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Abstract— Time serles have received considerable atten-
tion as a tool for the treatment of practlcal situations in
several fields of statistics. However, most of the time se-
ries based statistical thodologies have been designed for
data of a continuous nature (continuous-valued time series),
while little attention has been given to time series models
for data of a discrete nature (discrete-valued time serles).
This paper Is concerned with discrete-valued time serles.
The two main classes of models that have been considered
in the literature, are discussed. These are models based on
mixtures and models based on thinning operators. More-
over, a Discrete Autoregressive model of first order with a
generallzed Waring marginal distribution is proposed, based
on negative hypergeometric thinning.

Keywords— INAR model; Generalized Waring Distribu-
tion; Binomlal thinning; negative hypergeometric thinning;

1. INTRODUCTION

Time series models have been extensively used in a wide
range of applications. The majority of such models have
been developgd to cope with continuous data, usually under
a normality assumption. For non-normal data, the litera-
ture is rather sparse. However, in certain situations the
nature of the data is discrete in the sense that they rep-
resent counts. In such cases, standard time series models
based on the normality assumption are inappropriate.

Time series models for describing discrete data have been
proposed in the literature. Such models are usually referred
to as discrete-valued time series models. MacDonald and
Zucchni [16] provide a survey on a variety of discrete-valued
time series models. The models discussed include Markov
chains, higher-order Markov chains, models based on mix-
tures and models based on the idea of thinning. Further,
Markov régression models parameter-driven models, state-
space models and Hidden Markov models along with their
extensions were presented and described as models capable
of dealing with discrete-valued time series.

This paper focuses on a particular class of discrete-valued
time series models. More specifically models based on thin-
ning operators are discussed. Such models are the discrete
counterparts of the common autoregressive models for nor-
mal data suitably defined to deal with the discrete nature
of the data. A brief review of discrete valued time series
models is given in section 7. The integer valued autore-
gressive model (INAR(1)) is discussed in section IfI. In
section IV a new model belonging to this class is devel-
oped. This model has a Univariate Generalized Waring
distribution (UGWD) as a marginal distribution and thus
it serves as a potential alternative to existing models. Some
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concluding remarks are given in section V',

II. DISCRETE-VALUED TIME SERIES MODELS
A. Models based on Miztures

An attempt to provide a class of models for discrete-
valued time series was made by Jacobs and Lewis
[11],{12},[13],{14]. Jacobs and Lewis presented a simple
scheme for constructing stationary sequences of dependent
random variables. The construction of such models is based
on probabilistic mixtures of independent and identically
distributed (i.i.d) discrete random variables. Moreover,
these models are characterized by a specified parginal dis-
tribution and correlation structure. The structure of these
models is analogous to the continuous-valued Gaussian au-
toregressive moving average {ARMA) process. Therefore,
these models were introduced as discrete mixed autoregres-
sive moving average (DARMA) models. Their definition
mimics that of ARMA models for continuous time series,
sunitably defined to fit the discrete nature of the data. For
more details the interested reader is referred to Jacobs and
Lewis [11],[12],{13],[14], McKenzie [20], Al-Osh and Alzaid
{2] among others.

B. Models based on Binomial Thinning

Another class of models, which has been developed, in
order to deal with discrete-valued time series are based on
the idea of the binomial thinning operator. They mirror
the structure and the correlation of the well-known autore-
gressive moving-average (ARMA) processes used to model
time-series with Gaussian marginals, which are quite at-
tractive since they involve a few parameters and have a
simple linear structure.

Such models can be generalized easily by defining other
thinning operators, as described in the sequel. In this pa-
per, we focus on the INAR process as it combines an easy
interpretation with useful properties.

I11. THE INTEGER-VALUED AUTOREGRESSIVE PROCESS

McKenzie [17] and Al-Osh and Alzaid [1] defined the
Integer-valued autoregressive (I.VAR) process as follows:
Definition 1: A sequence of random variables {X:}isan
INAR(1) process if it satisfies a difference equation of the
form
Xi=a*xX;_, + R, fort =0,21,£2,... (1)
where R, is a sequence of uncorrelated non;negative
integer-valued random variables having mean u and finite
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variance 02, The operator '+’ is defined by

X
a*X:ZYh
t=1

where Y; are Bernoulli random variables with P(Y; = 1) =
e=1-P(Y,=0),ac0,1]

Thus, conditional on X, ¢ * X is a binomial random
variable. It represents the number of successes in X inde-
pendent trials when the probability of success in each trial
is a.

The term R, is referred to as the innovation terrn and
must be independent of @ x X,.;.

