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In this paper a new process capability index is proposed, which is based on the proportion of conformance of the
process and has several appealing features. This index is simple in its assessment and interpretation and is
applicable to normally or non-normally distributed processes. Likewise, its value can be assessed for continuous
or discrete processes, it can be used under either unilateral or bilateral tolerances and the assessment of
confidence limits for its true value is not very involved, under specific distributional assumptions. Point
estimators and confidence limits for this index are investigated, assuming two very common continuous
distributions (normal and exponential).
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1 INTRODUCTION

Process capability indices (PCIs) aim to quantify the capability of a process (X) to meet some
specifications that are related to a measurable characteristic of its produced items. These spe-
cifications are -determined through the lower specification limit (L), the upper specification
limit (U) and the target value (7). A variety of such indices has been developed in the last
two decades. Unambiguously, the most prominent among them are C,, Cp, Cpm and
Cpmk- A comprehensive discussion of these four indices (and many other indices too) is pro-
vided by Kotz and Johnson (1993), Kotz and Lovelace (1998) and Kotz and Johnson (2002).

A deficiency of the indices C,; Cpx, Com and Gy is that their values can be assessed
solely for procésses for which both the lower and the upper specification limits have been
specified. Nevertheless, sometimes one may be faced with a unilateral process, i.e. a process
for which only a lower or an upper specification limit has been set. In such cases, the assess-
ment of these four indices becomes impossible and we have to resort to the indices CPL and
CPU suggested by. Kane (1986). Therefore, it is apparent that there exists a limitation in the
use of the four standard indices.
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One further weakness of the four standard PClIs, is that their definition is based on the
restrictive assumption that the distribution of the process is normal. Even though this as-
sumption is not quite evident, it is reflected from the constants that appear in their denomi-
nators, whose selection is related to the properties of the normal distribution. This has the
implication that their assessment and interpretation for processes not normally distributed
may lead to utterly wrong conclusions. In order to overcome this deficiency, Clements
(1989) proposed some generalizations of Cp, and Cp, while Pearn and Kotz (1994-1995) ex-
tended the initial idea of Clet_nents to Cpm and Gy

Despite the fact that these generalized indices can be used regardless of the form of the
distribution of the process, they have some drawbacks. In particular, they do not have a
direct relationship with the proportion of conformance (p) of the process, defined as the
probability of producing within specifications (sometimes instead of this term the term
yield is used). Besides, they cannot be assessed if the examined process is discrete and
the derivation of the distributions of their estimators and the construction of confidence
limits for them are very cumbersome without assuming particular distributional forms
(see, e.g. Perakis and Xekalaki, 1999). However, even in this case the distributions of
the estimators of the more involved generalized indices, such as Cpm and Cymy, are intract-
able thus making the construction of confidence limits for them a rather difficult task.
Borges and Ho (2000) derived the approximate distribution of the estimator of the general-
ized index Cyx making no specific distributional assumptions. They also proposed a meth-
od that leads to approximate conservative lower confidence limits for the true value of the
same index."

Another important disadvantage of the four standard indices and their generalizations is
that they are not applicable to situations where except for the specification limits, a mini-
mum acceptable yield has been set. For instance, let us assume that we have two pro-
cesses, say A and B. The yield of process A is supposed to be 0.996, while that of
process B is 0.985. Moreover, the customer of the product produced from process A
requires a yield at least equal to 0.997, while the customer of the product produced
from process B is less strict and requires a yield at least equal to 0.980. Obviously, in
such situations the capability of a process does not depend solely on the specification lim-
its, while it is also dependent on the value of the minimum acceptable yield. This vaiue
may differ, depending on the nature of the process. Therefore, a yield that is regarded as
high for a process may be regarded as low for another. Indeed, according to the require-
ments of the customer of process B, the process is capable since its yield exceeds the
minimum allowable yield. On the other hand, even though the yield of process A is higher
than that of process B, the customer will not regard it as capable because its yield is smal-
ler than its minimum acceptable value. The use of the four standard PCIs is not appropri-
ate in such situations, since their values do not take into account the minimum acceptable
yield of the process.

