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Abstract

This paper provides characterizations of a family of distributions in the context of reliability
theory placing emphasis on a particular family member, the Yule distribution. In particular, it is
shown that the distribution of a non-negative, integer-valued random variable X with E(X) <+o0
is uniquely identified to belong to the class of distributions consisting of the geometric, the
Waring and the negative hypergeometric distributions if and only if anyone of the following
conditions is satisfied:

a. The mean residual life is a linear function of time.

b. The vitality function is a linear function of time.

¢. The product of the hazard rate by the mean residual life is constant.

Characterizations of the Yule distribution based on reliability measures of its size-biased ver-
sion are also provided. Continuous analogues of the results are considered. These include char-
acterizations of the exponential and the beta of the first and second kind distributions.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Reliability theory can be regarded as the theory of prediction, estimation or optimiza-
tion of the probability of survival, the mean life or, more generally, the life distribution
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of a component. A plethora of books are available presenting reliability theory at
various levels of mathematical sophistication. Some of them are aimed primarily at
engineers, presenting statistical techniques at an introductory level and emphasizing
their practical applicability. At the other end of the spectrum, lie mathematical texts
which give detailed coverage of the probabilistic models. In between, one finds a
number of texts on survival data analysis, some orientated more towards engineering
applications and others towards medical data. Some of the books that can be included
in the last two categories are: Mann et al. (1974), Kalbfleisch and Prentice (1980),
Lawless (1982), Cox and Oakes (1984), Crowder et al. (1991). Finally, the book by
Kleinbaum (1995) provides an easy to follow introduction to the main concepts and
techniques of the subject.

Recently, studying the properties of life distributions has become important, espe-
cially due to the applicability of reliability theory to areas other than those related to
engineering that gave the theory its first impetus, e.g. economics, environmental stud-
ies, etc. (See, for example, Epstein and Sobel (1954), Reinhardt (1968), Bryson and
Siddiqui (1969), Harris (1970), Basu (1971), Brindley and Thompson (1972), Laurent
(1975), Marshall (1975), Block (1977), Friday and Patil (1977), Shimi and Tsokos
(1977), Muth (1977), Morrison (1978), Esary and Marshall (1979), Block and
Savits (1981), Gupta (1979), Thompson (1981), Roy and Mukherjee (1986), Ecstein
and Wolpin (1990), Narendranathan and Stewart (1993)).

Among the best known life distributions are the exponential, the Weibull, the
gamma and the lognormal distributions. Xekalaki (1983) highlighted the potential
use of Yule distributions for describing life distributions in discrete time models, as
well as the use of the Pareto distribution, suggested as a potential continuous time
model.

In this paper, we consider characterizations of a family of models in discrete time
consisting of the geometric, the Waring and the negative hypergeometric distributions
by properties of certain reliability measures with emphasis on a particular family mem-
ber, the Yule distribution. Continuous analogues of the results are also provided. These
include characterizations of the exponential, Pearson’s Type VI (beta of the second
kind) and its special case, the Pareto, as well as characterization of the Pearson’s
Type I (beta of the first kind) distributions. In particular, following some introductory
general results in Section 2, we show that the linearity of the form of the mean resid-
ual life of a random variable or the constancy of the product of its hazard function
and mean residual life is a necessary and sufficient condition that characterizes the
family of geometric, Waring and negative hypergeometric distributions in the discrete
case (Section 3) and the family of exponential and beta distributions of the first and
second kind in the continuous case (Section 5). Corollaries to the main results lead
to characterizations of interesting special cases of the members of the above families
such as the Yule and discrete uniform distributions in the discrete case and the Pareto
and uniform distributions in the continuous case. In Section 4, we provide charac-
terizations of Waring and Yule distributions on the basis of the form of their size
biased versions or of certain reliability measures of the latter. Finally, continuous ana-
logues of these characterizations referring to the Pareto distribution are provided in
Section 5.
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2. A general result

Let X be a nonnegative, integer valued random variable representing the failure time
of a component and let its probability function be denoted by Py(t), t=0,1,2,... The
failure model consists of the specification of the functional form of the probability
function Py(¢) and the values of its parameters. Associated to the probability function
Py(t) is the probability that the component has not failed at time ¢ known as the
reliability function, Fy(t) =1 — Fy(t). Here, Fx(t) = P(X <¢) is the cumulative
probability of failure up to time 7. In the sequel, we denote by hy(t) the hazard rate
function also known in the literature as the fuilure rate function. As is well known,
hx(r) reflects the instantaneous potential for an event to occur given survival up to
time ¢ and it is defined as follows:

PX=1)
hy(t) = —=——=, 1=0,1,2,... . i
x(1) PX 1) 0,1,2, (H
Further, we refer to the function
1 +00
(Y =EX —t|X >t]l==—— Fx(x), t=01,... (2)
* ! mé “

as the mean residual life of the component at time . Obviously, iy () expresses the
expected additional life time given that a component has survived until time / and is
well defined when E(X) < + co.

In Kupta and Loo (1989) a new measure of the ageing process has been introduced.
It measures the “vitality” of a time period in terms of the increase in average lifespan
which results from surviving ‘that time period. This measure, termed as the virality
Sunction, is denoted by ny(t) and defined as vy(1) = E[X | X > ¢]. Obviously, vx(r)=
px(0) + t. Finally, 63(1) = Var[X —t|X > (] is the residual life variance function.

