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Improving the EM algorithm for mixtures
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One of the estimating equations of the Maximum Likelihood Estimation method, for finite
mixtures of the one parameter exponential family, is the first moment equation. This can help
considerably in reducing the labor and the cost of calculating the Maximum Likelihood
estimates. In this paper it is shown that the EM algorithm can be substantially improved by
using this result when applied for mixture models. A short discussion about other methods
proposed for the calculation of the Maximum Likelihood estimates are also reported showing
that the above findings can help in this direction too.
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1. Introduction

Mixture models are widely used to describe inhomogeneous
populations in a variety of fields of statistical applications
including biological applications. Since inhomogeneity is a
rather common fact in biological populations, mixture
models are useful devices for its description. A well known
example in fishery studies concerns the modeling of the
weight of fish. Since the weight of a fish depends on its age,
the presence of fish of different ages in the sample leads to
the rejection of the simple homogeneous model. In this
situation, a mixture model is more appropriate. Several
other examples and applications of mixture models can be
found. During the last few years, computers made possible
the development of efficient algorithms that made the es-
timation of such models an easy task.

A k-finite mixture of a distribution defined by the prob-
ability density function /(x| 8) is defined by the density

k
g(x) = _pif(x10) (1)
=

where p; > O for j=1,...,k; Zf:dl’j =1 are the mixing
proportions and 6; are the parameters for each subpopu-
lation. The mixing proportion p; can be regarded as the
probability that a randomly selected observation belongs
to the j-th subpopulation. The parameters §; can be vector
valued. This is a useful model to describe inhomogeneous
populations that can be thought of consisting of k& sub-
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populations. Each subpopulation has a distribution of the
same parameteric form with varying parameter value. The
distribution which assigns positive probability p; at the
point 8,, j=1,...,k, is referred to as the mixing distri-
bution.

Given a random sample X|,X;,...
function L is given by

, Xy, the likelihood

n

L= ﬁg(x,») = H(ijf(xi | gj))*

i=1

The logarithm of the likelihood is therefore given by

n k
t=logL= Zlog<zp,~f(x,« | 9,-)) - 2
i=1 j=1
In order to obtain the Maximum Likelihood Estimates
(MLE) for the k-finite mixture model, we have to differ-
entiate (2) with respect to the parameters and to equate the

result to zero. Thus, the estimating equations are:

o N~ 96l0) _ J=l. k()

—BF,-_ o g(x) 00;
O fla0) S0 _,
Op; ; g(x:) '

j=1,.. k-1 (4

The system of equations (3) and (4) must be solved to
obtain the MLE. In the next section, it is shown that if
f(x|6) belongs to the one-parameter exponential family,
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the ML estimators satisfy the first moment equation. Some
of the best known distributions belong to this family and
hence the results can be applied to many cases where finite
normal mixtures, finite exponential mixtures, finite Poisson
mixtures, among other models are appropriate. In Section
3 we describe how this result can be used to substantially
improve the speed of the well known EM algorithm for
mixtures, providing some simulation results for the cases of
finite normal and finite Poisson mixtures. We also provide
a discussion on how some other algorithms designed to find
the MLE can be improved using the results of Section 2.

2. The main result

Let us consider that the density f(x|6) comes from the
one-parameter exponential family, i.e. that f(x|0) can be
written in the form

f(x]0) = exp[bxc + h(x) — k(0}], (5)

where ¢ is some constant and the functions 4(x) and k(6)
depend only on x and 0 respectively.

From the estimating equations for the general finite
mixture model given in (3) and (4) we obtain, by multi-
plying the ith equation in (4) by p;, j=1,2,...,k, and
adding the resulting equations

(w1 00) ]
; g(xi) " (©)
On the other hand, since from (4)
Zﬂx’ Zf(x’lek J=1, 0k

it may be concluded that the maximum likelihood estimates
satisfy

Z”’m =k (7)
Also, from (3) and (5) it follows that

meg x—w(0)) =0, j=1...k (8

i=1 g(’fl
Then, setting w;; = f(x;10,)/9(x;), i=1,...,n,j=1,...,k
equation (8) can be written as
Zw,/xlf ) =0, j=1,..k 9)

If we cons1der the mean value reparameterization for the
density f(x|6) and solve for the mean value parameters we
obtain by combining (7) and (9)

o Wi

u0) = ==L =,k (10)

As is well known, the mean of a mixture is the weighted
mean of the means of all components weighted by the
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mixing proportions. Then, from (1) and (10) the estimator
of the mean of the finite mixture is

Zp,u(e ) = Z Dtk

pif(xi16))
Zz e,
Zi:1x147
= =X,
n n

namely the sample mean.

