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Abstract — The interest in the assessment of cancer risk
has led to various developments mainly based on biological
basis and supported by statistical analysis. The aim of this
paper is to discuss the bioassay of experimental carcinogenesis
from a statistical point of view. Biological aspects (e.g., cell
proliferation, mechanisms of inhibition in mutagenesis and
carcinogenesis) of a cancer risk assessment are not taken up.
The problem is viewed as a dose response problem and

different models are assumed. In particular, several of the

istical lek ed in the literature in the area of
experi I carcinogenesis are di 1 with an emphasis
on dose dependent models Moreover, an optimal

experimental design approach for this particular bioassay is
examined considering D - op lity as a design criterion and
employing a stochasti hod of appr Further, as
the main problem in experimental carcinogenesis is the low —
dase extrapolation and pred due to the fact that animal
experiments ¢an not be applied directly to study low
concentrations, an optimal sequential design approach is
developed to estimate the parameter under investigation.
Estimates of the appropriate percentiles of the risk function
are obtained via simulation.
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I. INTRODUCTION

The quantitative description of the process of
carcinogenesis is a rational basis for the assessment of
cancer risk due to exogenous, agents. Research
carcinogenesis is a ftield of interest for biological and
medical scientists and also for mathematicians and
statisticians who analyse data dealing with pre — malignant
and malignant lesions. There are two main reasons for
formulating models’ of carcinogenesis. One is to provide a
framework for evaluating the consequences of proposed
mechanisms  of carcinogenesis. The other is to help
determine allowable concentrations of known carcinogens
in the environment, and to estimate the consequences of
exceeding them. This is necessary because animal
experiments must be done at concentrations high enough to
cause some of the animals to develop tumours, while
environmental concentrations must be low enough to
produce very few tumours in man. Thus, apart ffom the
great difficulties due to interspecies differences, animal
experiments  cannot  be  used directly to studv  low
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concentrations. Therefore. some model theorv is needed to
extrapolate the dose — response relationships dowaward
trom the high doses used in animal experiments to the low
doses to be allowed in the environment.

The aim of this paper is to discuss the bioassay of
experimental carcinogenesis from a statistical point of view.
Biological aspects (e.g., cell proliferation, mechanisms of
inhibition in mutagenesis and carcinogenesis) of a cancer
risk assessment are not taken up. The problem is viewed as
a dose response problem and different models are assumed.
In particular, the paper is organised as follows: in section Il
the so called tolerance distribution models, which allow for
an empinical approach to analyse the modest amount of data
In a carcinogenic bioassay, are presented. Tolerance
distribution models assume that each individual in a
population has an exposure threshold above which cancer
will result. These thresholds vary according to some
distributions across individuals. Different models assume
different shapes of the tolerance distribution. As an
example, in section [I the Weibull model is used to
estimate tumorigenic potency based on the results from
laboratory experiments {4]. In section [V, the experimental
design problem when the underlying model describing the
physical phenomenon is assumed to be non — linear in terms
of the parameters involved, is discussed and the sequential
principle of design has been adopted to overcome this
parameter dependence. Moreover, this section aims at
evaluating the percentiles of the risk function derived
through a dose — response relationship in a multistage
model. These percentiles are known as virtual safe dose
levels or risk specific dose levels. Therefore, the optimal
design theory is applied to estimate the appropriate
percentile and the sequential approach of design is adopted
through a stochastic approximation scheme. If the initial
design is D — optimal, the limit design is'D - optimal as
well and it is the one with the minimum entropy. Finally, in
section V., a simulation study is performed. Binarv response
data are gencrated following the one ~ hit model, with
known parameter value. A static design is constructed. All
the observations are obtained on the basis of one selected
point. Different sample sizes are used and an initial value of
the parameter, being “tar” from the true value is chosen.
The corresponding percentiles of the risk function are
evaluated. The obtained results produce. strong evidence
that the method considered vields values close to the true
ones.



Il STATISTICAL MODELS IN CARCINOGENESIS.