The concepts defined above relate to the reliability of the functioning of a system
and play a key role in optimizing its use since the form of any one of them uniquely
determines the life distribution of the system as highlighted by the theorem that follows.
(For more details see Barlow and Proscham (1965)).

Theorem 1. Let X be a nonnegative, integer valued random variable with reliability
Sunction Fx(t). The distribution of X is uniquely determined by the form of anyone
of the following functions:

i. the survival or reliability function
ii. the hazard rate function hy(r)
iii. the mean residual life finction px (1), provided that E(X) < + oo

Proof. The proof of statement (i) is well known and straightforward. Statement (i)
follows from the fact that (1) is equivalent to

[1 = A+ 1)

PX=r+1)- e

X =r)=0, (3)



234 E. Xekalaki, C. Dimaki!Journal of Statistical Planning and Inference 131 (2005) 231-252

whose unique solution is
r—-1
[ = h ()i + 1)
PX =r)=PX =0)[] —2X 22X 7 J
«=0lI—=.5
The proof of part (iii) follows as a special case of the results obtained independently
by Glénzel et al. (1984) and Dimaki and Xekalaki (1996) on characterizing discrete
distributions by the form of the conditional expectation E[¢g(X)|X > 1] for g(X)=X —1,
t=0,1,2,....
By means of the next theorem, a direct relation between the hazard rate and the
mean residual life is established. O

. r=01,.. . : @)

Theorem 2. Let X be a nonnegative integer valued random variable with E(X) < +o00
and reliability function Fy(t). Then, its hazard rate hy(t) can be directly expressed
in terms of its mean residual life px(t) by the relation

m(C+ D) —px()+1

hx(t+1)= , t=0,1,.... S
x(t+1) i+ 1) (5)
Proof. Observe that (2) yields
+00
ueOF () =) Fx(x), t=12.... ©)
x=t
Specializing this for ¢ =r and »+ 1 and subtracting the resulting equations, we obtain
(e + DFEx(r + 1) = jix(NFx(r) = =Fx(r),  r=0,1,... (7
leading to
we(t+ DPX >t + 1) = pux(HPX > t)= —P(X > t).
Therefore,
@+ D) — )+l PX=i+1)
u(t+1) T PX 2t+1)

Hence, the theorem has been established since, by relation (1), hx(t + 1) =
PX=t+1)/PX 2t+1) O

Corollary 1. Let X be a nonnegative integer valued random variable with E(X') <400
and reliability function Fx(t). Then, its hazard rate hy(t) can be expressed in terms
of its vitality function by the relation
vx(t + 1) — vx(1)

wGiD Gty T ©

hx(t+1)=

3. Identifiability of the geometric, Waring and negative hypergeometric distributions

In this section, some characteristic results already known in the literature as well as
some new ones mainly concerning the Yule distribution are obtained as consequences
of Theorem 1. Before stating the main results, we introduce some notation and termi-
nology:
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Definition 1. A nonnegative, integer valued random variable X is said to have the
univariate generalized Waring distribution (UGWD) with parameters «, k and p if its
probability function is given by,

Py Uk 1

=PX=y)mror—
pe=P ) @+ Py (2 +k+p)iy xV

x=0,1,2,...; >0, k>0, p>0, 9)

where
T'(p+7)

By = ——7—, >0, 7€R

B T b ;

Definition 2. A nonnegative integer valued random variable X is said to have the
Waring distribution with parameters o, and p if its probability function is given by,

pe=P(X =x) = —L2)

= x=0,1,2,...; 2>0, p>0. (10)
(2 + Pt !

Definition 3. A nonnegative integer valued random variable X is said to have the Yule
distribution with parameter p if its probability function is given by,
px!

y =P(X =x)= ———-——, x=0,1,...; p>0. 1)
% ( ) (9 + Da=n ! (

Obviously, X ~ Yule(p) iff X ~ Waring(1,p) and X ~ Waring(z, p) iff X ~
UGWD(x, 1; p). (For more details about these distributions, see [rwin (1975) and John-
son et al. (1993, Sections 6.10.3 and 6.10.4)).

Definition 4. A nonnegative integer valued random variable X is said to have the
geometric distribution with parameter ¢ if its probability function is given by

p=PX =x)=(1-¢q), x=0,12,.. . (12)

Note that the geometric distribution is a limiting case of the Yule (p) distribution
as ) increases.

Definition 5. A nonnegative integer valued random variable X is said to have the neg-
ative hypergeometric distribution with parameters &,/ and [ if its probability function
is given by

rereso= (1) (1) ()

I\ k )
- M x=0,1,...0:kh, 1> 0. (13)
x ) (k4 hyo
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By the next theorem, a class of distributions that consists of the geometric, the nega-
tive hypergeometric and the Waring distributions (thus containing the Yule distribution
as a member) is shown to result when the mean residual life is a linear function of
time.

Theorem 3. Let X be a non negative, integer valued random variable defined on
{0,1,....,1},1€{1,2,...} U {00} with E(X) < + co. Then, its mean residual life is
a linear function of time t given by

wx(t)y=a+bt, abeR, a>1; t=0,1,...,1—-1 (14)

if and only if one of the following statements holds:

(1) X has a geometric distribution with parameter ¢ =(a — 1)/a
(1) X has a Waring distribution with parameters « =(a—1)/b—1and p=1/b+ 1.
(iii) X has a negative hypergeometric distribution on {0,1,...,1} with parameters,
k=1,h1>0

(These cases correspond to.b=0, b >0 and b < 0, respectively).