From the above definition, one can see that the model
mimics the normal autoregressive model and belongs to a
more general family of autoregressive models discussed in
Grunwald et al [8]

The basic ingredient of the INAR model is that it as-
sumes that the realization of the process at time ¢ is com-
posed of the survivals of the elements of the process, at
time ¢ — 1, each with probability of survival a and the ele-
ments R, which entered the system in the interval [t — 1,¢]
The innovation R, follows some discrete distribution.

The mean and variance of the JNAR(1) process {X;}
are:

E(X,) = aE(X,_y) + 1

Var(X,) = a*Var(Xp)+(1-a)
t t
Zazj—lE(Xg_.]‘) +0? an‘”.
i=1 j=1

In order for second-order stationarity to hold, the initial
value of the process, Xy, must have:

E(Xo) ={£ and Var(Xp)= Ef-‘_i'f;.

I-a
For any non-negative integer k, the covariance y(k), at
lag k for the process is
v(k) = Cov(Xi—x, X¢) = a*7(0).

From the covariance function, it is easy to obtain the
autocorrelation function p(k) as follows:

ol = 28 o,

70) ~

Thus, the autocorrelation function p(k) decays exponen-
tially with lag k.

Alzaid and Al-Osh (3] studied the regression behavior of
the INAR(1) process, assuming that Var(X;)<oco. Thus,
the regression of X; on X;_, = « is given by,

E(XiXi-t=z)=az+p
and the conditional variance of X; is given by,

Var(Xel X,y =) = a(l — a)x + 0%

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Steutel and Van Harn [21] proposed analogues for the
concept of self-decomposability for distributions on non-
negative integers. Based on this definition of “discrete self-
decomposable” distributions, Alzaid and Al-Osh (3] showed
that every discrete self-decomposable distribution can arise
as the limiting distribution for an /N AR(1) process. Such
distributions are the Poisson, the negative binomial and
the geometric distributions. Thus, McKenzie[17], [20] and
Alzaid and Al-Osh [3] dealt with the Poisson INAR(1)
process, McKenzie [18] dealt with the negative binomial
INAR process whereas McKenzie [17], [18] and Alzaid and
Al-Osh [3] constructed the geometric IN AR process.

The INAR(1) model can be extended to the IN AR(p)
model, which is similar in form to the Gaussian AR(p)
process and was defined by Alzaid and Al-Osh [4].

In practice, any discrete distribution can serve as the dis-
tribution of the innovation term. The problem is that the
resulting marginal distribution may not be of a known form
for all values of t. Thus, one may define INAR models ei-
ther by specifying a discrete distribution for the innovation
term or by determining this distribution so as to obtain
a known form of distribution as a marginal distribution.
Both methods are equivalent to defining the process via
the transition probabilitics between X, and X¢_;. Con-
sider, for example, the case of a Poisson INAR model.
This model implies that, the marginal mean and the mar-
ginal variance coincide. This, however, is not realistic in
many applications. So, in order to achieve overdispersion
(variance> mean), one may assume an overdispersed dis-
tribution for the innovation term, reltive to the Poisson
distribution. For example, Franke and Seligmann, [7] used
a 2-finite Poisson mixture innovation distribution, defining
a Switching INAR model.

A. Related Models

A.1 Models based on Quasi-Binomial Thinning

The INAR model generally assumes that the probabil-
ity of retaining an element is constant. Nevertheless, in
many real data on counting processes it seams reasonable
to assumg that the probability of retaining an element is
not constant but may depend on time and/or the number
of elements already retained or it may be a random variable
itself.

Alzaid and Al-Osh [5] considered the development of
ARM A models with Generalized Poisson marginals. The
key assumption in the development of these models is that
the probability of retaining an element is a linear func-
tion of the number of elements being retained. In partic-
ular, given X;_; = n, the number of retained elements at
time ¢ has a quasi-binomial distribution with parameters
(p.9,n), denoted by QB(p,0,n). More details about the
Quasi-Binomial distribution can be found in Consul and
Mittal [6]. )

A.2 Models based on Hypergeometric Thinning

The binomial distribution, in contrast to the Poisson,
negative binomial and geometric distributions does not en-
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joy the property of self-decomposability and thus may not
serve as a marginal distribution for the I.NAR process.
Hence, in order to construct models with an ARMA struc-
ture and a binomial marginal distribution, another ap-
proach must be considered. Al-Osh and Alzaid {2] intro-
duced a hypergeometric thinning operator on which they
based the construction of ARM A processes with a binomial
marginal. This hypergeometric thinning operator assumes
that the probability of retaining an element present at time
X;_depends on the elements that have already been re-
tained and hence it is not constant as in the case of the
binomial thinning operator.

