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Maximum Likelihood Estimation For Integer
Valued Time Series Models

Dimitris Karlis and Evdokia Xekalaki, *

Abstract Integer valued time series are useful models for
describing dependence structures over time for count data for
which classical time series lels are inappropriate. Such
models have been used for a variety of appiications. Difficuities
arise in pting to the par via maximum
likelihood due to the complicated expressions of the quantities
involved. The purpose of this paper is to describe EM type
algorithms to estimate the parameters of suchk models. Their
derivation is based on properties of the processes that generated
the data. The results are illustrated on a real set of
environmental data.
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I INTRODUCTION

Time series models with normal data have been considered
for a long time and have appeared in standard textbooks in
time series analysis. In several cases, the data are clearly
non-normal, in the sense that they may be senes of counts,
proportions, binary outcomes, strictly positive data etc. and
thus standard techniques, based on the normality assumption,
are not applicable. A variety of models have been proposed
for treating such types of time series data. For a
comprehensive review on these models the interested reader
is referred to Grunwald et al. {7].

Let X; denote the value of a variable at time 2 Let
E(X,|.X,, =x)denote the one step ahead conditional mean.
The general form of an autoregressive model is

) EWX, X, =x)=ax+4
for real a, A suitably chosen in order to ensure the stationarity
of the series.

In this paper, attention is focused on autore-gressive
time series models concerning count data Usually, such
senies are referred to as integer-valued time series. The above
representation is not suitable for discrete random variables
and modified versions of it have been comsidered in the
literature. These are known as integer-valued autoregressive
time series and are brietly discussed in section /7. Section /I/
concentrates on members of this broad family, based on the
Poisson distribution and its alternatives. In section /I” an EM
type algorithm based on the latent structure of autoregressive
models is provided to facilitate the estimation task. An
application to real data is given in section V. The results are
briefly discussed in section 7.
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IL. THE INAR(1) PROCESS
The integer valued autoregressive process of order |
(INAR(1)) "1s a sequence of random variables
{x, ¢ =0,£1,42,...} which can take only integer values. The
INAR(1) process is based on the assumption that the value of
the process at time t, denoted as.Y,, consists of two parts. The

first part is comprised by the survivors of the elements of the . j

process at the preceding point in time ¢-/, denoted by X, ,
each with a probability of survival equal to @ . The second
part consists of the clements which entered the svstem in the
interval (¢&-1,), usually termed as innovations. More formaly,
we can write that

X, =a0X,  +R, M
with the operator “o° defined by
X
aoel = ZY, =Y,
=1

where Y, arc independently and identically distributed
Bernoulli random variables with P(Y, = 1) =a =1-P(Y, =0).
This operator is known as the binomial thinning operator. In
tact, the random variable ¥ defined as above has a binomial
distribution with index parameter .Y and probability of success
a@.

Definition (1) is due to McKenzie {11} and mimics
the well-known autoregressive model for normal data
modified to suit the discrete nature of the data. By specilving
the distributional form of the innovation term R,, a large
number of different models can arise.

Several authors have proposed generalizations of the
model. These can be produced by considering other
distributional forms for the summands ¥, in the definition of
the thinning -operator (e.g. Al-Osh and Aly, [1]) or by
considering generalizations of the thinning operator (e.g. Al-
Zaid and Al-Osh, {3]).

Let 4 and o denote the mean and the variance of the
innovation term, respectively. Then, it can be shown that

E(X)=aE(X, V+u
and
Var(X)) =aVar(X, D+a(l-)E(X, ) +0°

The conditions for second order stationarity to hold are
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Ihe condiional mean and vanance of .\, are both lincar with
tespeet to Xy, Grunwald et al. |7] provided conaitions for the
stationanity of a general non-Gaussian autoregressive model.

The INAR(D) process as detired by equation (1) can
be viewed as a Galton-Watson branching process with
immigraion and relates to the notion of diserete  self-
decomposability defined by Steutel and van Ham |16] Anv
member  of  the class  of  discrete  selt-decomposable
distributions can be considered as a marginal distribution of
an INAR(1) process. Such examples are the models of Al-Osh
and Al-Zad |2} and McKenzie [12] with Poisson and
Negative Binomial marginals, respectively.