Proof. In the case where X has a distribution with infinite support, relation (14) implies
for t = +oo that b > 0. By Theorem 1, the distribution of X is uniquely determined
by its mean residual life uy(¢). It follows therefore from (12), that relationship (14) is
uniquely satisfied, for 5=0, by the geometric distribution with parameter ¢ =(a — 1)/a.
In the case b > 0, we obtain by the definition of the mean residual life

1 +00 . 1 +00
;tX(t)zmgFX(x)=m§P(X > X+ 1) (15)

Also, using relation (10) with p > 1, we can show that
PX > t)::—)(oz+p+t+ DPX =t+1), t=0,1,2,...

(see Xekalaki, 1983). Therefore,

1
Crp+ri+DPX =t+1)

+00
xlt) = Sletptx+t+DPE =x+1+1)
x=0

1 = (a4t + 1)
= Pttty
a+p+t+1§(y ptx Y atrtitn
1 o+t+1
p -1
_atptt
==

Hence, when b > 0, Theorem 1 implies that condition (14) is uniquely satisfied by the
Waring distribution with parameters o and p, for a=(x+p)/(p—1) and b=1/(p—1).
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If X has a finite support (/ < +00), it follows from (14), for t=1/—1, that a+b(/ —
1)=1. Thus, since a > 1, it follows that h=(1—a)/(/~1) < 0. Also, by the definition
of the mean residual life, we have from (14), for r=1, that a+b=E(X )/(1 — po) > 0.
Hence, using (13) with m =1, we obtain

o= (V) () ()

_ Z ! _hg—sy
(/— xH) (h+ Dy

x=t+1

_ (I = D¢y ,—z/_:l (—t—1 [T——
=14+ M)y g =—x =1 =D (h+ Dp—r—1)

Jarn it/ —h —1—h
IR G g (x ) (lftvx—l>/<l~r~l)

tn-r—1 I ey
N h (I=t=1) (h+ Dy
hl—i—1 [ -1 —h ~1—h
B h t+1 I—t—1 /
—t—1
:i/'h;mx:wn).

(Here ) denotes the descending factorial f(f—1)---(f—r+ 1), =r (fO=1)).
Therefore,

1=t
I
;1)((!):(]_”1_[_I)P(X:f+l)§(/+lr—t-1—I)P(X—H-A+l)

({—t—=1) Z(1+h—r—1~l)h(,,‘ 1
(/+/1—r—-l)h,,., (l—t—x—1)

t
(1—/—1)'Z<[/7u/ ) PR,

L \)'
L N P
NETEY) h+l—1

_h+l=t~1
B h '
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Hence, when b < 0, Theorem 1 implies that condition (13) uniquely leads to the
negative hypergeometric distribution on {0, 1,...,7}, /=1+(1 —a)/b with parameters
k=1, hand /, for a=1+ (I — 1)/h and b = —1/h. This completes the proof of the
theorem. [

Note that, using (5) and Xekalaki’s (1983) main result, an alternative proof of the
theorem can be obtained.

The following characterizations of the Yule distribution can be obtained as direct
consequences of the above theorem.

Corollary 2. Let X be defined as in Theorem 3. Then, X follows the Yule (p) dis-
tribution, with p=1/b+ 1 if and only if its mean residual life is a linear function of
time t given by

wx(y=1+5b(t+2), t=012,....

Corollary 3. Let X be defined as in Theorem 3. Then, X follows the Yule (p) distri-
bution with p=1/b+1 if and only if its vitality is a linear function of time t given by,

ox()=1+(B+D+1), =012, .

Note that when h = 1, the negative hypergeometric distribution reduces to the dis-
crete uniform distribution on {0, 1,...,/}. Hence, the following characterization of the
uniform distribution can be obtained.

Corollary 4. Let X be defined as in Theorem 3. Then, X follows the discrete uniform
distribution on {0,1,...,a} if and only if its mean residual life is a linear function of
t given by

ux()y=a—t, a€R, a>1; t=0,1,2,...,0—-1
or, equivalently, if and only if its vitality function is constant, and, in particular,
vx(f)=a, t=0,1,2,...,0—1.
Next theorem shows that the distribution of a nonnegative, integer valued random
variable X is uniquely determined as geometric, Waring or negative hypergeometric
according as the product of its hazard rate and its mean residual life is a constant equal

to, exceeding or exceeded by unity. Before proceeding with the main result, we prove
the following lemma.

Lemma 1. Let X be defined on {0,1,2,...,1}, 1€{1,2,...} U {+oo} and such that
EX)< +00, p,=PX =0)<1 and

1
hx()= = @bER, a>0, 1=0,1,2,...,1 (16)

Then (i) a > 1, (i) b < 1, (iii) E(X)=(a — 1)/(1 — b), (iv) X has a distribution
with finite support if and only if b < 0 and in this case b= (1 —a)/l.
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Proof. For a proof of (i) and (iv), see Xekalaki (1983). To prove (ii), observe that
from (16) it follows that P(X > 1)=(a+ bt)P(X =), which, upon summation over ¢,
yields E(X)+ 1 =a + bE(X) or, equivalently, « — 1 =(1 — H)E(X). Since a > | and
E(X') > 0 by the definition of X, it follows that b < 1. Then, (iii) follows immediately.
Hence the lemma has been established. O

Theorem 4. Let X be a nonnegative, integer valued random variable defined on

{0,1,....0} 1€{1,2,..} U {+oo} with P(X =0) < | and E(X)=m < + co. Then,
hy(ug(ty=c¢, t=0,1,2,...,0—1; ceR... (17)

if and only if one of the following statements holds:

(i) X has a geometric distribution with parameter ¢ = m/(m+ 1), for ¢ = |

(i) X has a Waring distribution with parameters o= m/(c — 1) and p =c/(c = 1),
Jore>1

(iii) X" has a negative hypergeometric distribution on {0,1,...,m/(1 — ¢)} with pu-
rameters k=1, h=c¢/(1 —¢) and I =m/(1 - ¢), for ¢ < 1.

