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ABSTRACT

An invetory decision model is considered whereby the demand
for the item, the stock in hand and the lead time period are
considered to be random variables. The interrelationships of
these three item characteristics are then studied in the framework
of a scheme for deciding when to place an order for additional
material. The effect of a Yule demand distribution is studied and
the implications of such an assumption on the distribution of the

mean lead time are examined.
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1. INTRODUCTION

Inventory managers are usually faced with the question as to
how large a quantity of the demanded material to order and most
important as to when to place the order so that the warehouse does
not run out stock. Their buing and stocking policy very much
depends on the fluctuations of certain characteristics of the item
to be ordered such as demand, stock level, lead time periods etc.
Very often the time to replenish the stock is specified by the
stock level: An order is placed when invetory reaches a specified
position. This scheme is known as the reorder point system.
Prichard and Eagle (1965) established a decision rule by means of
a function associated with the fraction of the lead time for which
the item is out of stock.

Let X be a non-negative integer valued random variable
representing the demand for an item in units ordered and let A be
a fixed constant representing the lead time period. Assume that
the fraction of A out of stock is represented by the fluctuations
of a random variable T. Then according to Prichard and Eagle's
decisions rule an order for a quantity is placed when stock reachs
a level y for which E(T), the expected fraction of lead time out
of stock, does not exceed a given length-hc.

By inspecting figure 1 one can easily deduce the similarity

A A
of the triangles Aox and R X y and hence conclude that
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figure 1.
which implies that
(1]
E(T) = A E =Y P(ex) (1.2)
x=y+1

Hence, an inventory manager who wishes to ensure that the
item will not be out of stock longer than a specified length of
time Ao in each lead time will have to choose the reorder point y

so that

(o]

> S XY p(X=x) =2 (1.3)
f A— X °
x=y+1

or, equivalently so that

-}

P(X>y) - ¥y Z __P.(.}_(;i‘)— = ;xo/A (1.4)

x=y+1

Note that in this set up only the demand for an item has been
considered random. All the other item characteristics i.e. the
lead time and the stock level have been assumed fixed. Indeed
this is the case with most inventory problems of this nature.

In this paper & more realistic view is taken. The on hend
inventory is assumed to be a randcm variable instead of
continually reviewed constant. Further the assumption is made

that the leud time is of a random length. The effects of these



assumptions on the interrelationship of the item characteristics
is then examined in section 2. The subsequent two sections study
such inventory situations on the assumption of a Yule demand
distribution (section 2) and the reorder point decision rule is

looked upon in terms of the distribution of demand (section 3).

2. THE RANDOM FACTOR

Consider an inventory model in which the demend for an item
during a lead time is a non-negative interger valued rancom

variable X with probability function P(¥=r) = P r=0,1,2,...
let Y be another non-negative, integer-valued random variabie
represcnting the amount (in item wunits) of the inventery on hand
during the same lead time which is assumed to be & randcem variable
itself denoted by L and distributed independently of X and Y.
Further, 12t q. r=0,1,2,... represent the probability function

of ¥, i.e.

P(Y=r) = q r=0,1,2,... and denote by FL(I), 1>0 the
distribution function of L. If now T represents the fraction of L
during which the item will be out of stock, an argument similar to

that used to derive {1.1) leads to

X X-Y .
_ = (2.1)
L T
This implies that
hd a
T e 1
E(T|Y=y)=E(L) { P(X>y) - ¥y L —P—(;(ﬁjt {2.2)
x=y+1
y=0,1,2,...

Obviously (2.2) is meaningful only in cases of shortage when



Y<X. (If Y=X then T=0 as a logical consequence). In such cases

since P(Y<X)=1 we have that

q = P(Y=r) = P(Y=r|Y<X)
Therefore
w
E P(Y=r|X=x) P,
x=r+1
qx‘ = 00 [+ ]
} Z P(Y=r|%=x) p
— X
r=0 x=pr+l
But
© w o x-1
E Z P(Y=r|X=x) p_ = 5_‘ P, }.... P(Y=r|X=x)
r=0 rx=vr+1 x=1 =0
[++]
)"
x=1
1-p
[+
Therefore
1 o0
q, = 15 E P(Y=r|X=x) P, (2.3)
° Xx=r+1
r=0,1,2,...

