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THE GENERALIZED WARING PROCESS

Mimoza Zografi and Evdokia Xckalaki®

Abstract -~ The Generalized Waring Distribution is a discrete
distribution wnh a wide spectmm ol‘ appllcatwns in areas. such
as accid ics, income lysis, envir
etc. It has been used as a model that better describes such
practical situations as opposed to the Poisson Distribution or
the Negative Binomial Distribution. A d to both the
Poisson and the Negative Binomial distributions are the well
known Poisson and Polya Processes In this paper, the
Generalized Wering Process is defined. Two models have been
shown to lead to the Generalized Waring process. One is
related to a Cox Process while the other is a Cnmpound
Poisson Process. The defined Generalized Waring Process is
shown to be a y but h Markov
process. Several pmpemes are smdled and the intensity, the
individual i , the Chap goroy differential
q oflt,an btained. M , the Poisson and the
Polya processes are shown to arise as special cases of the
Generalized Waring Procrss. Using this fact, some known
results and some properties of them are obtained.

Keywords and Phrases ~ Polya process, accid

aecident liability, Markovian property, stationary mcremems,
Cox process, transition probabilities, Chapman-Kolmogorov
equations, individual intensity.

1. INTRODUCTION-BASIC CONCEPTS

The Poisson and the Polva processes have been
used in Accident Theory to describe the accident pattemn.
Under the hypotheses of pure chance, the Poisson process
with intensity A has been proposed as a model that can
describe the number of accidents sustained by an individual
during several years. The Polya process which is of
Negative Binomial form, is defined by starting from a
Poisson process, which then, is mixed with a Gamma
distribution. It has been obtained as a model which can
describe the accident pattern of a population of individuals
during several vears, under the hypotheses of “accident
proneness” ie that individuals differ in their probabilities
of having an accident which remain constant in time [7].
Both of these processes satisfy the Markovian property
because this is a property of the accident pattem, i.e. the
number of accidents during the ‘next’ period (l,t+ h]
depends only on the number of accidents at the present time
t.

In this paper, a new process is defined and studied.
This process is associated with a discrete distribution with a
wide spectrum of applications known in the literature as the
generalized Waring distribution (see, e.g. [6], [10]). This
new process is termed in the sequel as the generalized
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Waring process. Analogously to the case of Poisson and
Polya process, the generalized Waring process is postulated
as a Markov process, as shown in section II. The starting
point is a process of Negative binomial form but different
from a Pélya process. This process is then mixed with a
Betall distribution of the second type. This scheme is
shown to lead to the generalized Wanng process. A proof
that this process s a stationary but non-homogenous
Markov process is also provided. Further, an alternative
genesis scheme referring to Cresswell and Froggait's {2]
spells model is proposed in the framework considered by
Xekalaki [10]. This scheme, too, allows for stationary
increments and the validity of the Markovian property, as
also shown in section 1.

Section III indicates how the above considerations
formulate the framework for the definition of the
generalized Waring process as a stationary but non-
homogenous Markov process. Expressions for the first two
moments of this process, as well as results on the intensity
and the individual intensity of it, are also given in section
11 and its transition probabilities and the associated forward
and the backward Chapman-Kolmogorov differential
equations are derived.

The Poisson process and the Polya process are
special cases of the Generalized Waring process. Using this
fact, some known theoretical results concemning these
processes are presented and their transition probabilities
and the associated Chapman-Kolmogorov differential
equations, are derived in this context (section V). Finally,
two further genesis schemes are considered in section V.
The results are based on Zografi and Xekalaki {14] and
have been obtained in the context of models that have
widely been considered for the interpretation of accident
data. However, the concepts and terminology used can
easily be modified so that the obtained results can be
applied in several other fields ranging from economics,
inventory control and insurance through to demometry,
biometry and psychometry.

II. THE BASIC HYPOTHESES OF THE GENERALIZED WARING
PROCESS

A, The description of the accident pattern by a Cox

Process.