Proof. The necessity part is straightforward. For sufficiency, observe that
lr+ 1) — () + 1

hy(t+1)=
e+ RGeS
or, equivalently,
px(t+ 1) = px(2) + 1= px(t + Dhy(t 4+ 1), (18)

Combining (17) and (18) we obtain, py(r + 1) — ux()=c—-1,1=0,1,2,...,1 — 1.
The unique solution of this difference equation is given by

w(ty=<c +(—-Dt, =0,1,2,...,1—1, (19)

wlhiere, as implied by (17) for / =0 and the definition of the mean residual life and
hazard function, ¢/ =m + c. In view of (17), the above relationship is equivalent to

1

e sl SN (20)

hy(t) =

From Lemma 1, when X has a distribution with an infinite support, it follows that
¢ 2 1. Then, if c=1, relation (20) reduces to the well known characteristic property of
the geometric distribution with parameter ¢ = m/(m + 1). If on the other hand, ¢ > 1,
(20) leads to the Waring distribution with parameters 2 =m/(¢ — 1) and p=c/(c — 1)
(see Xekalaki, 1983).

In the case where X has a finite support (/ < + 00), it follows, from Lemma 1, that
¢ < 1. 1t follows, moreover, that /=m/(1—c), i.e., m/(1—c) is a positive integer. Then,
since hy(1)=1, it follows from (20) that I1X(I)=m,l=0, 1,2,...,m/(1=c).
This implies that X has a negative hypergeometric distribution on {0, 1,...,m/(1 —¢)}
with parameters & =1, h=¢/(1 —¢) and I =m/(1 — ¢) (see Xekalaki, 1983). O
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Corollary 5. Let X be defined as in Theorem 4. Then,
hx(thux()=m+1, t=0,12,...

if and only if X has a Yule distribution with parameter p = (m+ 1)/m.

4. Characterizations of Waring and Yule distributions based on reliability measures
of their size-biased versions

In studies in reliability, biometry and survival analysis, weighted distributions are
frequently appropriate for certain natural sampling schemes. Tt would, therefore, be
useful to develop relationships between the survival function, Fy(¢), the failure rate,
hy(t), and the mean residual life, py(¢), of the original distribution and the correspond-
ing measures of its weighted version. Gupta and Keating (1986) obtained relations for
the reliability measures of the size-biased version of a distribution and proved some
interesting characterization results concerning the continuous case. Jain et al. (1989)
working with continuous time models, generalized, among other results, those obtained
by Gupta and Keating for a general form of the weight function.

In this section, we characterize the Yule distribution by properties of the reliability
measures of its weighted version. Before proceeding to the main results, we introduce
some notation and terminology.

Let us consider a nonnegative random variable X with probability function fx(x),
fx(0) < 1, and let w(X) be a positive weight function. Assume that E[w(X )] exists.
Denote a new probability function by f¥(x) = w(x)fx(x)/E[w(X)] and let X" be the
random variable whose probability function is fy'(x). Then, fx(x) is referred to as the
original probability function and fy(x) as the weighted probability function. In the
context of statistical analysis and in the case where w(x)=x* a > 0, f¥(x) is known
as the size-biased version of fx(x) of order o and the random variable X™ associated
with it is denoted by X**. In the special case where ¢ = 1, the random variable X
is denoted by X* = X*! and fJ(x), simply called size-biased version of fx(x), is
given by fy(x)= f3(x)=xfx(x)/E[X]. Finally, in the case where w(x)=x\") =x(x —
1)-++(x — j + 1), the random variable X" is denoted by X*) and its probability
function f;(' )(x), referred to as the size-biased version of fx(x) of factorial order
J» is given by f3(x) =xV fyx(x)/E[XD], x = j,j + 1,... provided that the factorial
moment of order j exists, i.e. E[X\'] < + oc.

In the sequel, we characterize a variant of the Waring distribution by the form
of its size-biased version of factorial order j. More precisely, it will be shown that
the distribution of a random variable X is uniquely determined as a variant of the
generalized Waring distribution if its size-biased form of factorial order j follows the
shifted j units to the right univariate generalized Waring distribution.

Theorem 5. Let X and X*1) be nonnegative, integer valued random variables defined
as above. Assume that E[X] = u¥) with 0 < u) < + oo and let the probability
functions of X and X*9 be p. and pi' respectively, satisfying the condition, pi =
xD pEIXN, x = j,j+1,.... Then, the random variable X*V) follows a shifted j
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units to the right generalized Waring (2 +j, k+ j; p—j) distribution, a,k > 0, p > j if
and only if X is distributed according to a variant of the generalized Waring (2, k; p)
distribution, with probability function
dy, x=0,1,2,...,j -1,
Px= ¢ Aoy 1 N (21)
TPy @R+ )y X T e

where ¢; and d, arbitrary constants such that ZT_"; py=1

Proof (Necessity). Let X be a random variable distributed according to a variant of
the univariate generalized Waring («,k; p) distribution, with probability function given
by (21). Obviously, (' =E[X D=0 kp/((p—1Wp—2) - (p—j)), i=0,1,2,...,[p),
where [p] denotes the integer part of p. Consequently,