A number of models have been suggested to
describe the process of carcinogenesis, i.e. the process by
which a normal cell can be transformed to a malignant one.
Concer is affecting the growth rate of affected tissues in
which the control mechanisms of cells become altered and
the cells divide to form neoplasmatic growths or tumours.
The cause of cancer is studied - through exposure t0
carcinogens, i.e. substances which are cancer - causing
agents. Typical examples of carcinogens are the nicotine

and mustard gas in the presence of certain micro -

organisms.

In principle, there are two classes of models
depending on whether dose levels or time are treated as
random variables. Both classes are based on the
fundamental assumption that the probability of developing
cancer is likely to increase with increasing doses of
carcinogen. That is if X and T represent the random
variables of the dose level of carcinogen and the time at
which an individual develops a tumour, ectively, then
the probability of developing cancer P x,l) can be
represented cither as

Plx,t)=P(X<x|t)
oras .
P(x,1)=P(T <t|x) 2.1
‘This dual representation - implies that the
probability that an individual can develop tumour, at dose
level x by a particular time ¢, is restricted either on time or
on dosc. In this study the interest has been focused on
restriction on time.

III. DOSE DEPENDENT MODELS

In the preceding section the class of statistical
models in experimental carcinogenesis is the union of two
subclasses of models:

Those which are considering the given dose level
for a given time period. )

Those which.are considering the time of effect and
the given dose.

Consider that a nutshell (ie., a tumour) occurs at
dose X=x if the individual's resistance (tolerance) is
broken at x. Then the excess tumour risk is given by

F(x)=P(X < x) = P(" Tolerance” < x)
This pro?»ability is precisely what one seeks to model. In
particular, it is assumed that there is a statistical model that
approximates the cumulative distribution function Fi 0,
which is termed the tolerance distribution function. Then,
the dose level .x is linked with a binary response variable
(success or failure), thus ’

1, success with probability F(x)

710, failure with probability 1-F(x)
The tolerarce distribution function is usually indexed by a
vector of parameters 9, Le. l’(x;O‘) 0 e ®cR" (For a
detailed discussion on dose response models, see [10}]).

The . Weibull model is an alternative model
proposed tor the tolerance distribution with a shape
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parameter. [t is also based on a set of assumptions on how
cancer develops: a tissue sustains "hits” at random; cancer
occurs when a portion of the tissue sustains a fixed number
of "hits"; cancer is observed when the first such portion has
sustaimed the required number of “hits”. The resulting
distribution function is
F{x)=1-¢ ™" 3By

The Weibull model can exhibit a dose-response
relationship that is etther sub-lincar (shape parameter
k > 1) or supra-linear (x <1), and has a point of intlection

1

k—l)x .
a N =(T) .In practice, both parameters may be
unknown. In such cases maximum likelihood estimates are
commonly used on the basis of a censored sample. In
particular, these are obtained through maximizing the:
corresponding likelihood function that can be described as

L(x.8)= I;Ih(tl)];I o(t,) (3.2)

where h() denotes the hazard function associated with
F() defined as the conditional density function at time ¢
given survival up to time ¢, ie., h(t) = x 0* ¢, and s()
denotes the corresponding survivor function, i.e.,
S(t) = exp(-(6)").
Then, the corresponding log likelihood is given by
¢ = t(x,0) =log L(x.0)
. . B3
=dlogx +xdlogf+(x~1)Y logt, -8 17,
=i i=1
where n is the number of observations, d is the total number
of failures (uncensored) and Zlogt, and Zt;‘ are
functions of the censored and uncensored failure tmes.
Often Y t; iscalled the total time at risk.
Even in the absence of censoring, there is no fixed
dimensional sufficient statistic for (x,8); the Weibull

distribution does not belong to the exponential family of
models, where the total number d of failures and the total