In the next section, a new index is defined that overcomes the deficiencies of the standard
PCIs described above and has several appealing features. Its basic properties are examined
and a general estimator of it is proposed. Sections 3 and 4 deal with the new index in the
case of normal and exponential processes. Under each distributional assumption, point esti-
mators for the new index are suggested and lower confidence limits (Icls) are constructed.
Upper confidence limits can also be obtained in a similar manner. However, only the case
of Icls is considered as these are of greater interest (due to the fact that large values
of PCIs are desirable) and have thus attracted a lot of attention in the literature (see, e.g.
Chou et al., 1990; Li et al, 1990; Boyles, 1991; Kushler and Hurley, 1992). Finally,
in Section 5 the obtained results are briefly discussed and some topics that deserve further
investigation in connection with the new index are pointed out.
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2 THE INDEX Cp.

In this section, a new PCI is introduced which overcomes the drawbacks of the standard in-
dices discussed in the previous section. It is defined as the ratio

_1-m
pc — 1_p

»

where po denotes the minimum allowable proportion of conformance (pc). The value of pg
must be intuitively close to unity and depends on the nature of the examined process and
the requirements of the customers.

It is worth noting at this point, that this index has some further appealing features:

e it is applicable even to situations of the type “quantify the capability of a process if the

specification limits are L, U and the minimum allowable yield is py”

it can be assessed under either unilateral or bilateral specifications

its definition is not based on the usual assumption of normality

it is directly associated with p and thus its interpretation in its terms is simple

it satisfies (under some conditions) the property that all the standard PCI have, which is, to

be equal to the unity if the process mean is located exactly at the midpoint of the speci-

fication area (i.e. u=M=(L+ U)/2) and p =0.9973

e its assessment is relatively simple

e it can be readily understood by practitioners

e assuming that the distribution of the process is normal, the assessment of confidence limits
for its true value is fairly simple

o under specific non-normal distributional assumptions the construction of confidence limits
for its true value is feasible

e it can be assessed for discrete processes as well

As mentioned before, the value of the minimum allowable proportion of conformance py is
intuitively required to be close to 1. Whenever the value of py is not specified, the value
0.9973 seems to be a plausible choice. By this selection the index has the property of
being equal to unity if p =0.9973 and the process mean equals M — a property that all the
standard PCIs possess. Note that despite the fact that the value 0.9973 is connected with
the properties of the normal distribution, it plays an important role in statistical process con-
trol and is customarily regarded as a sufficiently large value of p.

In the sequel, for simplicity, it is assumed that py=0.9973. Nonetheless, the discussion
given below can be modified easily assuming any other value of p,. Selecting po to be
equal to 0.9973, the index C,,c can be rewritten in the form

~0.0027
=T
From the definition of C,, it follows that the yield of the process can be expressed directly in
terms of this index. Indeed, solving (2.1) for p, it follows that p=1 — 0.0027/C,..

At this point, it would be interesting to remark that Cp. can be associated with Yeh and
Bhattacharya’s (1998) index defined as

U
Cr = min[p—é,p—o},
o p2

@.1)

where p,=P(X <L), p,=P(X>U), and p}, paj are the expected proportions of non-
conforming products that the manufacturer can tolerate on the lower and upper specification



710 M. PERAKIS AND E. XEKALAKI

limits, respectively. The value of C, coincides with that of Cr provided that the process is
symmetric, its mean coincides with M, and p% = p{. However, separating p into two parts
(p1 and p,) and taking their minimum leads (for any assumption on the distribution of the
process) to a distribution of the estimator of the index with a quite involved form and
thus the construction of confidence limits for the index C,becomes extremely tough without
resorting to the method of bootstrap. Moreover, the yield of the process cannot be expressed
directly as a function of the index Cy-something that is possible in the case of the index C..

Let us now examine the behavior of the index C for different values of p. Obviously if
p=0.9973, then C,. = 1. If the yield of the process is greater than 0.9973, then C,,. > 1 and
as p approaches unity it tends to infinity. On the other hand, if p < 0.9973, then C,c <1 and
the value of the index becomes negligible as p tends to zero. Obviously, the smallest value
that p may take is zero and so the smallest possible value of this index is 0.0027 (or, gener-
ally, 1 — po). -

The only unknown parameter involved in the definition of the index Cy is p. Its value
depends on the form of the distribution of the process and can be estimated on the basis
of a random sample collected from the examined process. If we denote the estimator of p
by p (the functional form of p depends on the distribution of the process), then the index
Cpe can be estimated by

- 0.0027
Cpc = Tﬁ .