) = Dippw @+ ek + D 1

! (s +pPafa+k+p)pla+k +p+ -y (x =)

_ 0= Do+ Do plk + =y ]
(@+pdurp(e+hk+p+ida—py G=iN

=i (22)

Therefore, the random variable X*/) follows a shifted j units to the right univariate
Waring (o + j,k + jip — j) distribution, o,k > 0, p > j.
Sufficiency: Let X*) be a random variable distributed according to a shifted j units
to the right univariate Waring (o + j,k + j; p — j) distribution, o,k > 0, p > j. Then,
iy _ 0= D+ D=k + Pa-pp 1

pel) = —, x=j, j+1,....
o T ek pF ey =) S

By the definition of pi'), we have pf¥) =x\) p JELXV], x = j,j + 1,.... Therefore,
XD pe p = Do+ Pl + D=y |
E[XD] @+ Pherp@+k+p+ D-p =)
or, equivalently,
W (p = Darp @+ Deplk+De-p |
X =D+ Py @k pt ey =)

Py =

I

o) = Do+ Pa—plk + De—ip 1 x—j
(24 Pl +k + )2+ k+p+ fe-p XV T
leading to
0 (9 = NP ok 1
(4 pYiytikep(a + k + phey 2t

py=p x=j jH+1,....

Therefore, the random variable X' follows a variant of the univariate generalized Waring
(2, k; p) distribution, with probability function as given by (21) with
=D o

¢j=H .
J 3
ke
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As shown by the next theorem, the Yule distribution is characterized by the form
of the hazard rate function of its size biased version. In particular, it is shown that
the hazard rate of the size biased version of X is directly related to the corresponding
measure of the original random variable. Before providing the main result, we prove
the following lemmas. The first lemma shows that the univariate generalized Waring
distribution is form invariant under size biased sampling of order 1 with displacement
of the origin. The second lemma expresses the hazard rate function of a size biased
distribution in terms of the hazard rate function of its parent distribution.

Lemma 2. Let X, X* be random variables taking values in {1,2,3,...,} with E(X ) <
+ 00 and probability functions p,=P(X =r), pt=P(X*=r), r=1,2,... respectively.
Assume that pi=rp,/E(X), r=1,2,.... Then X* is distributed according to the shifted
generalized Waring (o0 + 1,k + 1; p — 1) distribution if and only if the distribution of
X is the zero truncated univariate generalized Waring (o, k; p) distribution, a,k > 0,
p>1

Proof. By Theorem 5 it follows that X* is distributed according to the shifted gener-
alized Waring (o + 1,k + 1; p — 1) distribution if and only if the distribution of X is a
variant of the generalized Waring distribution with probability function given by (21)
for dy =0, j = 1. Therefore,

Piky Yok 1

=cp ——— -, x=12,....

PO oo Gkt ) X!

Consequently,

+o0 .

ol Py Yk 1 e | _
@+ Py (2+k+p)o X (@4

(24 P
(4]

CEN
leading to the zero truncated univariate generalized Waring (2, k; p) distribution. O

Lemma 3. For any nonnegative, integer-valued random variable X with probability
function py #0, x 2 1 and E(X) < + oo, the following relationship holds:
() ox(t=1)
hy(t) t
where hy(t), vx(t) are the hazard rate function and the vitality function of the random
variable X, respectively, while hy+(1) is the hazard rate function of its size biased
version X*.

t=1,2..., (23)

Proof.
(@) b tp/EX) Yoxne XPx

hy(t) T PX 20) [ So0s  xP/EX)  tPX 2 1)

CEX|X2n EX|IX>i—1) ug(i—1)
N t N t T

[m}
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Theorem 6. Let X, X* be random variables taking values in {1,2,3,...}. Assume
that E(X) < + oo and let the probability functions of X, X* satisfy the condition
pr=rpJEX), r=12,..., where Pr=PX=r), pr=P(X*=r), r=1,2,.... Then,
X follows the zero truncated Yule (p) distribution, p > 1 if and only if

1

1
hys(t) = ¢) ————ou — ,
eO=a iy T

(24)
where ¢ = (p — 1)a)/(1 — p@) and ¢ =(p ~ D))/(1 - pey).

Proof (Necessity). Let X have the zero-truncated Yule (p) distribution with p > 1. By
analogy to the result of Xekalaki (1983) for the untruncated case, it follows that

14

hx(t) = ——r, t=1,2,... .
(1) p+i+1
Also, from Corollary 2,
1

wey ="
p—1

These relationships, combined with (23) of Lemma 3 and the fact that ox(t)=px(t)+t,
lead to (24).

Sufficiency: Assume that (24) holds. The shifted generalized Waring (2,2;p — 1)
distribution satisfies (24) as just shown. Since the distribution of a random variable
is uniquely determined by its hazard rate, it follows that X* is shifted generalized
Waring (2,2; p — 1) distributed. Then, by Lemma 2, X has the zero truncated Yule (p)
distribution, p > 1. O

Consider a random variable and its size biased version. The theorem that follows
proves that the distribution of the original random variable is characterized as Yule if
the ratio of the hazard rate of the original random variable to that of its corresponding
size biased version is constant.