A.3 Models based on Negative Hypergeometric Thinning

The main idea of the two alternative thinning operators
discussed above, was the fact that the probability of retain-
ing an existing element depends on X;-;. Alternatively,
one may consider that a is not constant but it is itself a
random variable, having a density, say g(.). For this rea-
son, the resulting operator can be considered as a mixed
binomial thinning operator. In this case, the conditional
expectation is given by

E(X:| Xi-1=7z)=El@)z+p=

-1
=[E(@)]' E(Xo) +1Y_ [E(@) .
j=0
In a similar fashion, the conditional variance is given as
Var(Xe | X1 =) = E(a{l — a)) z + 02
and thus the unconditional variance is given as

Var(X,) = VarlE(X,|Xe-1=2)]+

EVar(X.| Xey =12)] =
E(@)P Var(Xey) +
E(a(l — a)) B(X-) + 0%

"+

+

Using these formulae one can deduce the stationarity
conditions as

[

E(Xp) = 12 E@) and
. 1 E(a) - E(a?) ;
V aT(Xo) = - {E‘(Q)]z [ = E(a) n+ o2l .

For constant a, the above stationarity conditions reduce
to those for the simple INAR model with binomial thinning.
It can be also seen that the autocorrelation function is given

as
p(k) = [E(a)]*.

An interesting result regarding the mixed binomial thin-
ning operator is the fact that the index of dispersion of X,
denoted by I D(X,), is given as

Var(X,) _

11X E(X,)

_ E(a)-E(d®)  ID(R) _
C1-[BE)f T 1+E@
E(a) + ID(R,) Var(a)
1+ E(e) 1~ [B(e)f
For constant a, we obtain that
a+ ID(R;)

ID(X) = l+a

Usually, when treating count data, the index of disper-
sion is interpreted as an index of overdispersion relative to
the Poisson distribution whose index of dispersion is equal
to 1. Hence, by considering an overdispersed innovation
distribution one can deduce an overdispersed marginal dis-
tribution for the series. Since 0 < Var(a)/(1 — [E(a)]?) <
1, one can see that the mixed binomial thinning operator
adds overdispersion to the observed series, that, however,
cannot be higher than 1.

The most common mixed binomial thinning operator
is the negative hypergeometric operator which results if
a beta distribution is assumed for @. In order to over-
come the complexity of the innovation term of the neg-
ative binomial INAR process, McKenzie [18] developed
a more flexible negative binomial AR(1) model, based on
the negative hypergeometric thinning operator. The con-
struction of this negative binomial AR(1) model is based
on the reproducibility property of the negative binomial
distribution, asserting that the sum of two independent
negative binomial variables with parameters k,a and m, a,
denoted as NB(,k,a) and NB(m, ) respectively has the
NB(k +m,a) distribution.

As mentioned earlier, letting Y = a » X, is equivalent
to assuming that Y|X ~ Binomial(X,a) where a € [0,1]
is the probability of success. McKenzie [18] assumes that
a is not a constant but follows a Beta(p,q) distribution.
Then, the conditional probability distribution of Y = a*x X
is defined by

Paxtln) = (7)2EHBLEIZN

where y = 0, 1, ...z. This distribution is known as the nega-

tive hypergeometric or beta-binomial distribution (see, e.g. .
15]). ' :

This approach generalizes the idea of the binomial thin-
ning operator, with a as a constant. The resulting oper-
ator is refrred to as the negative hypergeometric thinning
operator and is denoted by S(X). Based on this operator,
McKenzie defined the Negative Binomial AR(1) process as
follows:

Definition 2: If X,., ~ NB(3,]), A, ~ Beta(a,3 - a),
R, ~ NB(3—a,\) and X;.,, 4,, R, are mutually indepen-
dent, then,

Xt = S(X,-l) + Rt (3)
defines a stationary process {X,} with the NB(3\) dis-
tribution as marginal distribution.

