procedure: 10 000 samples of size n were simulated from a
Poisson distribution with mean �. For each sample the value of the test statistic, say
Hj; j=1; : : : ; 10 000, was calculated. The 10 000 values Hj were subsequently ordered
leading to an ordered sample H(j); j=1; : : : ; 10 000, where H(j) is the jth-order statistic.
Then the 100a% critical point was estimated as H(d) where d= [a∗10 000], ([a] is the
integer part of a). This procedure was repeated 50 times. The entries of Tables 2–4
are the averages of these 50 repetitions. In Fig. 3 one can see the appropriate boxplots
for the critical values.
It becomes obvious from Tables 2–4 that the critical values are not pivotal and

they depend on both the sample size and the value of the Poisson parameter. This
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Table 4
The 99th percentiles of the distribution of the HDT statistic generated via simulation

Mean Sample size

20 50 100 200 250 500

0.3 2.66 3.35 3.67 4.06 4.19 4.52
0.5 3.31 3.84 4.02 4.39 4.45 4.75
0.75 3.80 4.08 4.35 4.62 4.71 4.83
1 4.02 4.29 4.52 4.81 4.81 5.02
1.5 4.40 4.48 4.77 4.97 5.06 5.31
2 4.42 4.60 4.86 5.07 5.11 5.38
2.5 4.39 4.54 4.77 5.10 5.15 5.31
3 4.33 4.46 4.75 5.01 5.09 5.42
5 3.42 3.71 4.18 4.55 4.62 4.86
7 2.54 2.70 3.18 3.75 3.83 4.33

Fig. 3. Boxplots of the simulated percentiles of the HDT statistic for selected sample sizes (n = 50; 100,
250, 500) respectively for a to d.

makes full tabulation of the test statistic distribution impossible. We only report here
these few critical values mainly as an initial indication. In practice, it would be better
to proceed as follows: The researcher should calculate the observed value of the test
statistic and reject the null hypothesis if this value is much greater than the reported
values (employing the necessary interpolation for values not reported in the Tables
2–4). However, if the observed value is close to the reported values, the researcher
should use the bootstrap for obtaining an estimate of the corresponding critical value for
the speci�c value of �. The use of a large number of bootstrap samples is recommended
because the large proportion of 0 values leads to a poor estimation of the percentiles
at the right tail of the distribution.
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5. Power comparison for the HDT and the LRT

In order to study the performance of the HDT, the empirical power of the test is
examined. Again the distribution of the test statistic under the alternative hypothesis
is not known. To overcome this di�culty, a simulation-based approach is adopted
again. The empirical power of the test is de�ned to be the proportion of times the null
hypothesis is rejected when the data were generated from the alternative distribution.
As critical values for the rejection of the null distribution, we used the results of the
extensive simulation of the previous section. In order to compare the HDT to the LRT,
the empirical power of the LRT was also calculated. To ensure comparability of the
two tests the same bootstrap approach, as the one described in the previous section,
was used for obtaining the critical values of the LRT.
Six di�erent alternative distributions were chosen to represent the alternative hy-

pothesis. All these alternatives have the same mean as the null distribution. Lindsay
(1981) showed that the ML estimate of the mean of a k-�nite Poisson mixture always
coincides with the value of the sample mean. The six alternatives were 2-�nite Poisson
mixtures with parameter vectors:

(A) 0.5, 0:95�, 1:05�,
(B) 0.5, 0:5�, 1:5�,
(C) 0.8, 0:9�, 1:4�,
(D) 0.8, 0:5�, 3�,
(E) 0.2, 0:5�, 1:125�,
(F) 0.2, 0:9�, 1:025�,

where � is the Poisson parameter of the simple Poisson model.
The alternatives were chosen to represent speci�c kinds of departure from the null

distribution. For example, alternative A departs very little from a Poisson distribution.
The same is true for alternative F, but now the resulting distribution is more skew.
From these alternatives 50 000 samples were drawn and the empirical power is reported
in Table 5. The values of the Poisson parameter, �= 1; 3; 5 were used to generate the
samples. The sample sizes were n=20, 50, 100, 200, 250, 500. The signi�cance level
was set to �= 5% for all the tests.
The entries of Table 5 reveal the nice performance of the HDT. The HDT seldom

performs worse than the LRT; for several cases (especially for small sample sizes)
the di�erence is substantial. This leads to the conclusion that the HDT is at least as
e�cient as the LRT, and its use is thus preferable because of its robustness. This issue
is further discussed in the next section.