Z t; of the censored and uncensored failure times form a
minimal sufficient statistic for 6. This is so as the maximum

d
2t
number of failures divided by the total time at risk and
censored failure times contribute to the denominator but not
to the numerator of this ratio. Thus, when there is no
censoring, the log likelihood for the exponential distribution

becomes l=nlog9—92ti,, and the curved exponential

likelihood estimate 6" of @ is 8™ =

namely the total

tamily collapses to a full one-dimensional familv with a
single minimatl sutlicient statistic Zt, for §.
The first denivatives of the torm (3 3) are
o xd ! '
U, = — k0"

s 6
’Ee 8



oF R
U == C dlog8 + Y logt, - 6 Y1~ log(er, ). 3-3)
&k

I & is specitied, the maximum likelihood estimator 6 of 8

can be found explicitly by solving the equation U, =0
thus

u, —()o——KQ"Zl‘-Oo—:Q"Z(

d
=d=0" E tf e 0" =T.
t

i

Hence the maximum likelihood estimator (MLE) of 8 is

d % o
=(—i_t?] . (.).6)

(This result ‘could be alternatively be derived as an
immediate consequence of ‘the fact that 7° has an
exponential distribution with parameter 8 *, where T is the
random variable of the exponentially distributed failure
times). Substitution of the value of @ as given by (3.6) in the

equation U, =0 yields
'Z 1" Jog

0=-;(—+Zlogti—d ST (.7

which leads to the maximum likelihood estimator x of .
Equation (3.7), though non linear, does not contain @ and
therefore can be solved by a one-dimensional iterative
scheme in x. :

The second derivatives of the log-likelihood / are
given by

2’0 O (xd
=2 Y] KOS e
* " 86* 50( X J

———-—K'(K‘ 1)9“‘ PN

(3.8)

a!
~ " o6ox (39
= % ' (€ +xlog )Y 1 k0 317 logt,,
I =:;.= 4 oy rr(ogl@r)y.  (.10)
0K .

Therefore. the information matrix /rx. #) can be
evaluated as follows:
lm]
I(X} [

I
I-1(x, e):{ -
Lo
As an e‘«xmple consider the data set of Table [ on
the times of remission (weeks) of leukemia paticnts.

(kXN)]
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Sample 0 6 .0.6,6, 7.9% K 071011713, 16,17
(drug 6-MP) | 197,207, 22,23.25, 327, 32", 34,35
Sample 1 1,1,2,2,3. 4.4, .5.‘&8.8.811 ll
(control) 12,12,15,17,22,23
" censored

TaBLE]
TOMES OF REMISSION (WEEKS) OF LEUKAEMIA PATIENTS {[4]).

For the treated group (Sample 0), the following
results are obtained:

d=9,1,=359, Int, =55883, logt, =24.27,
> tlogt, =1077.228, T 1 (In¢, ) =3334.778.
Following Limnkopouiou and Xekalaki {10}, it follows

from (3.7) that the maximuin likelihood ‘estimate of x is
k=135

Then, the corresponding maximum likelihood
estimate of 8 is

o [_d RPN
= Z:}”J ‘(1043.2) =

J
(0.008627)7% = 0.029581 = 0.03.
Figure I depicts the situation for this particular data set.
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LEUKEMIA DATA, 6-MP GROUP. LOG-LIKELIHOOD PROFILE FOR THE
PARAMETER 6 OF THE WEIBULL TOLERANCE DISTRIBUTION WHEN
k=135

Thus, the corresponding information matrix is

I l(l 350 0_‘) —-8.689 2717.859
=1{1.350.03)= X
2717.859 ~14004.453

The hazard function can be ¢valuated as
h{t) = 0.03x1.35t"% .= 0.041°%,

At this point, it should be noticed that the above
application does not correspond to a designed experiment.
It merely comprises an illustrative example of the use of the
Weibull model that might provide initial estimators for a
designed experiment in the context of a Weibull model. In



the sequel, the main aspects of the optimal experimental
design approach are described and applied in the case of the
one ~ hit model, that can be considered as a special form of
the Weibull model with a shape parameter x = 1.