Clearly, the binomial thinning operator can be gencral-
ized in several other ways by allowing the distribution of &
to have various other forms.
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IV. DISCRETE-VALUED TIME SERIES WITH UNIVARIATE
GENERALIZED WARING MARGINAL DISTRIBUTION

The UGW D was introduced by Irwin [9],{10] in the con-
text of accident theory. This can arise as a mixture on
A of the NB(3,A) distribution and as such it provides a
more flexible model for the interpretation of data yielding
chance mechanisms in a number of diverse fields ranging
from accident theory, psychometry and linguistics through
to econometrics and operational research. It would there-
fore be interesting to examine the implications of the as-
sumption of a variable \ on the model defined by (3). As
shown in section V, this leads to an INAR model that
allows for a correlation between the number of retained el-
ements and the number of innovations. In the remaining
of the precent section certain properties of the UGW D are
discussed that are of underlying importance to the devel-
opement of the new model. For a more detailed account
the interested reader is referred to Xekalaki {22}, [23],[24],

A. The Univariate Generalized Waring Distribution and
its Properties

The probability function of the UGWD is given by:

ki

P(X =I)= P[kl bl —i' y T

(a + p)[k] (a +k+ p)[zl x!
with parameters a, k,p > 0 where zjy = z{z+1)...(z +
k-1 = ﬂrf(—’_fl We denote this distribution as
UGW D(a, k, p).

The r-th factorial moment of the UGW D is given by:

aiia Lty

(P-1(p=2).(p~T)
The moments about any constant, including central mo-
ments, can be determined by the above formula by the
usual transformation formulae. In particular, the mean
and variance of the generalized Waring distribution are:

=0,1,... (4)

Hipy =

ak
E(X) = (T_‘T;yp>1
and :
o2 = ka(p+a—-1)(p+k—1) p>2.
(pP-1(-2

The UGWD can arise via a variety of mechanisms (see,
[22]). Its derivation as a Poisson mixture is quite impor-
tant. It is well known that the negative binomial distribu-
tion can be obtained as a mixture of a Poisson distribution
by allowing the parameter of the Poisson distribution to
follow a gamma distribution. The UGWD results by con-
sidering a further mixing in the sense of allowing the para-
meter of the negative binomial distribution to be a random
variable. The full scheme is the following:

X | A~ Poisson(\)
A v~ Gamma (k. é)

v ~ BetaTypell(a, p)
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This can be shown to lead to the UGW D with proba-
bility lunction as given by ().

Apart from its mixture nature, the UGWT) can be given
an interpretation in terms of conditionality models which
provide a framework appropriate for our purpose [22]. Con-
ditionality models are mixture models with discrete mix-
ture distributions.

Let X and Y be non-negative integer-valued random
variables such that the conditional distribution of Y|(X =
z) is the negative hypergeometric distribution with para-
meters x,m and N and probability function given by:

GCE

Y

PY=y|X =1z)= (53)
wherem,N >0, y=0,1,..z.

Moreover, let the distribution of X be the UGW D(a, N:; p).
Then, Xekalaki {22] showed that the distribution of Y is the
UGW D(a,m, p).

Hence, the UGW D is reproducible with respect to the
negative hypergeometric family of distributions. It is in-
teresting to note that for certain limiting values of the
parameters, the UGW D tends to the negative binomial
distribution. In this case, the reproducibility with respect
to the negative hypergeometric family of distributions is
preserved. The above model led to the following character-
ization theorem of the UGW D, derived by Xekalaki [22].

Theorem 1: Let X and Y be non-negative , integer-
valued random variables such that the conditional distribu-
tion of Y [(X = x) is the negative hypergeometric with pa-
rameters Z,7 and N defined by (5). Then the distribution
of X is the UGW D(a, N, p) if and only if the distribution
of Y is the UGW D(a,m, p).

Xekalaki {22] obtained various other results pertaining
to the genesis of the UGW D, such as its derivation based
on an urn model, a mixed confluent hypergeometric distri-
bution, etc.

Discrete self-decomposability of the UGW D, in the sense
of Steutel and Van Harn, was proven by Xekalaki [24]. This
property is of central importance to the problem investi-
gated in the present paper as it implies that the UG D
can lend itself as a marginal distribution in an I.NVAR
model. In addition, the UGWD is infinitely divisible on
{0,1,2,...}.

B. The Bivariate Genemlized Waring distribution

Xekalaki [25] introduced the bivariate Generalized War-
ing distribution whose probability function is given by:

PX=z,Y=y)= .

Pllem) X ki) 11
(@4 D) pmmy (@ + K+ A+ p) o0y 2! !

where,
a.kmp>0and r,y=0,1.2....