Hence, the MLE of the mean value parameter of a -
finite mixture from the one-parameter exponential family
coincides with the first moment. An alternative proof of
this result which seems to have passed unnoticed was given
earlier by Lindsay (1981). The above result is true also for
members of the power series family of distributions (see for
example Johnson e al., 1992). Sprott (1983) showed that
this result holds for the convolution of two power series
distributions as well as for compound (or generalized)
distributions of members of the power series family. A
generalization of the power series family shares the same
property as Kemp (1986) showed. It is interesting that
some of the most well known distributions belong to the
one-parameter exponential family, like the Poisson, the
normal, the exponential, the gamma and other distribu-
tions. For many of them the parameter 6 represents the
mean of the distribution. Behboodian (1970) has shown a
similar result for finite normal mixtures. The above results
hold also in the semi-parametric case where the number of
support points is not known a priori (see Lindsay, 1995).

In the next section, the above result is used for improving
the EM algorithm.

3. Improving the EM algorithm for finite mixtures
and other applications

From the previous section, it becomes obvious that the
estimating procedure can be simplified if one of the equa-
tions in (3) or (4) is replaced by the first moment equation.
For example, the EM algorithm proposed by Hasselblad
(1969) to deal with the ML estimation in mixture models is
an iterative algorithm using the above equations. The EM
algorithm can be described as follows:

E-step: With the current estimates p?'4 and p(69) calculate
wij = PJldf(xl I 001d)/g(xl)

i:l,...,n,

j=1,... .k

M-step: Obtain the new estimates of the parameters p(6;)
and p; from
'u(gneW) _ E?:I WiXi and pnew _ Z?:l Wij

new) — £oi=l TV new — Lwizl T

/ i Wi / n

j=1,... .k
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Then, go back to the E-step replacing the old values with
the new ones from the M-step.

The iterative scheme terminates when some condition
(indicating convergence) is satisfied. We can verify easily
that the above scheme always satisfies the requirement for
the first moment.

The weights w;; are the posterior probabilities of the
observation X; to belong to the j-th subpopulation. This
representation is more concrete with respect to the general
form of the EM algorithm for missing value problems or
problems which can be considered as ‘missing value
problems’. The latter include the case of finite mixtures
where complete knowledge of the subpopulations to which
the observations belong would make the estimation
straightforward. Since we do not know the subpopulation
to which a particular observation belongs, we estimate it
via the posterior probabilities. Hasselblad (1969) and
Behboodian (1970) independently introduced this iterative
algorithm, prior to the general derivation of the EM
algorithm by Dempster et al. (1977).

The EM algorithm for finite mixtures is widely applica-
ble because of its simple and easily programmable form.
However, it has the disadvantage of slow convergence and
high dependence on the initial values, but this seems to be a
common problem with iterative algorithms if the likelihood
equation has multiple roots (see, for example McLachlan
and Krishnan, 1997). Thus, since the EM algorithm may
stop with a local maximum which is not global, several
initial values must be used. This makes the algorithm very
time demanding. Improvements have been proposed in
three different directions. Bohning et al. (1994) propose an
easier method for detecting the convergence of the algo-
rithm saving thus iterations. Fruman and Lindsay (1994)
recommended the use of efficient initial values, namely the
use of the moment estimates as initial values for the EM
algorithm. Lange (1995) proposed quasi-Newton accele-
ration, while Aitkin and Aitkin (1996) proposed that we
can speed up the convergence alternating EM iteration
with Gauss-Newton iterations.

Our results of the previous section can also serve as a
basis for improving the EM algorithm for finite mixtures.
Our approach can be combined with the above mentioned
methods. In this case, the gain in computational time will
be maximized.

So, using the results of Section 2, at each iteration the
number of estimated parameters is reduced by one as one
parameter can be estimated by the first moment equation.
The gain in computing time is large as shown in Tables 1-3
for small values of k. If we look at the iterative scheme
described above, we can see that we can avoid calculating
u(6r) and this is equivalent to reducing the calculations
involved for obtaining the new parameters by almost
100/(2k — 1)%. In fact, the gain is less because of the cost
for some additional calculations in each iteration. It is also
interesting that the gain is expected to be larger in the case
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of discrete distributions, like the Poisson or the binomial
distributions. This is so, because in the case of discrete
distributions we can avoid exhausting summations by
multiplying with the observed frequencies.