IV. AN OPTIMAL DESIGN APPROACH FOR

BIOASSAYS.
In the present section, the experimental

carcinogenesis is considered from the angle of a designed
experiment, known as bioassay. It is not always certain that
a designed experiment has been optimally. Clearly, one has
to clarify what is meant by the term optimal. Therefore, the
main points of optimal experimental design refer to the
binary problem, which is of central importance in survival
analysis, and, thus in experimental carcinogenesis:

In the sequential design approach for non - linear
models, ‘the average per observation information matrix
depends on & the design measure, and 8, the unknown
parameter vector. Therefore, M(6,9, the average per
observation information matrix, cannot be a reliable
approximation of the variance — covariance matrix, unless
an estimate of @, say 8, is obtained so that 3/(6.9 to be
approximated by M(8,9. In order to perform an
experiment, a “"good’’ estimate of & might have been
known or might have not been suggested. Thus, the
experiment should be designed in an optimal sense with an
initial guess about 8. For such an initial estimate, a D—
optimal design may have to be performed. The initial
estimate is used to redefine the design points, which in the
non ~ linear case depend on §. After the experiment has
been performed, a new estimate is obtained. The procedure
is repeated until a given degree of accuracy is attained
either with respect to the estimate of 8, e.g.

, - 6., (@
or with respect to the measure of M(6, 9, e.g.

flog derM(@,,, &)~ logdet M(B;,,.E] <& (4.2)

For D - optimality and other optimality criteria,
this method seems to be satisfactory and has been widely
adopted in’ practice. There exists also a variety of other
sequential procedures of which the most commonly used is
that introduced by Robbins and Monro {13]. In particular,
they proposed a recursive scheme to estirnate the root, r say,
of a real valued function Q. detined on the real axis R, ic.
Q(r»=p when only observations on Q, denoted by ya = v4(X),
are provided. Actually, v, = Q(x,) + €, With €, being the
error terms with a distribution with zero mean and variance
o". The Robbins and Monro recursive scheme known as
Stochastic Approximation is the statistical analogue of a
Newton - Raphson iterative scheme. Iterations are made
though the sequence

Xpu =X, =0, (v, -p) n=12..  (43)
with x, having an arbitrary value, a, > 0 a fixed sequence of’
real numbers (step sizes) and y, being binary responses.
The sequence X, converges to r in mean square, where a
typical step sizeof a, =cn®, a < 1,n=1,2, ... is assumed.
The minimum variance estimate is obtained with ¢ = Cgy =
(Q'(M)", and a = 1 with value & o= (Q'(1))".

<g,

n+l *
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If the function Q is not known. it can be approximated.
Consider that the function Q given through one of the
models defined in the previous sections. The equation
Q(x) = F(x)~ p with p € [0, 1] has to be solved. The root of
this equation is the p th percentile L,, of the dose response
curve F(x). Moreover, as was pointed out by Ford et al {3],
stochastic approximation leads to a fully sequential design,
which is D - optimal in the limit.

In the sequel, the problem of cstimating the low - dose
percentiles is considered by combining the sequential
nature of the design with a stochastic approximation
scheme. This is demonstrated in the framework of a static
design approach: i.e. an experiment performed only once.

Assuming a Weibull model as defined by (3.1), one can

casily obtain
F(L P ) =1 —exp((_el‘ P )‘ )'
or, equivalently,

L, =[-———ln( p)) {44)

The value defined by (4.4) is referred to as the static
estimate of the percentile point L, for the Weibull
distribution. It should be noted that Lnowledge of the valucs
of both parameters & and « is required.

The procedure may be illustrated using the data of Table [
by recalling that the maximum likelihood estimates of the
parameters x and 8 are x_ = 1.35 and §" = 0.03, respectively.
Applying formula (4.4), the values of L, are computed and
the corresponding results are summarized in Tables /I and
. ’

The sensitivity of the- estimators of L, to smail changes in
the values of & and &, within the range of their respective
confidence intervals, has been studied by Limakopoulou
and Xekalaki {10].