Theorem 7. Let X, X* be random variables taking values in {1,2,3,...}. Assume
that E(X) < + oo and let the probability functions of X, X* satisfy the condition

pr=rp/EX), r=1,2,..., where pr=PX=vr), pr=PX*=r), r=1,2,.... Then,
X follows the shifted Yule (p + 1) distribution, p >0 if and only if
hx(t)  p+1
—— = — 25
@ p @

Proof (Necessity). Let X be a random variable distributed according tou a shifted uni-

variate Yule (p + 1) distribution with probability function

_(p+Dx—1)
(p+2)x)

Then, E(X)=(p+1)/p, hx()=(p+1)/(p+t+1), t=1,2,... and, since p¥ =rp,/E(X),
r=12,..., it follows that Ay-(t) = p/(p + ¢ + 1), which leads to (25).

x=12,....

x
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Sufficiency: Assume that (25) holds. Using Lemma 3, we obtain

i
oxtr— = 241
/)

This leads to ux(¢1)={(p + 1 +1)/p, which, by analogy to the result of Corollary 2 for
the Yule distribution, implies that X follows the shifted Yule (p+ 1) distribution. O

Corollary 6. Let X, X* be random variables taking values in {1,2,3,...}. Assume
that E(X) < + oc and let the probability functions of X, X* satisfy the condition
pi=rp JE(X), r=1,2,..., where p,=P(X=r), pf=P(X*=r), r=1,2,.... Then, X
Sollows the shifted Yule (p+ 1) distribution, p > 1 if anyone of the following relations
holds:

(D)= By () =1/t +p+ 1),

(e () = (p — D)/p.

() = () =(1/(p = D)t + p+1).

(O hye (8) = pe (O e (8) = 2/p.

e (D) —ox() = (1/(p — D)t +p+ 1)
ex(Ofex=(1)=(p = D(p+ D¢+ D[p(pr +p + D]

WB LN —

=

Before proceeding with the proof of the next theorem, we shall state and prove the
following lemma which is a characterization of the shifted 1 unit to the right Yule
(p + 1) distribution, p > 0 based on its tail probability.

Lemma 4. Let X and Z be nonnegative, integer valued randont cariables. Assume that

E(X) < + o0 and that the probability functions of X and Z satisfy the relationship
+o0
v

J=r¥l

+
4 = )

r=0,1,2..., (26)
where p, = P(X =r) and 4 = P(Z = r). Then, the zero truncated distribution of Z
is the shifted UGIWD(1,2; p), p > 0, if and only if the distribution of X is the shifted
Yule(p + 1),p > 0.

Proof (Necessity). Let X be a random variable distributed according to a shifted uni-

variate Yule(p + 1) distribution with probability function

e - 1)
(p+2)n

The zero truncated distribution of the random variable Z has probability function
given by

P+l

Dx

=12,... and E(X)=

+oo
+ > b
. g4 =l
PZ=r|Z>0)= l—q(;r _E(?T:'
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It is also known, from Xekalaki (1984), that Zf,"f“ pj=P(X >r)=rP(X=r)/(p+1).
Therefore,
47 _ o+ DI+ DO =D/ (p+2)0) _ _»e2c-nle-n 1
1—qf (p+1)/p—1 P+ Dey(p +3)p—py r =D

So, the distribution of the random variable Z|(Z > 0) is the shifted UGWD(1,2;p),
p>0.

Sufficiency. Let Z|Z > 0 be a random variable having the shifted UGWD(1,2;p),
p > 0. Then,

q+
P(Z=r|Z>0)=—L

1—qf
_ _2e-ple-n 1
(p+ Dy(p +3)—1y (r = 1}
But,
‘]r+ _ E;r:roﬂ Pj r=1.2
l-—qg' EX)-1’ o
Therefore,
Y P __(pP22e-ple-1 1

EX) =1 (p+Deylp +3)e—n) (=1

or, equivalently,

S5 b= (e - 1) ey @n
el (p+Dey(p+ 31y’

Specializing this relation for » + 1 and subtracting it from (23), it follows that,

(M22¢-1
(p+ Deyp +3)p=1

(P20

P =(E(X)-1) G Dok + 30

—(EX)-1)

Hence,
plo+1) [ 2r-2) 2-1) ]
= (E(X)— 1 - »
o= T [T e
where r=1,2,... . Since Z?_"f pr=1, we have

pp+1) m{ lg-p 2(¢-1) ]
—(E(X)— -
= - ) N+ 2= (G T Den/ 7D G e
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(B -1 e D (;+2)§ le—1) _”’i’ 241)
(p+1)p+2) & i (p+ 2 = (p+3e-n

plp+1)
(w+D(p+2)

Then, (E(X)— l)p=1 and
_! P 2e-2) _ P@)26=1) }
p L+ Dalp+3)p-2  (p+Deyp+3-n
(r—1) r!
Tt e (e

D=1 L
——-———(/)_’_2)(” , or=12,....

Hence, the distribution of X is the shifted | unit to the right Yule(p +1),p > 0. O

=(EX)-1)

[(/'+2)(p+ b (p+2)].

p P

Pr

The tail probability function of X as given by relationship (26) is the probability
function of the weighted distribution of X with weight function w(X') = I/hx(X).
Therefore, the following characterization of the shifted Yule (p+ 1) distribution, p > 0
can be proved.

Theorem 8. Let X, X" be random variables taking values in {1,2,3,...} with
E(X) < + oo and probability functions p, =P(X =), p} =PX" =r), r=12,...
respectively. Assume that

" w(r) pr . ]

L= , r=12,.. ith WX )= ——.