The examples that follow illustrate the gain in time using
the method suggested.

Example 1: (Finite Poisson mixtures.) Consider the case of
finite Poisson mixtures. In this case, we assume that
f(x|6) = exp(—0)07/x!. In order to examine the gain, a
small simulation comparison was carried out. For k = 2,
100 samples of given sample size n(n = 50,100,250, 500)
were simulated for each distribution with parameter vec-
tors (p1 =p, 61 =1, 0>). The times required for the ML
estimation via the EM algorithm using both the general
EM algorithm and the improved EM algorithm discussed
above were calculated. The entries in Table 1 represent
relative times, i.e. ratios of the times under the improved
EM algorithm divided by the corresponding times under
the standard EM algorithm. The time spent for simulating
the samples was subtracted from both the numerator and
the denominator. We tried to minimize the computing time
for some auxiliary procedures like the terminating condi-
tions. For each sample we stopped running the algorithm
after 50 iterations. All the calculations were carried with a
PC with a Pentium microprocessor. The results of Table 1
clearly show that we can save almost 20% of the com-
puting time for £ = 2.

Table 2 contains the results for k = 3. The vectors of
parameters were (p,p» =03, 6, =1, 6, =2, 63). For
each distribution, 100 samples of given sample size
n(n = 50,100,250, 500) were simulated and the times re-
quired for both methods were recorded. The entries are
again ratios of the time under the improved EM algorithm
divided by the time under the standard EM algorithm. We
can also see an improvement on the required computa-
tional time near 15%.

Example 2: (Finite Normal mixtures.) Behboodian (1970)
showed that for the case of normal mixtures with different
variances, the second moment equation is also satisfied, i.e.
the ML estimator of the variance coincides with the sample
variance. So, in the case of normal mixtures, at each EM

Table 1. Times for the improved EM relative to the standard EM
for 2-finite Poisson mixtures (k = 2)

=025 = 0.50 p1 =075

0, 2 5 10 2 5 10 2 5 10

n

50 0.822 0.803 0.797 0.821 0.800 0.799 0.831 0.815 0.806
100 0.823 0.800 0.792 0.812 0.799 0.797 0.789 0.808 0.800
250 0.809 0.795 0.792 0.813 0.796 0.795 0.819 0.803 0.794
500 0.813 0.793 0.791 0.812 0.752 0.794 0.809 0.820 0.793

5
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Table 2. Times for the improved EM relative to the standard EM
for 3-finite Poisson mixtures (k = 3)

m = 025 pr = 0.50 p= 0.5

03 3 5 10 3 5 100 3 5 10

50 0.869 0.859 0.853 0.868 0.863 0.857 0.875 0.870 0.866
100 0.866 0.860 0.853 0.866 0.861 0.854 0.871 0.862 0.858
250 0.863 0.857 0.851 0.862 0.857 0.851 0.863 0.859 0.854
500 0.862 0.856 0.850 0.859 0.855 0.850 0.863 0.858 0.851

iteration we can simplify the estimation of two parameters.
Then, we only have to calculate the 3k — 3 parameters,
while the remaining 2 parameters can be easily obtained by
equating the first two moments to their sample counter-
parts. Thus, we reduce the required computational effort
almost by a factor of 2/(3k — 1). In practice, the gain is less
than that because of the cost of some additional calcula-
tions at each iteration. For & = 2, we simulated 100 sam-
ples from several 2-finite normal mixtures. The gain is near
30 (we estimate 3 parameters instead of 5) as can be seen in
Table 3, for selected parameter vectors 0= (p,y,,
1>, 07, 03) and varying sample sizes. The entries of Table 3
are again ratios of the computing times required under the
improved EM algorithm divided by the corresponding
computing times under the standard EM algorithm for the
same samples. Again, we tried to minimize any auxiliary
calculations, and comments similar to those from the
Poisson case apply here too.