6. Robustness of the HDT

Assessing the robustness of a test statistic is not a straightforward task. The main
problem is that there does not exist a global de�nition of the notion of robustness.
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Table 5
The power of the HDT and the LRT

n Alternatives

A B C D E F

LRT HDT LRT HDT LRT HDT LRT HDT LRT HDT LRT HDT

� = 1
20 0.053 0.051 0.167 0.182 0.063 0.065 0.452 0.616 0.058 0.054 0.075 0.072
50 0.051 0.047 0.290 0.286 0.066 0.069 0.832 0.902 0.053 0.050 0.088 0.085
100 0.050 0.045 0.453 0.442 0.076 0.071 0.978 0.990 0.050 0.044 0.114 0.102
200 0.051 0.038 0.702 0.684 0.102 0.088 1.000 1.000 0.058 0.047 0.155 0.128
250 0.055 0.040 0.786 0.765 0.109 0.088 1.000 1.000 0.057 0.041 0.180 0.141
500 0.051 0.041 0.960 0.959 0.131 0.119 1.000 1.000 0.052 0.039 0.242 0.208

� = 3
20 0.054 0.058 0.546 0.581 0.087 0.103 0.544 0.962 0.052 0.055 0.151 0.152
50 0.052 0.050 0.872 0.874 0.110 0.128 0.901 1.000 0.056 0.052 0.239 0.223
100 0.054 0.045 0.992 0.993 0.157 0.164 0.993 1.000 0.055 0.045 0.375 0.331
200 0.053 0.040 1.000 1.000 0.229 0.242 1.000 1.000 0.052 0.036 0.576 0.520
250 0.054 0.039 1.000 1.000 0.273 0.275 1.000 1.000 0.053 0.037 0.662 0.594
500 0.057 0.056 1.000 1.000 0.473 0.538 1.000 1.000 0.057 0.057 0.894 0.873

� = 5
20 0.051 0.049 0.835 0.862 0.111 0.138 0.299 0.985 0.061 0.059 0.247 0.246
50 0.053 0.054 0.994 0.996 0.175 0.205 0.506 1.000 0.051 0.050 0.451 0.418
100 0.057 0.041 1.000 1.000 0.268 0.292 0.763 1.000 0.060 0.044 0.681 0.621
200 0.061 0.040 1.000 1.000 0.454 0.485 0.943 1.000 0.063 0.044 0.917 0.879
250 0.053 0.043 1.000 1.000 0.510 0.562 0.974 1.000 0.057 0.043 0.951 0.932
500 0.068 0.070 1.000 1.000 0.820 0.866 0.999 1.000 0.072 0.076 0.999 0.999

Usually, a procedure is said to be robust if a departure from the assumptions does not
destroy the performance of the procedure. Two approaches are commonly considered
in assessing robustness. The �rst is termed Data Contamination and refers to the case
where some observations not belonging to the assumed model are included in the data
set thus destroying the underlying assumptions. Such a case is the presence of some
outliers at the tails of a distribution. The second approach is termed as Model Deviation
and refers to the case where the assumed model is not correct but is a little di�erent
from the true model. For mixture models, model deviation is much more complicated
as either the component distributions or the number of components can be incorrectly
speci�ed (see Lindsay, 1995).
The above two notions, however, have a common element. The usual way to de-