), Ewin) I R with w(X') w0
Then, X is distributed according to the shifted Yule (p+ 1) distribution, p > 0 if and
only if hyw(t)=p/(p+t+1).

Proof. Let X be a random variable distributed according to the shifted Yule (p + 1),
p > 0 distribution.
Then,
v w()pr P(X =)

P Eeo] - Evr T R

But,

i +00 1 +00
E {m} = ;mm{ =x)= §P(x >x)=EX).

Therefore,

_PX ) _Eioa

W

= TRy T ED
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Consequently, by Lemma 4, X¥ | (X" > 0) follows the shifted UGWD(1,2; p) distri-
bution if and only if X follows a shifted Yule(p+ 1) distribution. Also, X* [(X™ > 0)
follows the shifted UGWD(1,2;p) distribution if and only if X™|(X™ > 0) follows
a 0— truncated Yule (p) distribution leading to X™ ~ Yule(p), which, as shown by
Xekalaki (1983), is equivalent to hyw(t) = p/(p+t+1). O

Corollary 7. Let X, X* be random variables taking values in {1,2,3,...}. Assume
that E(X) < + oo and let the probability functions of X, X* satisfy the relationship
pr=rp/EX), r=12,..., where p,=P(X =r), pf=P(X*=r), r=12,.... Let Z be
a non-negative integer valued random variable with probability function ¢} satisfying

+00

the following relationship qt= 3" p;/E(X), r=0,1,2.... Then, the random variables
jertl

X* and Z|(Z > 0) follow the same distribution if and only if hx(t)=(p+1)/(p+t+1).

5. Continuous analogues-characterizations of exponential, beta and Pareto
distributions

In this section, we provide continuous analogues for most of the results obtained in
earlier sections.

Let X be a continuous random variable on [0,+00) representing the failure time
of a component and let its probability density function be denoted by fx(¢). The
probability that the component has not failed at time ¢ is known as the reliability
Sfunction, Fx(t)=1— Fy(1).

In the sequel, we denote by hy(¢) the hazard rate function, which reflects the
instantaneous potential for an event to occur given survival up to time ¢ and it is
defined as follows:

_ fx(®
ST

Further, we refer to the function

(20 or hxu):g((i)),t;o.

1
Fx(t)
as the mean residual life of the component at time ¢. This is well defined whenever
E(X) < +o0.

Also, vx(t) is termed as the vitality function, and it is defined as vy (1)=E[X | X > 1].
Obviously, vy(f) = px(¢) + ¢. Finally, 6%(¢) = Var[X — ¢|X > 1] is the residual life
variance function.

It is known that the distribution of a nonnegative random variable is uniquely deter-
mined by the form of its hazard rate or that of its mean residual life. Also, the hazard
rate is directly related to the mean residual life, i.e. Ax(z) = (1 + (d/df)ux(2))/ux(¢);
t 2 0 and to the vitality function, i.e. hy(¢) = (d/dt)ox(t)/(vx(t) —¢); t 2 0.

In the sequel, we demonstrate that the results obtained in Sections 3 and 4 bear
comnplete analogies to results concerning lifelength distributions in continuous time ob-
tained under similar hypotheses. The geometric distribution and its continuous analogue,

+00
() =E[X —t|X > f]= / Fy(x)dx, t>0
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the exponential distribution, arise, for example, on the assumption of a constant mean
residual life. On the other hand, the Pareto distribution is a continuous approximation
of the Yule distribution and, as shown by Xekalaki and Panaretos (1988), there exists
a duality association between Yule and Pareto distributions comparable to the duality
association between the geometric and the exponential distributions. Moreover, just like
the geometric distribution is a limiting case of the Yule distribution, the exponential
distribution is a limiting case of the Pareto distribution. It would, therefore, be interest-
ing to examine whether continuous versions of the specific results already proved for
the Yule distribution lead to characterizations concerning the Pareto distribution with
probability density function (pdf) given by

Fr(x)y =00 x>0, 2,0> 0. (29)

In fact, the following theorems can be shown whose results indicate that this is the
case. Some of the obtained results hold for more general forms of distributions. It is
quite interesting, in particular, that as shown below (Theorem 9), a mean residual life
of form (14) with € [0, +00) leads to the beta distribution of the second kind (Pearson
type VI) when b > 0, which has been shown by Irwin (1975) to be the continuous
analogue of the Waring distribution. Moreover, when b < 0, the continuous life distri-
bution that arises is the beta of the first kind (Pearson type I) to which the negative
hypergeometric was shown by Xekalaki (1983) to provide a discrete approximation.

Definition 6. A random variable taking values in [0, 1] is said to have the beta dis-
tribution of the first kind (Pearson type 1) with parameters p and ¢ if its probability
density function is given by

I'(p+q)

2T e —x) 0<x <1, pg>0.
T(pT(q) ) P

flx)y=
Definition 7. A nonnegative random variable X is said to have the beta distribution of
the second kind (Pearson type V1) with parameters p and ¢ if its probability density
function is given by

I'(p+yq)

o o (L) x>0, pg>0.
F((y) b

Jxy=

Theorem 9. Let X be a continuous random variable defined on (0,1), 1€ R U {400}
with E(X) < + oo. Then, its mean residual life is given by

w()=a+bt, o,beR, au>1, t€(0,]) (30)

if and only if the distribution of X belongs to the Pearson fumily of continuous
distributions with a density of the form

—(2+1/b)
f(x):@ (|+I;’r) . te(0,0). (31)
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Proof. It can be observed that, by the definition of the mean residual life, (30) holds
if and only if