In this section, we consider first the assumptions of a Polva
Process, developed by Newbold [7]. This model considers
several individuals exposed to the same external risk (e.g.
drivers all driving about the same distance in a similar
traffic environment) and that there are intrinsic differences
among different individuals (e.g. differences in accident



proneness). Supposing that, the number of accidents up to
time ¢, for each individual, conforms with a Poisson
process with a “personal rate A7 (A stands for the
respective accident proneness), and regarding A as the
outcome of a random variable A with a Gamma distribution
wilh parameters & and 1/v, the number of accidents N(r)
at time £, t=0, 1. 2, .. defines the Pélya Process with
parameters kand 1/v thus: (DN(0)=0, (DN is abirth

process, (I} N(f + h) — N(1) has a distribution defined
by the probability function

P{N(t+h)- N(t)=m} =E LA%)—”—e"‘
g I
m=0, 1,... @Ly

where A is [(k, 1/v)-distributed. It is clear that N(r) hes
a Negative Binomial distribution with parameters k and
Vvt ie N(1)~ NB(k,/vt).

The distribution of the random variable A explains here the
variation of the accident proneness from individual to
individual. ‘As noted by Irwin {5] and Xekalaki [11], the
term accident proneness here refers to both, external and
internal risk of accident. It seems more natural to assume

that this variation in an interval of time (¢, f + h]depends
on the length A of the interval, while, m two non-
overlapping time periods, the Tespective variations are
independent. So, now, a personal A, in an interval of ume
(t, t+h], is regarded as the outcome of a random
 variable A(h)with distribution U(h) which depends on
the interval length h. If U(h) is assumed to be
F(k(h),l/ v(h)) where k(h) and v(h) are in general
some functions of # , then, clearly the number of accidents
N(t) will | form a stochastic process of a Negative
binomial form satisfying the assumptions
ON(0)=0

and

@D N(t +h) — N(1) has the distribution:
P{N(t+h)- N(t)=n} =

+®

J. (l.h)" -k v(h) <™ )'(k(h)-ﬂe(-k/v(h))dh. n=01
n! T k()

2.12)
It can be shown that

PiN(t +h)- N(1)=n}=

(k(h)+n-l) Y™ v Y
n 1+ v(h)h 1+ v(ih

Then, using the first assumption, it follows that for any /.,
N(1) has Negative Binomial distribution with parameters
k(t) and 1/ tv(t). Hence, one can confimn that the
following relation stands

P{N(t)=n}=

M"(A-l)" e_,u V(t)‘*(’) l(k(l)ﬂ)e-l/v(!)dl n= 0 1

o nt T'(k(2))
This tells us precisly that N(¢) is a Cox Process (see e.g.
Grandell, 3], p.83).
Assume that the accident proneness varies from individual
to individual with a mean that does not depend on time.
This is equivalent to considering a parameter pair
(k(h), v(h)) with k(h)- v(h) = constant. So, letting
v(h) =v/h, and k(h)=kh, ie., allowing A(h) to
have a gamma distribution that changes with time =5 that its
expectation remains constantly equal to vk , we obtain

P{N(t + h)- N(t)=n}=

kh+n-1¥ 1 V¥ v YV (2.13)
() n-on
( n Il+v l1+v

and that N(¢) is NB(kt,1/v) distributed.

B. An extension of Irwin's accident model.
This model considers a population which is not
homogeneous with respect to personal and environmental
attributes that atfect the occurrence of accidents In his
model, Irwin used the term “accident proneness” Vv to
refer to a person’s predisposition to accidents, and the term
“accident liability” (1| v, i.e A for given v) to refer 1o a
person’s exposure to external risk of accident.
The conditional distribution of the random variable A for
a given v describes differences in external risk factors
among individuals. As before, liability fluctuations over a
time interval (1,7 + h)depend on the length & of the
interval and are described by a ['(kh,1/vh) distribution
for A| V. Moreover, assuming independence in two non-
overlapping time periods, the number of accidents | ( t) ,
for a given v, will be a stochastic process of Negative
binomial form with parameters k7 and 1/v .This starts at
and has stationary increments with a distribution given by
(2.1.3). Let us further allow the parameter v of the

Negative Binomial to follow a Betall distribution with
parameters @ and p . obtaining thus for the distribution of

the number of accidents V| ( t) :



P(N(t+h)-N(t)=n) =
Py Hn) (kh)(,,) L
(a+p)(w (a+p+kh)(”) nt

and )
Py m® o
(a+ p)(k,) (a+p+ kt)(") nt

P(N(t)=n)= P,,(t) =

n=01, .. @.2.n
In the sequel, we refer to the process defined by N(t) as
the Generalized Waring Process.