In practice, there are two different approaches for
constructing INAR(1) models. The first assumes a particular
form of marginal distribution and subsequently identifies the
required form of the distribution of the innovations in order
for stationarity to hold. The second approach starts by
considering a specific torm for the innovation distribution.
Note that, in both cases, it is equivalent, but perhaps more
cumbersome, to consider the Markov chain transition matrix
between .Y, and .Y .

In the sequel, attention is restricted to INAR(1)
models obtained via appropriately chosen forms for the
innovation distribution.

III. Some INAR(1) MODELS

A The Poisson INAR(1) model.

The model was introduced independently by McKenzie [11]
and Al-Osh and Al-Zaid [2]. Assuming that the innovation
distribution is a Poisson distribution with parameter A, it
follows that the marginal distribution for X, is a Poisson

distribution  with  parameter IL For this model, the

-a

stationary mean and the stationary variance coincide.
From the general definition of the INAR(1) process,
one can see that the overdispersion of the series is measured

by
wrX,) \
”)‘*"’:M:[“L} )
(AR l+a

where 1+ ¢ =2 Equation (2) relates the overdispersion of
‘ A !

the innovation distribution to that of the observed senes.
Thus, overdispersed (or underdispersed) innovation
distributions lead to overdispersed (or underdispersed) time
senies. However, this overdispersion (or underdispersion) has
been reduced due to the “survival’ part of the process.

B. The Mixed Poisson INAR(1) processes
In order to describe a time series with overdispersion one has
to consider an overdispersed innovation distribution. The
family of mixed Poisson probability distributions is a natural
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candidate. This “imily contains probubiliv functions of the
form

o
Py = je—llk;f,i).
f X

where GeAj is the mixing distribution. which can be a discrete.
a4 continuous or a linite step distribution, i.c. a distribution
with positive probability for a linite number of points. Some
well known distributions belong to this class, like the negative
binomial distribution.

Consider the case of a finite-step mixing distribution.
A K-finite Poisson mixture probability function is given by

A
e

PR

'

k
Pew=3p,
71
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x

where Zp, =1, p,>0, fori=],  kand A <A, <..< i,
i=]

in order to ensure the identifiability of the mixture.

The INAR(]) model with a 2-finite Poisson mixture
mnovation has been considered by Franke and Seligmann [6],
under the name Switching INAR model. For k=1 the model
reduces to the simple Poisson INAR(1) model. A natural
interpretation of a k-finite mixture is that the entire population
consists of & subpopulations with different parameter values.
Hence, the innovations can be considered as coming from k
distinct sutpopulations. A 2-finite mixture model can be
regarded as being indicative of the lowest possible degree of
inhomogeneity. For further details about finite mixtures, the
interested reader is referred to Titterington er al. [17] and
MecLachlan and Peel {14).

In the case of a single Poisson innovation
distribution, the conditional probability function P(\, |, )
is known to be the convolution of a Poisson and a Binomial
distribution (see, ¢.g. Shumway and Gurland, [15]). In the
more general case the conditional distribution 1s a K-finite
mixture of the convolution of a Poisson distribution und a
Binomial distribution. More details can be found in Karlis and
Xekalaki {9}

IV. ESTIMATION VIA EM ALGORITHMS

Estimation for the Poisson INAR(1) model has been proposed
by Al-Osh and Al-Zaid [2] based on least squares estimation
via the conditional mean function. Altemnatively, the
conditional maximum likelihood approach maximizes the
likelihood conditional on the initial value ¥, Suppose that we
have observed the series x; =(\,X,.Y,...\;). The

conditional likelihood, in the general form, is given by

T
LG:x)=[]P X, =x1X,, =x..0

1=1
where P'(Y, =x, Y, =vx,.6) denotes the conditional
probability of .\, given .Y, and € is a vector of parameters.
The superscript ¢ indicates that the form of the conditional
probability may depend “on r. Direct maximization of the
likelihood is not easy, especially when the dimensionality of #
increases as, tor example, in the case of a k-finite Poisson
mixture mnovation distribution. In the sequel an EM tvpe
algorithm is provided for camving out the cstimation
procedure.
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A The General EM Algorithm

The mmpact of the EM algorithm i maximum likelihood
(ML) estimation has been tremendous (see for example |3
and {13]). Several problems, which were considered as
intractable. can be solved using the easily programmuble EM
algoritim.  Moreover, the algorithm. isell.  admits an
interesting staustical interpretation and thus it is not mercly a
numerical technique.