P Tk=135 8=0.03

8=0.029 6=0.030 00051 | k130 x=135 x,=1.40
0001  D.0SSZY 0.08064 DOT345 10.08429 0.05685
0002 b.17636 0.16136 0.14698 [0./6866 1.19381
0003 P.26a97 0.24216 022058 [0.253/2 [0.29085
0.004  P.35348 0.32304 29426 [0.33766 [0.38800
0005 P.34207 040400 036801 [0.42229 [0.48524
0006  P.53075 0.48505  p.44183  10.50700 [0.58259
0007 P.61951 0.56617 P.S51573  [0.59/80 [0.68002
0.008  D.70837 0.64738  .58970 [0.67668 0.77756
0009 p.19732 0.72867 .66375 [0.76165 0.87520
0010 D.83636 0.81004  p.73787 .84671 L.97293
0015 [1.33290 1.21814 1110960 /.27327 |1.46309
0020 [LT81T2 1.62831 148323 [L.70200 (195574
0025 23283 D040SS  [1.85877 |2./3294 45092
0030 68626 45497 P23624  [2.56609 [294863
0035 PB.14203 R.87150 D61565 [3.00/47 [.44892
0030 PB.60017 B.20020 Po9or04 343972 95181
0.045 106070 B.71108 (38043 [3.47905 M.45733
0.050  }.52366 113417 B76582 j.32/29 96350

TasLe I

COMPUTATION OF THE L . (4.4) FOR DIFFERENT VALUES (OF P AND FOR
DIFFERENT VALUES OF # AND A



p x =130 K= 1.40
0, =0.029 0,=0.031 | 8,=0.029 0,=0.031
0.001 0.07676 0.07039 0.10156 0.09251
64,002 0.15360 0.14085 0.20323 0.18511
0.003 0.23052 0.21138 0.30499 0.27780
0.004 0.30752 0.28198 0.40686 - | 0.3705%
0.005 0.38459 0.35265 0.50883 0.46347
0.006 046174 042339 0.61090 0.55645
0.007 0.53897 0.49421 0.71308 0.64951
0.008 0.61627 | 0.56509 0.81536 0.74267
0.009 0.69365 0.63605 091774 0.83593
0.010 0.77112 | 0.70708 1.02022 0.92928
0.015 1.15960 1.06330 1.53421 1.39744
0.020 1.55006 142133 2.05080 1.86799
0.025 1.94252 1.78120 2.57005 2.34095
0.030 233700 | 2.14292 3.09196 281633
0.035 2.73351 2.50630 3.61656 3.29418
0.040 3.13208 | 2.87198 | 4.14390 3.77450
0.045 3.53274 | 3.23936 467398 425734
.050 3.93550 | 3.60867 5.20685 4.74271
TaBLE I
COMPUTATION OF THE L,(4 4) FOR DIFFERENT VALUES OF p AND FOR
DIFFERENT VALUES OF 6 AND .

Furthermore, using (4.4), a sequential estimator of
L, can be constructed. In . particular, ~ setting
c =FlL p), where F'()) denotes the first derivative of F(.)
as defined by (3.1), one obtains from (4.4) ’
ca =Pl JreokboL Y Pt o
=(1-pprelit.
Thus, an iterative procedure leading to an

estimator of L, in the case of the Weibull model can be
formulated on the basis of the recurrence relationship

Loan =Lp,u "(m'x)_l(}'. _P)r n=n,+Ln,+2,.. (46)
where v, denotes the number of respondents (binary
response data y, = | or 0) among the individuals tested
(usually animals) after a predetermined time when treated at
dose level x and 1, = F'(L, )= (1-p)pxL5.

In order to get the estimates of the Weibull model
and to proceed, n, observations can be denoted. So, for
example, in the case of the one — hit model (x = 1),
assuming a. typical step size of the form a, = cn”, the
iterative scheme (4.6) vields

cy, =FlL,)=00-p) (47)
Letting a = | and using (4.6) one obtains
Lpat =Lpa =00, (=)' -p)  @8)

The sequence {L,,} of the values of L, in the n iterations
converges, in mean square, to L, the root of the equation
QL) = F(Lp) - p. As ¢ is not known, the n, initial
observations can be used at the first stage to estimate 6
using 0 .
Theretore. (4.8) is reduced to

LI’.ml = Lp,n _(“Onﬂ (l "P))V‘(,Vn 'P),n =n,+ln, +2,..