It would therefore be interesting to specify the forAm of the
conditicnal distribution of Y given that (¥=x) so as one woculd be
able to express the relationship between X and Y during a lead
time L more explicitly. The theorem that foilows prcvides a
result which is of central importznce in this direction.

Theorem 2.1. Let L be =2 positive random variable with

distribution function FL(I), 1>0. Let T be another positive



random variable whose conditional distribution given that (L=1) is

given by

t
FT'(L—‘-I)(t) = —l—, tE(O,l) (2.4)
T

Then the r.v. Z = —— 1is uniformly distributed on the
L

interval (0,1).

Proof:
Let FZ (z) denote the d.f. of Z. Then

P(Z2=z) = P L%}-s 2}

FZ(z)

P(TszLl) = [7 P(Tsz|L=1) 4 F (1)

© -
= [ Frjen (21 @ F, ).

Then using (2.4) we obtain

Fz(z) =z J: d FL(l) = Z.

But this is the distribution function of the uniform
distribution on an interval of unit length, i.e. on an interval of
the form {c,c+1). By the definition of Z it follows tha® <=0.
Hence the theorem has been established.

Put in the context of the invetory modei considered the
result of this theorem implies that if the fraction T of a lead
time L during which the item will be out of stock for a given
length ! of L is uniformly distributed in (0,1) then T/L the
proporticn of time ocut stock, is uniformly distributed in (0,1).
This, taking into account the fact that a uniform distribution for

T|(L=1) je & natural assumption, implies in turn that, wherever



X>0, (X-Y)/X is a uniform random variable defined on (0,1). As a
result Y/X is also uniformly distributed in (0,1). Since Y is an
integer valued random variable this implies that

Y = [RX] whenever X>0 (2.5)
where R is a uniformly distributed in (0,1) independently of X.

Here [a] denotes the integral part of «. Hence

P(Y=r | X=x)

P([RX]=r |X=x)

P(r = RX < r+1| X=x)

_p[Lsm_rﬂ_lx_XJ
X
_p[_P_<R< r+l ]
X
=1
X
i.e. under (2.5)
P{Y=r)|X=x) = —%-, r=0,1,2,...,x-1
Hence (2.3) reduces to
Rl
=1 x r=0, 1 (2.6)
q = = ,1,... .
x=r+1

Therefore the second term in the right hand side of (2.2)
represents the fluctuations of the stock in hand. In the light of
this result (2.2) leads to a decision rule which amounts to
selecting the reorder point to be the value Y, of 'Y for which

P(X>y°)—y°(1-p°) P(Y=y;) =c (2.7
where ¢ = AO/E(L), and Ao is an administratively set constant.

The algorithm for the determination of Y, will obviously
depend on the form of the distribution of X and Y. Xekalaki
(1983, 1984) obtained some results connecting the distributions of

X and Y.

7



Theorem 2.2. (Xekalaki, 1983). Let X,Y be non-negative

integer valued r.v’'s such that P(Y=r|X=x) = -7%— ,
r=0,1,...,x-1. Then X and Y are indentically distributed if and

only if X has a Yule distribution with probability function given

by
px!
P(X=x) = , x=C,1,... (2.8)
(p+1) (p+2)... (p+x+1) p>0
Theorem 2.3. (Xekalaki, 1984). Let X be a non-negative,
integer-valued random variable. Then Y is Yule distributed with

probability function given by (2.8) if and only if
P(Xor) = —%-(r+1) P(X=r), r=0,1,2,...  (2.9)

Consider now an inventory situation where the Yule
distribution with probability fuicticn as given by (2.7} may be
eppropriate for mcdeling the demand fluctuations and shortage can
be regarded to be effected through (2.5). Then theorems 2.2 and
2.3 imply that the decision rule will select the reorder point Yy,
so that

(y +p+1)
o

1A
(o]

— p
plp+1) Yo

or equivalently so that

Ty _+p+1)
zc (2.10)

[+]

F(y0+1)

where ¢ = F(p+1) /(c(p+1)).