C. The Markovian property
Theorem 2.3.1 :
Lt  N(f) be defined as asbove  Then,

P(N(t+k)=n | N(t) =m, N{s) =n,, 0< s<1)
coincides with P(N(: +h)=n }N({) = m) for every non-

negative integers n,m,n, 0<s<t.
Proof: First we denote that

P{N(t+h)=nlN({)=m,N(s )=n,, 0$s<t}

is equal to
P{N(t+h)-N()=

n-m|N({t)-N(s)=m—nN(s )- N(0)=n,0<s <t}
Consider, now, the random vector

(W(e+m)- N (), N(t)- N (s), N(s )-N(0) 055 <t
As is known (see [11], [13]), this vector has a multivariate
generalized Waring distribution { MGWD{a; k; p))
where & =(kh, k(h - ), ks) ,and
(Ve + 1)~ N ()| M (e)- N ), N(s)-N ()
~MGWD(a + n{t), kh;, p + ki)
where n@) is the value of Nq).
Hence,
PiN(e+h)-N()= '
n-m|N(t)~N{s )=m-n,, N(s )-N(0)=n, =
_ (P + kt)(a+m) (a + m)(n—m) (kh)(n-m) 1
Tk +kh)(a+m) (p+kt+kh+a +m)(”_m) (n-m)
_ I"(a +n) (kh)( n—m) (P * kt)(ad»m) N
" Ta+m) (n-m)! (p+kt +kh)(a+n)

= P[N(t +h)~N(t) = n-m/N(t)- N(0) =m] =
P[N(t+hy=n |¥(t) = m], @3.n
which proves the theorem.

This result tells that the generalized Waring process has the
Markovian property.

D. The Spells Model
In the sequel, an alternative scheme generating a
process of a Generalized Waring form is considered. This is
a variant of Cresswell and Froggatt’s [2] Spelis model that
has been considered in the paper of Xekalaki [11].
According to this model, each person is liable to spells. For
each person, no accidents can occur outside spells. Let
S(#) denote the number of spells up to a given moment ! .
It is assumed that S(t), t=0, 1, 2, ... is a homogeneous
Poisson process with rate k/m, k>0, the number of
accidents within a spell is a random variable with a given
distribution F' and that the number of accidents arising out
of different spells dre independent and also independent of
the number of spells. So, the total number of accidents at
8() .
ime f s X()=) X,, whee S(r) is a
k=1
homogenous Poisson process with rate k/m and
{Xi}] are identically and independently distributed
(i.i.d) random variables from the distribution £
When {X}}7" is a logarithmic series distribution with
parameters (m, v) ;Le.
P(X;=0)=1-mlog(l+v) amd
n
m( v
P(X; =n)=—(—-—) , 21, m>0,v>0, the
n\l+v.
random variable X| (t), is a Negative Binomial random

variable with parameters (kt, Y V) for each ¢ [1]. Here v
is regarded as the external risk parameter, too. Then, if the
differences in this external risk can be described by a
Betall(a,p) distribution,  the  resulting  accident
distribution is of a Generalized Waring form with
parameters @, Af,and p.

Let us consider, now, the counting  process
{N(t),t > 0} where N(t) can be represented, for 20,

S(¢) 0 N .
by ZX,,, (ZXI: =OJ, where S(t) is a
k=1 k=1 )

homogenous Poisson process with rate k/m, {X k }T has

a logarithmic series distribution with parameters (1, v)



and is independent of the process S(t), and v is a non
negative random variable with a Betall (a.p) distribution.
Theorem 2.4.1

For the process { N ( t), t> 0} defined as above the
tollowing conditions hold:

N(O)=0

{ N (t), t= 0} posseses stationary increments

{N(t,), t> 0} is a Markov process.

Proof: The proof of (I) is straightforward. To prove
condition (II), denote by @ the probability distribution
. function (p.d.f) of the random variable v. Then we can
write:

P(N(t+h)- N(t)=n)=
IP(N(’ +h)-N(t)= n/v)q)(v)dv

= 1‘” 1{ S(’ZM) X, =an>(v)dv

k=5(r)

TEA B 21 o
P k) 1

~(p+a)(kh) (a+p+kh)(n) n!’