The basic idea of the EM algorithm hes in the
‘missing data’” principle. The algorithm is applicable m cases
where the data are or can be considered incomplete. The latter
implies that a latent structure exists behind the observed data

for which the convolution derivation of the INAR model 1s

quite appropniate.

Roughlv speaking, one can describe the basis of the
algorithm as follows. It the data were complete, then ML
estimation would be an easy task, resulting ‘even in closed
form solutions. So, the algorithm consists of two steps. At the
first step, the expectation step, the missing' data are estimated
via their conditional expectations given the observed data and
the current values of the parameters (E-step). At the second
step, the maximization step, the likelihood of the complete
data is maximized using the expectations of the previous step
(M-step). ’

The * convolutional form of the - conditional
distribution of a general INAR process makes the algorithm
appealing. Let X)1,Z be three random variables such that
Z=X+Y. In our case only Z is observable. The algorithm
proceeds by estimating the missing data (ie. X and Y) by
their conditional expectations given Z at the E-step and
subscquently maximizing the complete data likelihood at the
M-step using the estimates for the missing data from the E-
step.

s

B. The Poisson INAR model
In the case of the Poisson INARV model, the conditional
probability distribution is the convolution of a binomial
distribution with a Poisson distribution and hence
Px,|x,_,a. )= PX,=x|X_ =x_.,a4)

x, 14
zﬁ-exp(—lm X a""‘(l-—a)" 1k
pord k! x, -k,

The calculation of the values of the probability function can
be facilitated by a recursive scheme given in Shumway and
Gurland [15].

The algorithm has to be comstructed so as lo

estimate, at the E-step, the conditional expectations of
Y,=acX,, and R, given the data and the current valucs of

the estimates and to maximize, at the M-step, the complete
likelthood. The latter is equivalent to maximizing the
likelihood of a binomial distribution and the likelihood of a
Poisson distribution, both -of which are rather straighttorward
tasks. Hence the algorithm can be described as follows.

E-step:  Using the current values of the estimates. sav
ep ¢

a™ ™ caleulate

oled

5, = KR L x,.x, a2

cod ot ¥ 1
exp(—4™ r’(’tu )-4 Veuot {4y ™ EUR
i Ha Frai-a
= lo—-x, !

e il ol
o

Pix, ix, o™ A"
U"M’/i”“ )

el . ;tw‘rl ) :

- i Pix, =1y, .

Pix,lx, .a
fort=1..., T.

The conditional expectation of }, given the data and
the current values of the estimates can be determined by
stmple subtraction, as

w, =E(Y,|x,,x, a2 y=x,-5,.

M-Step: Update the parameter estimates using
T

28 PR
A= "lT and a™ = ;'.:I
N

2%

i1
Stop iterating when some convergence criterion is satistied.
otherwise, go back to the E-step.

Clearly, the algonithm can be casily implemented m
any computer machine. It has all the advantages and the
disadvantages of the EM algonthm, as, for example, it
provides estimates in the admissible range, it has monotonic
but slow convergence etc.

Note that, in the case of conditional ML estimation.
the starting point .\, is considered  known. For the case of
unconditional ML estimation. one can use different values tor
X, in order to maximize the conditional tikelihood via the M
algonthm considered, and then keep the value for which the
global maximum was obtained as an estimate for .\,

C. The Mixed Poisson INAR Process

For the Mixed Poisson INAR model, the algorithm is quite
complicated since the form of the innovation distribution 15
not simple and there exist no closed form expressions for its
ML estimates. However, one can proceed by combining the
convolution representation and  standard results for EM
algorithms for finite’ mixture distributions. The conditional
distribution 1s now given by

Pox ix .8 =P\, =x |\, =x .60
=Y p P, =x, (X, =x, a4
[
where 8 =(a.p,.... py A 4y ) denotes the vector of

B
parameters, p, >0, for i=[.. .k with Zp, =1. und
— 1l

A € Ay << A, s clear that, for k=1, the simple Poisson-
‘binomial distribution anses. The EM algorithm is as follows.