+00
(@ +b)PX > 1) =/ P(x > x)dx,
t

which, upon differentiation with respect to ¢, is equivalent to
(b+1DPX >ty —(a+bt)f(t)=0.
Differentiating again with respect to f, the latter relationship is equivalent to
[0 2h+1
0" Taw
whose unique solution is (31). Hence, the theorem has been established. [

Now, observe that, as in the discrete case, (14) implies that b > 0 if X has an infinite
support (/ =+o0) and b < 0 if X has a finite support (/ < + o). Then, when b > 0,
relationship (31) represents the probability density function of the beta distribution of
the second kind (Pearson type VI) with parameters p =1 and ¢ = 1+ 1/b and scale
parameter b/o. This is precisely the Pareto distribution as defined by (29) for a=1+1/b
and 0 = b/z, When b — 0, (31) reduces to f(t) = (1/a)e™*, ¢t > 0, leading to the
well known result for the exponential lifelength distribution. Finally, if 5 < 0 whence
| < 4 00, (31) represents the probability density function of the beta distribution of
the first kind (Pearson type 1) with parameters p=1 and ¢ =—1/b and scale parameter
—b/a.

Corollary 8. Let X be defined as in Theorem 9. Then, X follows the uniform distri-
bution on (0,%) if and only if its mean residual life is a linear function of time given
by

ux(ty=o—1t, w€R, a>1, te(0,a)
or, equivalently, if and only if its vitality function is constant and, in particular,
vy(t)y=ao, t€(0,a).

Note that results analogous to those of Lemma 1 in the discrete case, hold in the
continuous case too as summarized by the following lemma.

Lemma 5. Let X be defined on (0,1), | € RYU{+oo} and such that py=P(X=0) < 1,
E(X) < + 00 and hy(t)y=1/(e+ bt), e,b€R, >0, t€(0,1). Then, (i) o> 1, (ii)
b < 1, (iii) E(X)=0/(1=b) and (iv) X has a distribution with finite support (I <+00)
if and only if b < 0 and, in this case, b= —a/l.

Then, by analogy to the results of Theorem 4, the following results can be shown.

Theorem 10. Let X be a nonnegative random variable defined as in Lemma 5. Assume
that E(X)=m < + oc. Then,

hx(Dux(t)=c, t€(0,l), ceR
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if and only if one of the following statements holds:

(1) X has an exponential distribution with parameter 1/(1 4+ m), for ¢ =1
(1) X has a beta distribution of the second kind with parameters p=1, g=c/(¢—1)
and scale parameter (¢ — 1)/(¢ +m), for ¢ > 1
(i) X has a beta distribution of the first kind with parameters p=1, g =c¢/(1 —¢)
and scale parameter (1 — ¢)/(c + m), for ¢ < 1.

Summarizing results that are already known in the literature as well as the ones
shown in this section, the following hold for the Pareto distribution.

Corollary 9. Let X be a continuous random variable defined on [0, +00),0 > 0. Then,
X follows the Pareto (0,2) distribution, 0,0 > 0 with pdf given by relation (28) if
and only if:

(i) the hazard rate is inversely proportional to time
and, provided that E(X) < + 00,
if and only if anyone of the following conditions is satisfied
(i) the mean residual life is a linear function of time
(iii) the product of the hazard rate by the mean residual life is constant.

Proof. For a proof of statement (i), see Xekalaki (1983). Statement (ii} follows im-
mediately from Theorem 9, while statement (iii) is a direct consequence of Theorem
10. (Note that a multivariate version of (ii) can be found in Jupp and Mardia, 1982).

Before proceeding with the remaining continuous analogues, let us note the follow-
ing:

A random variable X" is said to have the weighted distribution. corresponding to
a positive random variable X with a weight function w(x) if its probability density
function is given by fy(x)=w(x)/y(x)/E[w(X )], provided that E[w(X)] exists. Here,
we restrict lifetimes to density functions fx(x) # 0, x > 0.

Theorem 11. Let X, X* be random variables defined on [1,4+00). Assume that
E(X) < + 0o and let the probubility density functions of X, X* satisfy the con-
dition f¥(x) =xfy(xX)/E(X), x = 1. Then X follows the Pureto (1,2) distribution,
o> 1 if and only if

hy(r) _ @

h(6) =1 (32)

Theorem 12. Let X, X* be random variables defined on [1,4+00). Assume that
E(X)< + oo and let the probubility density functions of X, X* satisfy the con-
dition f¥(x)=xfx(x)/E(X), x 2 1. Then, X follows the Pareto (1,a) distribution,
o> 2 if and only if anyone of the following relations holds:

1. hylt) — hys (1) = 1)t
2 ux(Dfpx=(1) = (2 = 2)/ (2 = 1)
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e () = px (2) = ¢f((o = 1)( = 2))

- hx (O hx (1) — px (D) () =2/ — 1)
g (8) — ox () = /(o — 1)z = 2))

L ox(H)/ox-(t) =a/(a —1).

N AW

Theorem 13. Let X, X" be random variables defined on [0,+00);0 > 0 with E(X)
< +o0 and probability density functions fy(x) and fy(x), respectively. Assume that, -
S @)y =wx) fx(x)/E[wX)], x = 0 with w(X)=1/hx(X). Then, X is distributed ac-
cording to the Pareto.(0,x) distribution, 0,00 > 0 if and only if hxw(t) = (2 — 1)/t;
120, 0,6a>0.
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