scribe data contamination is through mixture models, namely one assumes that the
observations come from a model (1− �)P + �G, where P is the assumed distribution,
G is the contaminant which causes the departure from the assumed model and � is the
proportion of contaminated values. With this representation, data contamination implies
model deviation. However, this representation can help us to examine the e�ect of a
few observations, usually at the tails of the assumed distribution, where the model
deviation implies more general intrinsic departures from the assumed model.
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For a goodness of �t test, like the HDT or the LRT, one seeks a test which can
detect the assumed model from the data. Clearly, the model deviation approach is
misleading. If the test cannot discriminate between the true model and the assumed
model, the test lacks power and thus it is not helpful. However, a goodness of �t test,
which can ignore a few spurious observations, is very useful in practice since for some
cases the rejection of a goodness of �t hypothesis is caused by a few observations. In
the sequel, we will consider departure from assumptions through data contamination.
The robustness of tests has been examined for several tests and from several points

of view. Ylvisaker (1977) examined the resistance of a test statistic which is de�ned as
the smallest proportion of observations which can determine the decision ignoring the
values of all the remaining observations. Lambert (1981) proposed the use of in
uence
functions to examine the behavior of statistical tests. Hertier and Ronchetti (1994)
have shown that the in
uence curves of both the level and the power of a test are
proportional to the in
uence curves of the estimators used. Later, He et al. (1990)
examined the power breakdown points of test statistics. The power breakdown point
is the amount of contamination of each alternative distribution that can lead the test
statistic to a null value. For a qualitative examination of test robustness the reader is
referred to Lambert (1982). Simpson (1989) and Lindsay (1994) have shown that tests
based on the Hellinger distance can be more robust than those based on the likelihood
because of the robustness of the Hellinger estimators.
In our case, the fact that the null distribution of the test statistic is not known and

has to be estimated via simulation, prohibits full adoption of the above mentioned
approaches. However, in order to demonstrate the superiority of the HDT relative to
LRT, some comparisons were made using the In
uence function of the test statistic or
by examining the performance of the tests when some contamination is present.
The in
uence function for a functional T (F), where F is the empirical distribution,

is de�ned as

IF(x; T; F) = lim
t→0

T ((1− t)F + t�x)− T (F)
t

(14)

and measures the change of the functional T (F) if an in�nitesimal contamination is
added at point x (see Hampel et al., 1986). From (5), one can see that by their
de�nition, the Hellinger gradient function and the gradient function can be regarded as
in
uence functions for the corresponding distances when a new component is added.
It would be interesting to examine the IF for the corresponding distances for the two
methods de�ned in (3) and (4). From (14) the limit cannot be obtained. Thus, using
de L’Hôpital’s rule we obtain, for the ML method

IF(z; L; F) =−
∞∑
x=0

d(x) lnf(x) + lnf(z); (15)

i.e. for a value of z such that f(z) is near 0 (an outlier), the IF is very large. In other
words, an outlier can dramatically change the loglikelihood.
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On the other hand, the IF for the Hellinger distance is bounded, since the distance
in (3) is bounded in [0,1]. The IF is given as

IF(z; �; F) =
1
2

[
−

∞∑
x=0

√
d(x)f(x) +

√
f(z)

]
: (16)

To prove this note that, by de�nition, �[(1 − t)F + t�z] =
√
1− t�(F) + (1 −√

1− t)√f(z). Then, di�erentiating we obtain (16). In both (15) and (16), the prob-
ability function f(x) is calculated using the corresponding estimates. If z is an outlier
we expect f(z) to be very small, i.e. very close to 0. Since the logarithm near 0
decreases more sharply the in
uence function is also sharper. This indicates that the
MHD is not in
uenced so much by an outlier. Note that the above in
uence function
is based on the distances themselves and not on the maximized (minimized) distances.
On the other hand, the test statistics associated with the two methods will have