, S(t)
To prove the Markovian property, let NV, (I) = Z X,
. k=1
for a given v. The process N, ={Nv(t), tZO} is a
compound Poisson process. Hence, it is a Markov process.
We now note that:
P(N(t+h)=nIN(:):m,N(s):n, Sfor 05sSt)=

3

P

Sy —

TPV(N(t) =m,N(s)=n, for 0<s< t)tp(v)dv

where P, (A) stands for the conditional probability of an

event A given the value v of the random varisble v.
Then,

PV(N(t+h)=n, N(t)=m, N(s)=n(s), 0<s< t) ’

(N(e+h) =, N(t) =m,N(s) = n, for 05 s < p(v)dv |
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is equal to p,,(m - n) . p,_s(m - ns) . ps(n(s)) and
PV(N(I) =m, N(s) =n(s), 0<s< l) is equal to
Pr—s(m=n,)- ps(n(s)) . Therefore .
P(N(r+h)=n, N(t)=m, N(s)=n(s), 0<s< 1)
_T(a+n) ("”)(,,-,,.) (p+ k’)(,m,,)

" Ta+m) (n—m)t (p+he+ kh)("+”)

The last result proves the Markovian property of the
process and provides its transition probabilities,

(2.4.1)

Il THE GENERALIZED WARING PROCESS,

The Generalized Waring process can, now, be defined in -
the following way:

Definition 3.1 The counting process {N(t), t2 0} is said
to be a Generalized Waring Process with parameters
(a, &, p). a>0,k>0p>0 i MmN(0)=0,
a N(t) is a Markov process, (IIl) N(t +h)— N(t) is
GW(a, kh, p)-distributed for each 4> 0, 13 0.

It has been shown that such a process does exist. Conditions
(D, (1) and (WI) tell us that this process starts at 0, it has
stationary increments and

am (), 1

= = p(h) -,1le
AN()=r)~ (P+a)y (a+p+ k), n'™"
N(1) sGW(a, kt, p)-distributed.

A. The moments and some other properties
Let NV be a Generalized Waring process with parameters

(a, k, p). Then for any ¢, E[N(t)]=pift-l— s
N =ak1(p+kt—1)(p+a—l)‘
O -

Following Irwin [6], one may show that the variance can be
divided into three additive components, thus

Var[N(t)].—. ci(,) +(k) o2 + o3,

where

Sh =akla+1)p-1)"(p~2)
is thecomponent due to liability

ol =aa+p- )p - 1)'2(p -2)”!
is the component due to proneness

and © %z = a/d'(p - l)-I is the component due to
randomness. .
The Generalized Waring process is a stationary process. For

a stationary process N, E[N(r)]:n-t, where 1 is



termed the imtensity of N (see e.g. [3], p.33). It is clear
that the intensity of the Generalized Waring process is

For this process (like for all stationary

n= ak
T

processes), there always exists, a random variable N with
El ( N ) =1, called the individual intensitv, such that

My

intensity 1} is finite. Hence, it follows that the individual

L Nt as to> 40 (see e.g. (3], p.53). The

intensity N is finite ..’

Definition 3.1.1. The counting process {N(f), > 0} is
said to be a Negative binomial Process with parameters
(k, YV} k>0, v>0,if

® N(0)=0,

(D N ( t) is a Markov process,

am N(t+h)— N(r)is NB(kh, 1/v)-distributed for
each h>0, t20.

The first condition together with the condition (II) lead to
the conclusion that V| (t) is NB(kt , Y V) -distributed.

Definition 3.1.2 A Negative Binomial process with
parameters k =1 and v = 1-is called a standard Negative
Binomial process.

Definition 3.1.3 Let v be a Betall(a,p)-distributed
random variable and consider a standard negative binomial
process N independent of it Let k > O be a constant. The
point process N = N O(k, l/ v),

def
where ﬁe(kt, l/v) = ﬁ(h, l/v) and,
for every t, N(kt, 1/v)~ NB(kt, 1/v), is called the
Generalized Waring Process.
It is already clear that definition 3.1.3 is equivalent to

definition 3.1. By definiion 3.1.3 one can prove the
following property:

Theorem 3.1.1 Let N be a Generalized Waring process.
Then

1 .