The above findings provide a useful insight into the ML
estimation for finite mixtures when the number of support
points is not known a priori (see Bohning, 1995). Some
authors refer to such models as semiparametric models (see
Lindsay and Roeder, 1995). In the semiparametric case,
one tries to estimate the nonparametric ML estimate of the

Table 3. Times for the improved EM relative to the standard EM
for 2-finite Normal mixtures (k = 2)

Sample size

Vector of parameters

(pl‘u]z‘u-z,(fﬁfrg) n=5 n=100 n =250 n= 500

0.25.0, -1, 1, 2) 0.707  0.731 0720  0.724
025,0,1,1,2) 0.731  0.706  0.747  0.693
05,0, -1, 1,2) 0722 0725 0729  0.730
05,0,1,1,2) 0719 0728 0725  0.722
0.75, 0, =1, 1, 2) 0.711  0.717 0723  0.708
0.75, 0,1, 1, 2) 0729 0732 0735  0.727
0.25,0, -1, 1, 5) 0.728 0.730 0718  0.726
0.25,0. 1, 1, 5) 0.726 0731  0.736  0.731
0.5,0,-1,1,5) 0.729  0.733 0729  0.734
0.5,0,1, 1, 5) 0.731  0.728°  0.727  0.730
0.75,0, -1, 1, 5) 0.724 0729  0.731 0.710
0.75,0,1, 1, 5) 0720 0724 0717  0.721
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mixing distribution without knowledge of the number of
support points. Such algorithms usually add one new
support point at each step and try to determine the prob-
ability to be assigned to this point. Consider the Vertex
Direction Method. This method adds a new support point
at the point where the gradient function is maximized.
Numerical techniques are required in order to find the
probability assigned to this point. Since for every value of
k, the first moment equation must be satisfied, the solution
with k£ points should satisfy this condition too. Suppose
that at this moment we have k points, say u(f;) with as-
sociated probabilities p;, for j=1,... k. Then, if X is the
sample mean it holds that Z;f:lpjy(()j) = X. Thus, the new
support point, say u(6e+1), will be assigned a probability a
whose value is such that the increase in the loglikelihood
under the transition from the model with k£ points to the
model with £ + 1 points is maximized. (See, for example an
interesting review for determining the value of « in
Bohning, 1995). This procedure usually requires specific
numerical methods. If the new point is p(6.1), condition
(1 —a) Zle pit(8;) + au(Bis1) = X ought to be satisfied as
this equation is one of the estimating equations in ML
estimation with £ + 1 support points. In any other case, the
increase in the loglikelihood will not have been maximized.
Solving with respect to o we obtain « = 0, which implies
that the new support point is rejected. Any other choice of
o would lead to a solution which is not an ML solution
with k + 1 support points.

The above discussion reveals that when using the simple
Vertex Direction Method, if the solution with & support
points maximizes the likelihood for k-support points, no
other point will be added and the method will fail. A similar
behavior is expected to be shown by other related methods.

Therefore, some EM iterations are needed in order to
improve the likelihood for each k. We can also see that the
support points should change between two successive steps
(not necessarily all of them) as otherwise, the new support
point will be dropped. This makes the use of some EM
iterations very useful, but in fact it cancels the applicability
of all such methods. The reason is that since we have to
apply EM iterations for each value £, the algorithm reduces
to one deriving the MLE of each value of & via the EM and
simply checking if this is the global maximum using the
results of Lindsay (1983). Other algorithms like, the Vertex
Exchange method or the Intra-Simplex Direction method
(see Bohning, 1995) show the same behavior.

4. Conclusions

It has been shown that one of the ML equations in finite
mixtures of members of the one-parameter exponential
family can be replaced by the first moment equation. This
simplifies the procedure for the ML estimation and can
save a lot of computational time by speeding up the EM
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algorithm. It has also been revealed that other methods for
MLE in the case of unknown & are not efficient and they
have to be used with caution. For distributions with dis-
crete density f(x | 0), the above scheme can be modified so
as to be applied to minimum distance estimation for finite
mixtures. The key tool is the first derivative of f(x|8)
which allows the estimates to be written in the form of a
weighted mean. The above iterative scheme appropriately
modified has already been applied to Minimum Hellinger
Distance Estimation for finite Poisson mixtures (Karlis and
Xekalaki, 1998). Extensions to multivariate finite mixtures
may also be derived. For example, in the case of finite
multivariate normal mixtures (see for example Day, 1969)
the vector of means must coincide with the vector of
sample means and therefore the calculations can be re-
duced considerably.
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