(4.9)

and L, , converges to L, in mean square.
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V. SOME SIMULATIONS RESULTS.

In the sequel, the sequential design discussed in
the previous section for estimating the percentile L, is
iflustrated on simulated data from an one — it model. In
particular, using un algorithm developed by Limakopoulou
and Xekalaki [10], N = 1000 samples of binary response
datay;=1or0,i= 1,2, ..., n were generated from an one —
hit model, with a “‘rrue’’ value of 8 equal to 3.18 for
various values of n in the tramework of a static design. All
the observations (X, yi), i = I, 2, ..., n have been based on
the D - optimal point x = 1.59 / . The value 1.7 was
considered as an initial guess for § in order to be ‘‘far’’
from the true value. Different values of p have been

selected, p = 001, 002, '0.04 and the sample sizes
considered were n = 100, 500.

n=100 n=300
Values of p 001 002 004001 002 004
*Average value | 334 329 330325 324 325
of 8(87)
10"x Average {37 70 120 |34 64 115
value of L,
o°L,)
Mean Square 0.18 0.14 0.15{005 004 005
Error of 8°
10" x Mean 680 7.16 693|284 283 285
Square Error of
L, .

* Qut of N simulations.
) TABLEIV
RESULTS OF A SIMULATION STUDY FOR THE ONE — HIT MODEL.

The first stage estimate, 6n,, of the parameter 0,

.was based on ng = 50 observations. The estimates of § and

L, for various values of p along with their mean square
errors are reported in Table IV. For each value of p, the
estimates of & and L, were obtained as the averages of their
values in the 1000 replications. The corresponding mean
square errors denoted by MSE(@) and MSE(L;)
respectively were evaluated through the formulae
- LS .2
MSE@")==Y (6¥ -0
6)- 436007
and
R o -
v, )L 30,01,
il
The “true ' value of L, can be evaluated trom
1-p
L, =~
i 0
for any given value of p and @ = 3.18: From Table IV, one
may note that, when 7 is increased, the mean square errors
of 0" and L, decrease.
Although samples of size 100 may at times be
considered as “small”. thev are in general regarded as
reasonable in a biological context where their clements



usually are responses from an experiment on rats or rom
the treatment of patients.

VI. CONCLUDING REMARKS

As the assessment of cancer risk has been studied
in detail from the medical, toxicological and biological
points of view, the main objective of the paper has been to
provide an insight into this problem from the statstical
point of view proposing a sequential bioassav for. the
esumation of low - dose exposure, ie. low — dose
percentiles. The optimal experiment design has been
adopted and the sequential principle has been considered.

Of course, there ‘exists a large number of
chemicals. At least 50000 have been introduced in the
human' environment and only a few hundred have been
submitted to thorough carcinogenic testing in experimental
animals. Moreover, the mechanisms of tumour promotion
are far from being completely unravelled, although
significant progress has been made in this direction.
Nowadays, interest is shifting from initiating towards
promoting agents in carcinogenesis and, therefore, the
mechanisms involved in the promotion of cancer are also
becoming moré and more obvious. Promotion proceeds
through a wide array of “different pathways although
resulting in the same outcome. Thus, in carcinogenesis and
in its promotion the existent underlying mechanism is
sometimes attempted to be interpreted through diferent
statistical models. For this reason, these models are working
as the “right hand” for the experimenter who tries to fit the
appropriate. model to the collected data set, usuallv
generated through a simulation study as it is rather difficult
to. obtain (or even .impossible to “create”) a real data set.
The experimental situation provides data that hopefully can
be transformed to humans.

The inability to measure carcinogenic risks at very
low exposure levels (doses) of chemicals precisely and
accurately has prompted the use of mathematical models for
extrapolating risks from the high range that is observable in
humans or animals to the low range that is of general public
health concern. This low - dose extrapolation continues to
be a highly controversial issue in qoantitative risk
assessmerit.
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