-N (t) Pk

t {—>»0
Proof

! The symbol p.here stands for the convergence in

robability of a random variabie
* The symbol a.s. (almost sure) implies that

Plo QN (o) is finite) =1
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lim L N () = lim 1/?(/::,1) -
1> t 1o t v
N BV O . Nk, 1/v)
vkl ———-—N(kt,— =kl e
e vkt V) o~ ElN(kt,l/v)l
We now use the Chebishev Inequality in order to determine
N(kt,l/v)
m ——">= .
= B[ N(kt,1/v)]
N(ki,l/v)

Wehave E E—[ﬁ—(m =

{ IVN(kt,l/v) - var{ﬁ(kt,l/v)}=
E|N(kt,1fv) E2[N (i, 1v)]
vt(l+v) _1+v )0
(Y A
Hence,
N(ket,1/v)
E{ﬁ(kt,l/v)]
which implies that
N(k,)v)  p.
E[N(kt,yv)| o=

1 and

t—>

1+v
I=ze;r<

vkt t-—>®

and
1 2
—N(t)-—p——>vk.
t 1—>»00
Combining this result and ‘the fact that, since v is

Betall(a, p)-distributed, E(y):—a—l-, we  obtain
p-

ak —
E( vk) = _I . Hence, the random variable N = vk is
p f—
the individual intensity of the Generalized Waring process.

B. The transition probabilities and the Chapman-
Kolmogorov equations of the Generalized Waring
process.

Using (2.3.1) and (2.4.1), we obtain for the transition
probabilities of the Generalized Waring process

Ponlt)= P(N(s+ fy=n|N(s)= m)
_Ta+n) (kh)(n—m) o+ k’)(am)
“T(a+m) (n—m)! {p+hat + kh)(‘””)

The transition probabilities of a Markov process satisfy the
Chapman-Kolmogorov equations




n
Pl )= p (s, p, (1, 1) for s<t<s, msn.

=m

Then, for te forward Kolmogorov. differential equations;”
starting from

Pust+h)=3p, (s.0)p_(r.0+h)

for s<t<t,m<n h20,
we obtain '

e . bt t+h)
PO.. (0= p. b5, Nim =

_l}g{l_ﬁ%.h_))pl"(s’t),
Lit+h
i Peall 14 R) _

0 h ,
Ha+n-)) .

n-i=|
(a+p+ht+n-))

qn—l.h(’)=

. Mas) &k (¥,
i) [(a+) (n.an-i—l)(P‘*'ld)(aw)

1- {t,t+h
lim(*————-———, Punltst ))=v,,(t)

h

a+n-1 ' 1

n-i>1

and

=k.

o oprk+i
. Hence, the forward Chapman-Kolmogorov equations for
the generalized Waring process are:

ézg&9=-no»M@J)

200, (0 fo.1)+
gq.,,(t)p,u(s, ), m<n

" The backward equations, follow from the Chapman-
Kolmogorov equations with -~ t=s+4A. Then the
backward equations for the Generalized Waring process

Ponls.1)

a

Pan(5.1)
a

= v;(t)p,,n(‘f, 1)
=v,()p, (s.1)

- 2.4..00p, (5.1} m<n,
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where

kla+m)

qm.;ml('f)f:m’

(p+ ’0’)(“.,.,,,) )

C(a +i) k iSm

Fa+m) (i ~m)i ~m~ 1) (p+ks)(a+l)

Gmi(s) =

a+m-1 1

and v, (s) = k* Z

2 prks+i

IV, THE POISSON AND THE POLYA PROCESSES AS
PARTICULAR CASES OF THE GENERALIZED WARING

PROCESS.
Theorem 4.1.If k> 0> and p=c-k where ¢ >0 isa
kt t
constant  i.e. w, (t) = = - then, the
+p t+c

Generalized Waring process tends to the Negative binomial
process with probability generating function