3. DECIDING IN TERMS OF THE LEAD TIME DISTRIBUTION

In this section the problem of determining when to order will
be 1looked at in terms of the probability distribution of the
lead time. Xekalaki (1983) showed that the fluctuations of demand
can be desrcibed by the Yule distribution with probability
function as given by (2.8). The derivation was based upon the
following hypothesis.

Let Z, the number of orders arriving at a warehouse, be
Poisson distributed with parameter ¢ characteristic of the buyer’s
pehaviour and let Xl'Xz"" the numbers of item units_ordered by
the various customers, be independent and identically distributed
indepently of Z according to a logarithmic distribution with

probabiiity function

P(Xi=r‘) F —— r=1,2,...
4 r

Then X=X1+X2+...+XZ, the demand for the item in terms of the
total number of item units ordered follows for a given buyer

(fixed ®#) a distribution with probability generating function.

ln [1-'[1-e-§) S]

(s) = exp {4 @ ~1 ]
| 1 -9 R

X|o

"

-1
[eﬂ-(eﬂ—l )s] .

In other words for a given buyer whose behaviour is reflected

by the parameter ¥ the distribution of demand is the geometric



distribution with parameter e_ﬁ. If now differences in the buying
behaviour from buyer to buyer are effected through an exponential
distribution for ¥ with parameter p>0 the resulting distribution

of X has probability generating function.

Gx(s)

1}

P I: Gy(s) eP? g9

0
p Y < Jz of (1-9)"de
r=0

r!
r

@
L T
i.e. the distribution of demand is ihe Yule with parameter p.

In the sequal, an alternative model giving rise to a Yule
demand distributon is suggested. Assume that during a lead time
of given length t orders for an item occur according to a
homocgeneous Poisson process {N{t), :>0} with parameter A=1. Then
for the given length of time the distribution of orders has
probability generating function
Gy () = e (3.1)

Assume that t follows a distribution that is a scale mixture

of the exponential distribution i.e. a distribution defined by
I w0 1 —-t/0 :

= —_ t > .2

oF (t) lfo e VY@ pat, wo (3.2)

where F(a), «>0 is a proper distribution function. Then the
distribution of the demand X for the item will ‘coincide with the
distribution of N(L). Therefore, - the probability generating

function Gx(s) of X will be given by

Cyis) = Gyqq,y(s) = EL[GN(E)(S)]‘:
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00
Jo Gy(p)(s) d F (1)

1
t

w0 (o 1 T Ta
Jo IO GN(t)(S) - € d F(a) dt

GX(S)

1]

dF(a) dt (3.3)

J‘co J’m 1 e—t[lﬂx(l—s)]/tx
0Jo a

If now a follows a Pareto distribution with pzrameter p
(Pearson type VI) i.e. if
dF(a) = p (1+oc)_(p+1) de B (3.4)
we obtain form (3.3)

~(p+1}

w fo 1 ~t[1+a{l-s)]/c

o (1#a)

da dt

-t[1- 1-5)1/ -{n ;
[ Im [ L Jb e tl1tali=s)i/n dt ] (i+al ‘*nﬂ')aa
(o] [+ 4 (o]

o J': [1+a(1-s)1"1 (1+2)” P 4

Y rfo r ~{p+r+2)
=pY s Iooc(1+cc)‘ “? do
r=0
® I'(r+1)T(p+1)
=p 2 s
r=0 I'(p+r+2)
© r!
=p E Sl"

r=0 (p+1){(p+2)... (p+p+1)

But this is the probability generating f‘unc{ion,of the Yule
distribution as defined by (2.8). Hence if the distribution of
lead time L is a Pareto mixture of the exponential dist.rib_qt"l_bn
the distribution of demand X is the Yule distributicn. The
converse ‘is also true i.e. if X 1is Yule distributed then the
distribution of L is a Pareto scale mixture of the exponentizl

distribution. This follows from a2 more general result shown by

il



Xekalaki and Panaretos (1987). In fact, this result goes even
further as it leads to a one-to-one correspondence between the
mixing distribution F(a) in (3.2) and the distribution of the
demand X whenever X can be regarded as the image N(L) of the lead
time L through a homogeneous Poisson . process {N(t), t>0} with

parameter A=1 as indicated by the theorem that follows.