In the next two sections the properties of estimator (2.2) are examined for two very common
distributions: the normal and the exponential.

2.2)

3 THE INDEX C,. FOR NORMAL PROCESSES

Assuming normality of the examined process, its yield is given by

p=PL<X<U)= (D(———U;”) _¢(?>,

where u, 6 denote the mean and the standard deviation of the process, respectively and ®(-) is
the cumulative distribution function of the standard normal distribution. The value of p can
be estimated using the estimator

o))

where X, S are the sample mean and the sample standard deviation respectively, obtained
from a random sample. As Kotz and Johnson (1993) stress, the estimator p is biased. How-
ever, due to the complexity of the minimum variance unbiased estimator of p, they conclude
that the use of p is in most of the times fairly adequate.

Three alternative techniques for constructing approximate lower confidence limits for the
true value of p are described by Wang and Lam (1996), while Perakis and Xekalaki (2001)
consider a modification of one of them which achieves a better coverage. In view of the fact
that the index C, is a function of p, it becomes evident that a proper modification of these
methods makes the construction of Icls for the index C;, feasible. The four methods and their
implementation for the construction of Icls for C, are discussed in the sequel.
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The first two methods are based on the articles of Owen and Hua (1977) and Chou and
Owen (1984), respectively. In particular, Owen and Hua (1977) sought confidence limits
for the probabilities p; = P(X < L) and p, = P(X > U), while Chou and Owen (1984) con-
structed one-sided simultaneous confidence regions on the lower (p;) and the upper (p,) tail
areas of the normal distribution. Extensive tables containing the values of the confidence lim-
its obtained from these two methods are included in the corresponding articles. Denoting the
upper confidence limits for p; and p, obtained by any of these two methods by p} and p3,
respectively, Wang and Lam (1996) stress that a 100(1 — )% Icl for p is given by

1-p} —p5. 3.1

This limit can be used as a basis for constructing a Icl for Cy,. Actually, starting from Icl (3.1)
one may find that a 100(1 — )% approximate lcl for the index C,. is given by

0.0027
pi+ps

(3.2)

An obvious drawback of the two methods described above is that their implementation
requires use of the entries of the tables provided in the corresponding articles for the confi-
dence limits of p; and p,. This restricts their use and thus Wang and Lam (1996) introduced a
third method for constructing an approximate lcl for p which is much simpler and does not
require any special tables. In particular, Wang and Lam (1996) sought a value p* such that
P = p*) = 1 — «. Substituting P(L < X < U) for p they obtained

PIPX —KIS<X <X +KS)>p'l=1—q,

where K; = (X — L)/S and K, = (U — X)/S. Standardizing the terms, so as to result in the
standard normal distribution function, the left hand side term in this equation reduces to

ol o{ini) ]

where Z = ./n(X — y)/o follows the standard normal distribution and ¥ = (n — 1)$%/?
follows the chi-square distribution with n — 1 degrees of freedom (df). Wang and Lam
(1996) point out that if the probabilities that K, and K, are negative are negligible, this prob-
ability can be approximated rather accurately through

1 Y 1 Y .
el i)

and concluded that the desired 100(1 — «)% approximate Icl for p is given by

(3.3)

=0 L+max(1< K>) a1 ) L—min(K K3) fo-v
p = «/77 1, 882 n_1 ﬁ 1, 82 11’
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where x2_, , denotes the o quantile of the chi-square distribution with (» — 1) df. Based on
Icl (3.3) one can easily find that a 100(1 — «)% approximate Icl for Cy. is given by
0.0027
—_— (3.4)
1—p*

Perakis and Xekalaki (2001) showed that the coverage of Icl (3.3) can be improved sub-
stantially using a variant of it given by

- 1 1
P=®(W+C1) *‘D(ﬁ*Cz), (3.5)
where
2
C = max(Kl,Kz)(l +1) Zn-la
nf¥n—1
and
2
C2 = min(Kl,Kz)(l +1) M.
nf{n—1

Taking advantage of this result, one can obtain an alternative Icl for C,. Indeed, from (3.5) it
can be shown easily that a 100(1 — )% approximate Icl for Cp is given by

04002~7 . 3.6)
1-p

In order to investigate the performance of Icls (3.4) and (3.6) an extensive simulation study
was conducted. Specifically, random samples of various sizes were generated from the nor-
mal distribution for various parameter combinations. For every combination of parameters
and sample size, the total number of the generated samples was 25,000. For each of these
samples, Icls for the index C,,. were assessed using formulae (3.4) and (3.6) and the percen-
tage of times at which the actual index value exceeded each of the two Icls was calculated.