in
uence functions which ignoring constants will depend on
√
f1(z) −

√
f0(z), for

the MHD method, and on ln{f1(z)=f0(z)}, for the ML method, where the subscript
in the probability function denotes the distribution used which is determined from
the Hi; i=0; 1. To see this result we can use the de�nition of the test statistics as the
di�erences between the distances under the two hypotheses. Thus, the IF will be the
di�erence of the two IF for the corresponding distances, and thus the �rst terms in
(15) and (16) will lead to the statistics and the remaining of the above mentioned
quantities.
Two facts support the superiority of the MHD method. The �rst is that if an outlier

is present, the MHD estimates do not di�er much between the two models whence an
in
uence close to 0 is expected. For the ML method, on the contrary, the change of the
estimates causes a positive in
uence. It is known that a mixed Poisson distribution has
thicker tails than the simple Poisson distribution with the same mean (Shaked, 1980).
For testing purposes the means of the two models are assumed to be equal (Lindsay,
1981) and thus the ratio f1=f0 is greater than 1; the in
uence is always positive.
An empirical result will also be given to further support the above-mentioned issue.

Suppose that the functional T (F) is the corresponding test statistic for the two meth-
ods. Since this statistic does not have a closed-form expression, it is not possible to
compute the in
uence function. An alternative approach is the use of the Empirical
In
uence Function. According to Hampel et al. (1986, p. 93), the EIF of the estimator
based on any sample is a plot of the values of the estimator, if one more observation
(contaminant) is added at the point x.
So, this EIF was used to examine the behavior of the two tests. One thousand

samples of size n=25, 100, 250, 1000 were sampled from a Poisson distribution with
parameter =1. The EIF was then calculated by adding a (n+1)th observation at point
x. The averaged in
uences for all the points x = 0; 1; : : : ; 20 were then reported. By
such an approach, results due to sampling errors were eliminated and a clearer and
more reliable picture of the robustness of the test to contamination was obtained.
Fig. 4 can show the behavior of both the HDT and the LRT. The LRT is clearly

in
uenced very much by the outlier observation, and even when the sample size is
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Fig. 4. (a) The E-If for the LRT statistic, when one more observation is added at point x. (b). The E-If for
the HDT statistic, when one more observation is added at point x.

as large as 500, an outlier can lead to incorrect conclusions. Note also that an outlier
can lead the test statistic to in�nite values. This means that the resistance according
to Ylvisaker (1977) and Simpson (1989) of the LRT is equal to 0, since an outlier
is su�cient to make the test statistic very large. The behavior of the HDT is very
di�erent. On average, the test will not reject the null hypothesis, and an outlier cannot
alter the decision. Note also that according to Simpson (1989), the resistance of the
HDT can be calculated and it is always larger than d2(F)=(1 + d2(F)), where d(F) is
the di�erence of the minimized distances of the two hypotheses.
In the sequel, the behavior of the test is examined when more outliers are present

using samples from a Poisson distribution with mean 1, contaminated by a degenerate
distribution at point x=8; 12. The proportions of contamination considered were �=0:01,
0.02 (i.e. � is the probability that an outlier observation is drawn at x). A robust test
ought to cope with such a contamination, in the sense that the signi�cance level of the
test must not increase very much. The signi�cance level was set at � = 5%. Table 6
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Table 6
The calculated signi�cance level of the test for contaminated models. The actual level is 5%

Models used in the comparison
x = 8, � = 0:01 x = 12, � = 0:01 x = 8, � = 0:02 x = 12, � = 0:02

Sample size HDT LRT HDT LRT HDT LRT HDT LRT
n

20 0.054 0.222 0.050 0.224 0.063 0.426 0.050 0.428
100 0.073 0.620 0.050 0.652 0.114 0.907 0.052 0.925
250 0.090 0.756 0.049 0.913 0.134 0.986 0.048 0.998
500 0.094 0.935 0.044 0.986 0.159 1.000 0.050 1.000

contains the true signi�cance level when samples were taken from the 4 above described
models for both tests. The entries of the table were based on 10 000 simulated samples.
From the entries of Table 6 one can see again that the HDT is far more robust.