E-step: Using the current values of the estimates, sav 6.
calculate the weight w, as the posterior probability that the /-
th observation belongs to the j-th subpopulation, 1.
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o PP 1 e A
’ [ P(x, 1%, euld)

o j=l.. k r=1..T In addition, calculate the posterior
expectations for the random variable R, given the observed
' value ¥, and assuming that it belongs to the j-th component,
- which is given by

sll =E(Rr I Xps X0y ’am i ‘OH)

Ay
=4 P(x,-1|x, ,,a auvﬂjau)
! P(x: |x,.,.a

i

1

A

J

- forj=1,.. ., k=1,

M-step: Update the parameter estimates using
T
S, ¥y
A= p/""'=—'=l R F RN 4

Zwv d

T

Se 3B

,n.:

Zx,_

Stop iterating when some convergence criterion is satisfied,
otherwise, go back to the E-step.

More details about the algorithm can be found in
Karlis and Xekalaki L.

Note that since the number of parameters to be
estimated is usually large, the algorithm is rather slow. To
improve the speed of the algorithm, one may obtain some EM
iterations in order to get quite close to the solution and,
subsequently, locate the maximum using standard numerical
techniques (e.g. Newton-Raphson). It is interesting to note
that the first 5 iterations usually lead to estimates very close
to the maximum, '

An interesting feature of the EM algorithm is that
the posterior probabilities calculated at each E-step can be
used for clustering the observations, as they are the posterior
probabilities that an observanon may have came from each of
the components.

V. AN APPLICATION

Each summer, south Europe suffers from fires that destroy
forest areas and can be hazardous for residential districts. Last
year, huge areas of forests were consumed by fires. A
controversial issue concerning -fires is whether these are
accidentally set, i.e. whether the situation is gathered by pure
chance. The INAR(1) model seems to be a useful model for
describing the number of fires. According to the model, the
number of fires is partially comprised by the number of fires
started in the immediatelv preceding days (assuming
sustainment or rekindling). To this number, the number of
new fires for several reasons is added. The data that are
analyzed in the sequel refer to the number of fires in Greece

in the period trom July I, 1998 to August 31, of the same
year, thus they consist of 7=62 observations. Only fires in
forest districts are considered.

If pure chance were the goveming factor, the Poisson
INAR(!) model could be used lor the description of the data.
It, however, one considers that factors other than pure chance
may have had some contribution to the situation, a mixed
Poisson innovation distribution may be considered. Of course,
these non-random factors cannot be directly linked with
specific causes unless extra information becomes available.
They may, however, be regarded as pertaining to the fact that
forest areas differ in their susceptibility to fires depending, for
instance, on the weather conditions (e.g. heat, windiness)
or/and perhaps on some other uncontrollable situations linked
with the appeal of their location (e.g. careless picnicking or
even arsons by persons hunting for land that can be exploited
as a building ground).

To these data (depicted in figure 1), a semi-
parametric mixture of Poisson distributions was fitted on the
assumption that the number of components is an unknown
quantity that ought to be estimated from the data. Of course,
even with a continuous mixing distribution, one is able to
estimate just a finite version of the mixture (see, e.g. [4],
[10]). The estimated number of components, indicates the
number of different ‘subpopulations” comprising the entire
population and can thus be quite helpful for the identification
of each observation.
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Figure 1. Data concerning the number of fires in Greece for
the time period July 1998-August 1998

The mean of the data is 8.75, while the variance
equals 33.72, implying a great extent of overdispersion (3.85).
This is a strong indication of heterogeneity in the data leading
to the conclusion that the assumption of a Poisson innovation
distribution does not seem plausible. The autocorrelation
coefficient of lag 1 was found to be 0.073. In order to find the
semi-parametric ML estimate of the mixing distribution, the
EM algorithm of the previous section was used for increasing
values of & until the likelihood could not be increased any
more. The parameter estimates for several values of & are
contained in Table .