-a

{ 1w, (z)e}

ue(r)  w (1)
P _ <
k+p t+c’
The proof is analogous to that used by Irwin [5] to obtain
the Polya distribution as a limiting case of the Generalized
Waring distribution.The following theorem can now be
shown:

where uk(t) =l-w, (t) =

Theorem 4.2 Consider now the Polva process defined
above and let ¢ 0. and @=A-¢, where A>0 is a
constant. Then,

zi:;[(“*Z")(,fc)“(,ic)"}

(A1) exp(~2s)
n! '
The result of this theorem tells us that the Generalized
Waring Process tends to a homogenous Poisson process
with rate A . )
30, the Polya and the Poisson processes are limiting forms
of the Generalized Waring process. Utilizing the rosults
hoiding for the Generalized Waring process. one may
obuain the following results for a Polya process X(i) with

 parameters (a,l/c) and for a Poisson process Y| (t) with

parameter A :

e Tlorany 120, E[X(I)]= 31,
¢



Var{ ]=~t+———r

and [:[Y(I)] = Var[Y I)] = A
e The Polya and the Poisson processes are both
stationary Markov * processes. Their respective

transition probabilities are:

PX(t+h)| X(@)=m)=

(-it_)(a»ni —m
c+t+h
(a+mi
~arm e n=m+l
(c+t+h)
Cla+n) A"7(c+1)™ n>m+l
[Ta+m)n-m)Y (c+t+n)""
and
Pl +n)|1()=m)=
exp(- 1h) n=m
=1 Ahexp(- Ah) n=m+1
( )ln—n)
——exp(- k) n>m+1

(n—m)

e The Polya Process is a stationary non-homogenous
bith  process with  tramsition - intensities
a+n
k(1) =
c+t )
stationary homogenous birth process with transition
intensities &, (t) =A.

V. SOME ALTERNATIVE GENESIS SCHEMES

The Generalized Waring process has been defined as a non-
homogenous stationary Markov Process arising as a Beta
mixture of the Negative Binomial process in a “proneness”
context. In the sequel, we consider two further genesis

schemes where the underlying mechanism is indicative of

contagion rather than proneness in the sense of Irwin [4]
and Xekalaki [10].The conmtagion model assumes that, at
time f=0, the individuals have had no accidents and
that, during a time period (t, t+ dt] , the probability of a
person having another accident depends on time ¢ and on
the number of accidents X sustained by him/her by time
t. So this probability is a function fv(x,t), with v
referring to the individual’s risk exposure.
k+x k+x

Assuming that f(x, t)=W=V'1+vt’ the

distribution of accidents for each ¢ (A fixed) is Negative

binomial with parameters (k, I/ Vt) (the accident pattern
is described in that case by a Polya process). As shown by
Xekalaki [10], the overall distribution is the Generalized
Waring with parameters (a,k,p), when A varies from
individual to individual, according to an exponential
distribution, e, A ~ae , a>0 for r=1.
Adopting a similar approach, one may obtain

Py Ao iy (1"’)"
P(0)=P(N =n)= L
"( ) ( ”) (a + P)(,) (a +p+ 7)(,.) n!

-F(a+p,a+n,a+p+7+n;l—%)

G.1
O m
where F(a,b,v;z) = ZM—Z— .
m=0 Y(m) m!
It can be shown that the counting process
={ (t) t>0 Y(O)— 0}' where Y(t) for each ¢,
has the distribution given by (5.1), is a birth process, but not

of a (eneralized Waring form. It is also difficult to
calculate the values of the function

1
(1/t)"F(a+p, a+nm a+p+y+nm 1——), and
t
the respective probabilities. Assuming that
fo.(%,8) = A(k + mx), the distribution of accidents for
each f, is Negative binomial with parameters

(—f-, _ ), when A is fived [4] and
m l_e-lml

Generalized Waring with parameters (i , 1, _‘Z_) , when
m mt

A~ae™ ™ a>0(s]

Also, following Irwin [4], one may be verify in this case
that the distribution of the increment
Y (hy=N(t+h)-N(t) a tme 1, given that

N(t):x, has a Negative binomial distribution with

k
parameters (———+x, ——1—] when A is fixed,
m - ™ .

.and a Generalized Waning distribution with parameters

k a
(—+ x, —) when A ~ae“’)‘, a>0. Hence.
m mt

in this case,

P (s.0)=P(N(t +5)=i|N(r)= j)=

P(N(t+5)- N()=i - j|N()=)



_(k _ a) (k . a ) '
St A —+ j+—+1
m ms ), \m ms . ).,

From the last relationship, one may easily find that
P24(5,7) P2 (v} + 3 (s.7) py3(r.t) = pyu(s.r)

for some values of a,m,s,t,7,i, j. This implies that this
process does not satisfv the Chapman-Kolmogorov
equations and thus is not a Markov Process.
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