When the contamination is at x = 12 the HDT almost ignores this observation. Note
that for n = 500 and � = 2% we have 10 outlier observations and the HDT ignores
them. On the contrary, the LRT cannot cope with such a contamination, and as the
sample size increases it almost surely rejects the null hypothesis.
It should be emphasized that robustness and power are rather con
icting issues for

tests, especially when one aims at examining goodness of �t tests as is the case here.
The reason is that a sensitive test is required, which can detect departures from the
model under the null hypothesis. So, if a test is very sensitive, a few observations can
destroy its performance. In this sense, it is preferable to �nd a test which is not so
sensitive and can detect ‘faults’ which are caused by the alternative hypothesis but not
from a contamination mechanism. HDT seems to be such a test, which combines high
power when the data are not contaminated and robustness when the data have been
contaminated.
Lindsay (1995) demonstrated that Neyman C(a) tests can also have high power. In

the mixture case, such a test does not require iterative algorithms and thus it is more
practical. The HDT introduced in this paper has the added property of being robust
and hence it is recommended when the data are suspected to be contaminated, at the
cost of requiring some computing time.

7. The Hellinger gradient function as a diagnostic tool for the Poisson distribution

In this section we will examine the use of plots of the Hellinger gradient function as
a diagnostic tool for detecting whether a k-�nite mixture is appropriate and particularly
to detect if the Poisson distribution is an adequate distribution for modeling the data.
The idea is based on the use of the simple gradient function introduced by Lindsay
and Roeder (1992). They proposed that the plot of the gradient function can reveal
if the homogeneity model is more appropriate than the inhomogeneity model, i.e. if
a simple Poisson distribution is more adequate than a �nite Poisson mixture, and in
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general if a k-�nite mixture is more adequate than a (k +1)-�nite mixture model. The
key ingredient is that if the Poisson model is true, the gradient function should be a
concave function with maximum at the point of the sample mean. Any deviation from
this picture reveals departures from the simple Poisson model keeping in mind that
small deviations can have been caused by sampling variability. We will follow such
an approach by using the Hellinger gradient function instead of the gradient function.
The aim of a diagnostic plot is similar to the aim of a detector. It cannot say that

something is surely true, but it can reveal if something is clearly false. Diagnostics can
simply navigate through di�erent choices. This is the case of the Hellinger gradient
function as diagnostic tool. The concavity implies that the simple Poisson model is
more adequate. However, a non-concave picture it is no proof of non-poissonity but
an indication for this.
Let us now examine more thoroughly this issue. If the Poisson model is true, from

the results of Section 3, we know that the Hellinger gradient function has zeroes only
at the point of the MHD estimate of the Poisson parameter, and it is concave. Thus, a
plot of the function su�ces to provide a picture about the consistency of the assumed
Poisson model. On the other hand, the resistance of the MHD method when some
outliers are present makes the Hellinger gradient function a more promising diagnostic
plot. Another interesting point is that, as Fig. 3 depicts, the gradient function will
not be concave about 50% of the time when the data are generated from a Poisson
distribution. For the Hellinger gradient function, the probability is lower. Therefore,
the Hellinger gradient function can better detect if the data come from the Poisson
distribution. Fig. 5 depicts some cases sampled from a Poisson with mean equal to
1 and sample size n = 100. Case 1 corresponds to the case when the two functions
disagree. The gradient function shows that the Poisson model is inadequate, while the
Hellinger gradient function supports the opposite as can be seen from the concavity
of the function. In case 3, both functions support the simple Poisson model, while in
cases 2 and 4 the simple Poisson model is judged as not adequate by both functions.
One can see that the Hellinger gradient function can better detect the true model.
Expanding the use of the Hellinger gradient function, we may use it for more than

one component. In each case the concavity of the Hellinger function supported the
model with k-points of support, while any departure is evidence against this model in
favor of a model with (k + 1) points of support.
Another important issue is the sampling error of the Hellinger gradient function.