781 |



Number of a i F} Loglikelihood
Components /
k=1 0.076 8.098 - -207.433583
- 7150 10984 | "
k=2 0.120 41835 | 0016 176.718882
5.344 | 0.677
k=3 0.144 | 10.493 | 0.307 | -171.273676
41.835 | 0.016
4673 | 0513
_ 8.580 | 0.430 5
k=4 0.162 14631 | 0.040 -171.168912
41.687 | 0.016

Table 1. The fitted Mixed Poisson INAR(1) models to the
data on the number of fires in Greece

Note that, the 4-th observation, whose vaiue is 43
(figure 1), is clearly identified as an outlier by all models with
k>1. The mixing proportion is just 1/62 and remains stable
with increasing k. For models with more than 4 components,
the likelihood stopped increasing. Hence, one may assert that
there are 4 components present. One of the components
corresponds to the outlier observation as already noted. In
figure 2, one can see the component to which each
observation belongs according to its largest posterior
probability. These probabilities become available after the
termination of the EM algorithm. It is interesting to note that
observations with the same value may belong to different
clusters.
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Figure 2. The components in which each observation belongs
when the model with 4 components has been fitted

If one wants to test the hypothesis of a k-component
model against the alternative of a (k+1)- component model,
the standard likelihood theory fails. This is well known in
mixture theory (see, e.g Lindsay, {10]). A possible solution to
the problem can be based on camrying out a bootstrap test as
that described in Karlis and Xekalaki [8]. A large number of
samples of size T are generated from the finite mixture
distribution considered under the null hvpothesis using the
ML estimates of the model. Then, both models with & and
k+1 components are fitted via the EM algoritm and the
values of the likelihood ratio test (LRT) statistic are compared
with the observed value of the LRT statistic calculated from
the data. Table 2, summarizes the resuits for the data
considered on the basis of 1000 bootstrap replications. The p-

values reported in the third column represent the proportions
of times the value of the bootstrapped LRT statistic was
greater than the observed value of the statistic. The results
support the model with 4 components, despite the very small
value of the LRT statistic.

Hypothesis tested LRT p-value
statistic
Ho: k=1 vs Hy: k=2 61.42 0.000
Ho: k=2 vs Hy: k=3 10.89 0.000
Ho: k=3 vs Hy: k=4 0.21 0.03
Table 2. Likelihood Ratio tests for different models based on
bootstrap

Model checking in non-normal autoregressive time
series is not an casy task. The goodness of fit of our model
wds tested following Tsay’s [18] bootstrap model checking
approach. The sum of absolute residuals between the
observed data and the one-step ahead predicted values given

T
by 3’|x, - %,| was used as a test statistic. The one-step ahead
=1

predicted values were obtained by x, =ax,

. + 44, where

4 ~
ﬁ:z;‘;lll and a denote the ML estimates of a and y
j=t
respectively. The absolute residuals were used instead of the
squared residuals in order to reduce the influence of the
outlier observation (x,=43). Then, 1000 series were simulated
using the ML parameters of the model and, for each series,
the sum of absolute residuals was evaluated, when the
hypothesized model was fitted. The observed value of the
statistic for our data set (231.46) was not significant (p-value
= (.85). Therefore, the model considered seems to fit the data
satisfactorily.
Unconditional ML estimates can also be obtained.
All the models fitted above considered the value of .Y, as
known (x=5). If one wants to derive unconditional ML
estimates then the value x; of X, is unknown and has to be
estimated. The 4 component model was fitted for several
different values of X, . In figure 3 one can see that the
likelihood is maximized for x;=0. This value is the estimate of

Xo, for this particular data set.
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Figure 3. The unconditional loglikelihood function for
ditferent values of .Y, for the fire data
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VI DiscussION

In this paper, discrete valued autoregressive models
were considered. A general mixed Poisson INAR(1) model
was defined and an EM type algorithm for conditional and
unconditional estimation of the parameters of the models was
provided. The model proposed -allows for non-parametric
estimation of the innovation distribution. The results were
illustrated on a real dataset.
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