This distribution is denoted as BGW D(a; k, m, p).
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Consider a random vector (X,Y) of non-negative
and integer-valued components such that (X,Y) ~
BGW D(a, k, m, p). Then, the following properties hold:

L. X ~ UGWD(a,k.p) and Y ~ UGW D(a,m.p)
. X +Y ~UGWD{a,k +m,p)
. X|(Y =y) ~UGW D(a +y, k. p+m)
Y X =) ~UGWD(a +z,m,p+ k)

The proofs of the above properties can be found in
Xekalaki [25]. These properties will be useful for the con-
struction of the new process.

i

V. A NEW INAR(1) MODEL WITH A UGWD as
MARGINAL DISTRIBUTION

As already indicated, being discrete self-decomposable,
the UGW D may serve as a marginal distribution of an
IN AR process, defined by

X¢=a*X¢-1+R¢, fort:O,:l:l,:I:Z,...
where R, is independent of X;-1, 0 < ¢ < 1 and X; ~
UGW D(a, k; p).

Since X¢ and X,..; have the same distribution, the inno-
vation term R; must be a random variable, with alternating
probability generating function given as :

Cr(1 - 2) = Gxo_y(1 = 2)/Carxe (1 = 2).

where Gy(-) denotes the probability generating function of
a random variable {” (Mc Kenzie, [18]),

In the sequel, an INAR(1) model is constructed with
an UGW marginal distribution based on the negative hy-
pergeometric thinning operator. The approach followed
here is analogous to that followed by McKenzie [18] for
the construction of an INAR model with negative binomial
marginals.

Consider a discrete autoregressive process of the form,

(6)

where X,.; ~ UGWD(k,N,p) , A, ~ Beta(m,N) and
Ry ~UGWD(k,N —m, p). i
Then, according to McKenzie, A; * X;_1 conditional on
X;_1 has a Negative Hypergeometric(z, m, N} distribution.
Moreover, due to the properties of the UGW D we have
that:

Xe=A*X; 1 + Ry,

A * X,_y ~UGW D(k,m, p).

The random variable 4, * X;-; corresponds to the num-
ber of survivors which are present at time £ — 1 . In this
case, the survival probability is not constant but can be
regarded as being a random variable that follows the beta
distribution. The random variable R, corresponds to the
number of new entrants to the system between the times
t—1andt.

In order for (6) to lead to a sequence of random vari-
ables, following the UGW D(k. .V, p), it is natural to re-
gard the bivariate random vector (A; * X,_1, R;) as having
a BGWD(k,m,N —m,p). -

According to the properties of the BGW D:
Apx X+ R, ~TIGWD(k,N,p) &
Xo~ UGW D(k, N, p).

Thus, the full model is:
Xe=Arx X+ Ry,
where,

A~

R, ~

Xl—l ~

(Ar* Xo1, Ry} ~

Beta(m, N)

UGW D(k,N — m, p)
UGWD(k,N,p)
BGWD(k,m,N —m,p).

It is important to note that the approach considered
above is not conformal to the general framework of discrete-
valued AR models, which assume independence of the ran-
dom variables X,_; and R,. In particular, the number of
individuals that enter the system at time t is not indepen-
dent of the number of individuals that are in the system
up to time £.” This assumption can reflect situations that
occur in real-life -

The above model can be written using the negative hy-
pergeometric thinning operator as

Xy =5(Xe-1) + Be.

The stationary mean can be derived using the results
of section /1, since the correlation structure between A, *
X:-1 and R, does not affect the mean. This is not true for
the variance and the autocorrelation function of the series.

The UGWD is known to have heavy tails (see, [10]) and
thus it could be helpful for modeling data series with long
tails.

VI. CONCLUDING REMARKS

In this paper, a new autoregressive model for integer val-
ued time series is developed. The marginal distribution of
the model is the UGWD. Its derivation allows for a cor-
relation between the retained elements of the series and
the innovations. The value of the new model lies in that
it illustrates the general direction in which /NVAR mod-
els can be extended so as to be applicable in situations
where the requirement of independence between X,_; and
R, imposed by he usual INAR model conditions can be
prohibitive of its implementation in practice. Thus, in a
plethora of practical situations, the number R, of new en-
trants at time ¢ may not be reasonably considered to be
independent of the number X;_, of elements already exist-
ing in the system. Would a long queue, i.e. a large value of
X;_1 in technical terms, not have a deterring effect on the
new arrivals, thus influencing the value of R, negatively?
The opposite may well be true. The value of X;_; may
have a contagion effect on the magnitude of the value of R,
as, for example, in the case where the length of the queue is
indicative of the quality of services offered. The resuits ob-
tained in this paper have mainly focused on the modelling
aspect of the integer-valued time series with a UGWD mar-
ginal proposed above. Results referring to the general type
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of such time series allowing for correlated S(Xi-1) and R,
as well as asymptotic properties and estimation procedures
are currently under research.
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