TABLE I The Examined Processes and Their C,, Values.

k; k; u o Cpe ki k2 u 4 Cpe

1 1 15 5 0.00850 3 4 14.285 1.428 1.95403
1 2 13.333 3.333 0.01488 3 5 13.75 125 1.99947
1 3 12.5 25 0.01687 3 6 13.333 1.1 1.99989
1 4 12 2 0.01701 3 7 13 1 2.0000
1 5 11.666 1.667 0.01701 4 4 15 1.25 42.6023
1 6 11.428 1.428 0.01701 4 5 14.444 1.111 84.4396
1 7 11.25 1.25 0.0170 4 6 14 1 85.2020
2 2 15 25 0.05933 4 7 13.636 0.909 85.2049
2 3 14 2 0.1120 5 5 15 1 4701.76
2 4 13.333 1.667 0.11850 5 6 14.545 0.909 9371.21
2 5 12.857 1.428 0.11867 5 7 14.166 0.833 943.09

2 6 12.5 1.25 0.11867 6 6 15 0.833 1363367.5
2 7 12.222 1111 0.1186 6 7 14.615 0.769 2737338.6
3 3 15 1.667 0.99995 7 7 15 0.714 10536237
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The sample sizes selected were n =25, 50, 100 and 200. It was assumed that L =10 and
U=20 and various combinations of k; = (u — L)/o and k, = (U — u)/c were chosen.
Due to the symmetry of the normal distribution, processes with u> 15 (i.e. k; > k;) have
not been considered. The examined processes and their Cp. values are summarized in
Table I, while the results of the study are summarized in Tables II and III.

The top value in the entries of the latter two tables corresponds to the observed coverage
(OC) of the Icl given by (3.4), while the bottom value corresponds to that of Icl (3.6). Table II
refers to the OC for confidence level 0.90, while Table III refers to the OC for confidence
level 0.95. One may observe that in almost all the cases the OC of Icl (3.4) is greater than
the nominal coverage. This implies that Icl (3.4) is conservative, namely it includes the actual
value at a higher percentage than the nominal. In addition, the OC seems to approach the
nominal coverage as the sample size increases, only in the case where k; =k,. In all the
other cases, the improvement that is achieved increasing the sample ‘size seems to be
unimportant. Finally, it is obvious that in almost all the cases the OC of Icl (3.6) is closer
to the nominal than that of Icl (3.4).

4 THE INDEX C,. FOR EXPONENTIAL PROCESSES

In practical situations, one may often be faced with processes whose distributions are far
from being normal. In this section, the index C, is considered under the assumption that
the underlying distribution of the examined process is of a non-normal form and, in particu-
lar, exponential. Such a distributional assumption is generally valid for data that have a nat-
ural one-sided boundary (frequently located at zero) with a large probability mass
concentrated near this boundary. Examples of cases where this distributional assumption
seems to be reasonable are the time required until failure in a life test, the surface roughness
and the coating thickness, as Gunter (1989) points out. It should also be remarked that, the
fact that the exponential distribution arises frequently in industrial processes is also pointed
out in the article by Yeh and Bhattacharya (1998).

In measuring the capability of a process whose distribution can be regarded to be the
exponential distribution, it is reasonable to assume that in most of the times only one speci-
fication limit has been set. This may be either U (e.g. surface roughness), or L (e.g. time until
failure). In the sequel, to avoid confusion, we adopt the notation Cp, for the case of an upper
specification limit and Cp, for the case of a lower specification limit. In the rare case where
both U and L have been assigned, the distribution of the estimator of the index C,. becomes
quite complicated and therefore this case is not considered here.