Lindsay and Roeder (1993) proposed the use of a con�dence band, using component-
wise asymptotic normality for all the points where the gradient function is evaluated.
However, the asymptotic result is rather poor for small sample sizes. A truncated ver-
sion of the gradient function was also used, because of the unlimited range of the
Poisson distribution.
Finally, in the case where some outlier observations have contaminated the data, the

Hellinger gradient function has a local maximum at the support point but it also has
a sharp peak near the region where the outlier exists. On the contrary, the gradient
function, does not have a local maximum. The above implies that both functions must
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Fig. 5. The gradient function and the Hellinger Gradient function for samples of size n=100 from a Poisson
distribution with parameter 1.

be plotted in the entire range of the data. Sharp e�ects away from the main body of
the data indicate outliers.

8. Conclusions

The MHD method for �nite Poisson mixtures is both e�cient and robust. It is also
computationally feasible with low e�ort (at least the e�ort required is almost identical
with the ML method). Since it combines these two potentially useful characteristics,
its use is recommended. We have shown that we may use Hellinger distance-based
methodologies for semiparametric estimation, resulting in hypothesis tests and diagnos-
tic plotting which are very e�cient and at the same time robust. The latter property
is not true for likelihood based inferences when an outlier may cause inconsistencies.
Therefore, MHD methodologies seem to be viable (if not better) alternatives which
can cope with spurious data sets, and thus are highly recommended. Further research
would be interesting in order to expand its use.
For example, consider the likelihood-based cluster analysis of rare events given

in Symons et al. (1983). In such applications the presence of an outlier can cause
problems if the ML estimates were used for obtaining the membership probabilities.
An in
uenced ML estimate can lead to inconsistent results. A minimum Hellinger
distance-based approach can be useful to cope with outliers in such applications.
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The LRT was employed by Karlis and Xekalaki (1999) in a sequential manner to
test for the number of components. The HDT described in Section 3 can be also used
in a in a similar context.
Extensions of the Hellinger distance-based methodology to cases of �nite mixtures

of other distributions (like the normal or the exponential) are obvious. However, the
e�ort is greater, since the MHD estimation is not so clear for continuous models. Cutler
and Cordero-Brana (1996) have derived MHD estimators for �nite normal mixtures.
So, the MHD methodology presented in this paper could be extended to the case of
k-�nite normal mixtures.
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Appendix. The algorithm for deriving the MHD estimates

Karlis and Xekalaki (1998) developed a simple iterative algorithm for calculating
the MHD estimates. This algorithm starts with initial values for the parameters, which
are updated at each iteration until some kind of convergence is detected. Several initial
values ought to be considered in order to be sure that the global minimum has been
obtained. The steps of the algorithm are the following:
Step 1. Give the values obtained from the ith iteration �(i)j ; j = 1; : : : ; k, and p,

j = 1; : : : ; k − 1, calculate the weights wxj, using wxj = f(x | �(i)j )=
√
f�(x) where f�(x)

is calculated using the current estimates.
Step 2. Calculate the parameter estimates using

Step 2a �(i+1)j =

∑m
x=0 wxjx

√
d(x)∑m

x=0 wxj
√
d(x)

; j = 1; 2; : : : ; k

and the mixing proportions using

Step 2b p(i+1)j =

∑m
x=0 p

(i)
j wxj

√
d(x)∑m

x=0

√
d(x)f�(x)

; j=1; : : : ; k − 1 and pk=1−
k−1∑
i=1
pi;

where m denotes the largest observed value, and with f�(x) represents the k-�nite
mixture given by (1).
Step 3. Check if some convergence criterion is satis�ed, otherwise go back to step

1, using the current estimates as initial values to make the next iteration.
Clearly, we only need initial values for the estimates. If the initial values are within

the acceptable range for the parameters, the estimated values are also within the range
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of parameters. The algorithm is very similar to the well known EM algorithm for
mixtures.
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