Theorem 3.1. (Xekalaki and Panaretos, 1987). Let {N(t),
t>0} be a homogeneous Poisson procees with parameter 2a=1. Let
21,22 be two independent non—negative randcm variables‘ that are
distributed independently of {N{(t), t>0} with distribution

functiens satisfying

o o
by (2) = [s ki dF {e) (3.5)

z,B>0, i=1,2

Then F =F, if and only if N(Z1) and N(Za) are ddentically

distributed.

The implication of this result in the context of the model
just considered will become obvious if one cbserves that the
distribution F(«), «>0 in (3.2) represents the distribution of the
mean of an exponential lead time. Indeed wve have.from (3.2) that

conditional on a the mean lead time is given by

_ [ 1 -t/a ~
ELjema) = [gt 5—¢ Mt =a

Hence the result of theorem 3.2, ‘brought within.the framework
of the model considered in this section, leads to the feollowing

conclusion.



The distribution of demand X is the Yule distribution with
parameter p if and only if the distribution of the lead time L is
exponential with a mean E(L]a) that has a Pareto distribution with

the same parameter p.

Theorem 3.3. (Xekalaki and Panaretos, 1987). Let X be a
random variable having the Yule distribution with paremeter p as
defined by (2.8). Let U be another random variable distributed
according to the Pareto distributicn with parameter p as defined
by (3.4) and consider U1’U2"' to be a sequence cf ‘mutually

indepent Pareto (1) randcm variables inderendent of U. Then

k) = P( U+, .E
P(Xek) = P(U>U +U + _+Qk) (3.€)
k=1,2,...
Thaorem 3.4. {Xekalaki and Faneretos, 1987). Let
U, U1’Uz"" be independent pcsitive random veriables such that
UI’U,,»--- have the Pareto distributicn with parameter 1. Then U

has the Pareto distribution with parameter p>0 if and only if

either of the following conditions is satisfied

. : k+1
N ) o k1 .
(13 P[U > bi+...+Uk+Uk“| U>u+... +Uk} kip1 v(3. 7)
k=0,1,2,
O P(U+...+U<KU<U+...+U ) 1
(ii) E ! L ! L P(U +...+U <USU +..
r p+1 v
r=k+1
(3.8)

From the definition of the random variable X and the

derivation of 1its distribution . it is obviqus‘ ‘ that the random

.

variable E(L}a} plays the role of the r.v. U in (3.6). So, if we

.+U



let

U = E(L|a)
and define

U=EL o), i=1,2,...
where Li is a continous random variable representing the lead time
for the i-th ordered unit (if a.uﬁit is ordered at the time the
previous ordered unit is delivered) tﬁeh‘ (3.6§ states that the
events {at least k item units are ordered} and {the mean lead time
exceeds the aggregate of the mean lead times for the % units if
ordered individually-each at the time of delivery of the previous
item} are equiprobable. Thén the decision rule for determining the
stock position at which an order shoﬁld'be plécéd can be.expressed
in terms of the distribution of the mean lead'£ime.

From theorems 2.2, 3.3 and 3.4 if foliows that if X,Y and U
repiregen:t the demand for an itém; the stock on ﬁand and the mean
lead time respectively then

P(X=r) = P(Y=r) = PEU1+...+U; s U< Ul+...+UP+J
Therefore the inequality in (2.7) becoﬁes

P[U > U1+..;+Uyo+1] "YO o
or, equivalently

-y

PEJ> U +...+U ]— -2
1 y°+1 p+1 yo

pry *1

p+l

U>Us...+U ]—yo =

o

P[U > U1+...+Uy] (p+y°+1) P[U > U1+...+U

y +1
o o

By condition (3.7) of 3.4 this inequality implies that

14



p[u>u1+. _ ] < c(p+1) (3.9)

0

The equivalence of (3.9) to (2.10) can be easily checked

using theorems 2.3 and 3.3..
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