If only U has been set, the process yield is given by P(X < U) = 1 — e~*V and the index
Cpeu is defined as

0.0027
Cpcu = 6'7 (41)

On the other hand, if only L has been specified, p = P(X > L) = e~* and thus the index Cpq
is defined as

0.0027

pcl = 1" “4.2)

The only unknown parameter that is involved in the expressions of the indices Cpc, and
Cpal is A. In practice, the true value of 4 is unknown, and hence the need for its estimation



716 M. PERAKIS AND E. XEKALAKI

becomes evident. As is well known, if a random sample X),... X, from the exponential
distribution with parameter A is available, the maximum likelihood estimator (mle) A of A
is the reciprocal of the sample mean, i.e.

Substituting 1 for Ain formulae (4.1) and (4.2) results in the following estimators of C, and
dei

Jx 0.0027 A 0.0027
Cpcu = pel =

TR = .
e—AU 1 —e

The probability density functions (pdfs) of é‘pcu and é'pc1 are given in Theorems 4.1 and
4.2, which are given below. The results stated in both these theorems can be verified readily.

THEOREM 4.1 The pdf of W = é’pcu is given by

(Undy'
T(n)

fulw) = (5.9145 + Inw) ™"~y AU/GIESHW) 00027 < w < oo.

THEOREM 4.2  The pdf of W = é‘pcl is given by

_(AnL)" 1=0.0027\\ """ 1 0007w 00027
fuw)= o In ” & —— ooy 00027 <w < 0.

The form of the pdf of C'pcu is depicted in Figure 1 for three different sample sizes (n =25,
50 and 100) and for U= 10 and A =0.6. The vertical line corresponds to the actual value of

FIGURE 1 The probability density function of W = C‘,,c., for various sample sizes assuming that U = 10 and
A=06.
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Cpeus Which, for the selected combination of U and 4, equals 1.089. One may observe that as
the value of n increases, the amount of mass concentrated near the actual value of the index
increases and the mode of the distribution reaches the actual value of Cp,.

The remaining part of this section deals with the problem of constructing Icls for the in-
dices Cyey and Cpq. In order to construct a 100(1 — @)% exact Icl for Ccy, one first has to
construct a 100(1 — )% exact Icl for 4. Considering that the distribution of ¥ = }_ Xj, is the
Gamma, it can be proved that the distribution of the auxiliary random variable Z= AY does
not depend on . Actually, thg pdf of Z is of the form g(z) = [['(n)]"'z*'e™?, z > 0. The as-
sessment of a 100(1 — )% Icl for A can be achieved using the o quantile of the distribution
of Z. Denoting this quantile by c¢;, we conclude that P(c; < Z) =1 —a = P(c;/Y <) =
1 — a. Hence, the quantity ¢;/Y is a 100(1 — «)% exact lcl for A. Besides, since

€1 _ —Uc AN 0.0027 .
P(Y < l) _P<exp( 7 ) >e ) _P(——exp(—Ucl/Y) < Coeu |

it follows that a 100(1 — )% exact Icl for the index C, is given by
0.0027
exp(—Uc1/Y)’

Similarly, denoting the 1 — a quantile of Z by ¢, it can be shown that a 100(1 — «)% Icl for
Cpal is given by

4.3)

0.0027
_ 4.4
1 —exp(—Lcy/Y) @4

Note that the values of ¢, and ¢, that are involved in the assessment of (4.3) and (4.4) can
be obtained from any statistical package. Finally, if the sample size is sufficiently large, one
may obtain approximate lower confidence limits for C,,¢; and C,, based on the large sample
properties of ¥,

5 DISCUSSION

In this paper, a new PCI is presented that overcomes many of the deficiencies of the standard
PCIs. Some of the advantages of this index are that it can be used for processes with unilat-
eral or bilateral tolerances, for continuous (normal or non-normal) or discrete processes, and
can take into account the minimum acceptable process yield (if such a quantity has been set).
Properties and estimation problems connected to this new index have been studied for normal
and exponential processes. Because of its appealing features, examining its potential use in
other types of processes often arising in connection with applications would be of practical
value. Moreover, as already pointed out, one of the advantages of the new index is that its
definition allows its use for discrete processes as well. It would therefore be interesting to
examine the implementation of Cy, in the case of other types of processes, continuous or dis-
crete (e.g. chi-square, Poisson, negative binomial).
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