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ON ANALYSING DEMAND AND MAKING
INVENTORY DECISIONS
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Abstract — The questions of when to place an order for
additional stock and how large a quantity to order liave
attracted a lot of interest in the statistical literature. In this
paper, some of the inventory decision models that huve been
proposed with the aim of providing rs to these g

ure discussed. A characteristic that all of the models
considered have in is that they regand the demand for
the item as a random variable. The focus is on the case of
heterogenecus: demand. In particular, the first three models
employ a Bayesian approach for forecast and probability
revisions in the case of a heterog Poisson d d. The
forecasts are then incorporated into a model that determines
the best order quantity. The next two models assume that the
lead-time is ako a random variable and determine the stock
level at which to reorder when the distribution of demand is
the Yule. Finally, considering that the joint distribution of the
aggregate d J in two successive time periods is of 2
generalized Waring form, the density of the distribution of the
summand variables is numerically estimated.

Keywords and Phrases - - inventory decision models,
heterogeneous Poisson demands, order quantity, reorder
point, bivariate generalized Waring distribution.

I. INTRODUCTION

All the procedures that are followed so that the best answers
to the questions of when to place an order for additional
material and of how much to order can be found, comprise
‘inventory control” or ‘stock control’. When the amount of
stock is arbitrarily determined, the results may not be
satisfying because a shortage of stock or surplus of stock
may occur. Thus, some well studied decisions must be
made since the above consequences can influence the
performance of a company the vears to come.

The problem of how large a quantity to order very much
depends on the distribution of demand. On the other hand,
the problem of when to place an order depends on the
fluctuations’ of” inventorv on hand, lead time and demand.
However, many researchers have presented some models
which provide solutions to the above problems under
certainty. The aim of this paper is to help an inventory
manager to make some decisions under uncertainty which is
a more realtstic view. Thus, based on Demetrakopoulou and
Xckalaki {2), some models are presented in which the
demand is assumed to be a random variable while the other
characteristics of an item may or may not [luctuate,

Section I presents three mixture models that fead to
demand distributions of the Binomial. Yule or Generalized
Waring torm. These models consider dividing the total
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period of observation in two sub-periods and subsequently
forecasting demand in the 2nd period on the basis of
demund during the Ist period according to a Bavesian
approach. All three models assume that the lead time is
zero. In section 111 two models that address the problem of
determining the best order quantity when the retail selling
price, the acquisition cost, the salvage value and the lost
sale cost of the item are known, are described. Section [V
presents two models that determine the best reorder point.
The first one assumes that the demand, the stock in hand
and the lead time are all random vanables. The second one
also assumes that the demand varies from day to day and
that the lead time is random but it doesn 't take into account
the characteristic ‘stock in hand’ at all. Both models lead to
a Yule distributed demand. Section V deals with random
sums where N has a Poisson distribution and presents a
method which estimates the summand distribution when the
distribution of demand is the bivariate generalized Waring
distribution using Panjer’s (1999) multivariate recursions.
Finally, section VI considers some applications of the
models presented in sections I, III and 1V to real data.

II. DEMAND FORECASTS FOR ITEMS THAT HAVE
HETEROGENEOUS POISSON DEMANDS USING MIXTURE
MODELS.

In this section, three models will be developed according to
the “apparemt contagion” hypothesis. This hvpothesis
underlines the necessity to accept the role of factors that
affect the placement of an order, other than pure chance
and amounts to the following set of assumptions:
Items have constant but unequal Poisson probabilities to be
ordered.
Heterogeneity is assumed to be averaged out in terms of a
Gamma distribution.
All the three models divide the selling period [0,2t] into two
equal sub-periods and use a Bavesian approach to forecast
demand in period [t.2t], denoted by X., on the basis of
demand in period {0.t], denoted by X, Bradford and
Sugrue’s {1] model leads to a Negative Binomial demand
distribution as follows:
Let X~y ix! (H
Then. i’ A, the parameter which represents all the non-
random factors, is Gamma distributed with probability
density function:
ar Xr Ie an
(r—1)

= A>0.



the distribution of aggregate demand in period 1, that 15
assumed to be of an arbitrary unit length, is the Negative
Binomial with parameters a, r

X

] . x=01. @

Vw'r+x_](JLJI"l"E
ot r-t la+t)\a+l

The conditional period 2 distribution of A given X;=x which
is obtained by the Bayve’s theorem is

(a + l)r‘x }"x»r»le -Ma-l)

(r+x-1)!

Thus, the posterior distribution of A is also a gamma
distribution with updated parameters r+x and a+1.
The period 2 distnbution of demand is a mixture of (1) with
mixing distribution as given by (3). Therefore,

PX=yXi=x)=
a+l j”x[ 1 Jy
a+2)

r+x+y-1
r+x-1 a+2

This is the probability function of a Negative Binomial
distribution with parameters r+x and a+1.

At the beginning of period 1, when no previous knowledge
on the demand X|) of an item exists, the best estimate of its
prior mean will be the mean of the Gamma(r,a) distribution,
namelv  E[A|=r/a. In subsequent points in time, the
torecasts of demand in period 2 are given by the
‘expectation of the Gamma(r+x,a+1)
r

LAX =x)=

3

y=0,1,...

X

r+x
EXX=x}=—— 1
a+l a+l a+l
Xekalaki's [13] model has an advantage over Bradford and
Sugrue’s [1] model. It provides a deeper insight into the
heterogeneity mechanism by considering dividing all non-
random factors into two types, internal and extemal factors.
The first type includes all the factors that have to do with
the item’s specific features and qualities that predispose the
customer to buy it. The second type refers to the item’s
exposure in the market. The totalitv of internal factors are
termed by Xekalaki [13] “proneness”, while the external
factors are termed “ liability”. In this paper a special case of
Xekalaki's [13] model is considered which leads to the
Yule distribution as the distribution of aggregate demand.
Consider items of proneness v and liability Mjv over the
first half of a selling period [0.2t]. Let also X be a random
variable representing the demand for these items and be
Poisson distributed with mean it and probability generating
tunction

x=0,1, &

MV~ -
Gy, ® =™ 220 ®)
Assume that the lability parameter Mjfv for these items
tollows an exponential distribution with parameter 1A and
density tunction

“hpv

. v>0.

€
fl, v M= ©)
Then, for items with the same pronencss but varving
liabilitics, the distribution of  demand (X)) over the first
period {0.t] has probability generating function

Gy, ) =[l+vic1 -], %)
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Thus, if tis assumed to be ot unit length. the probabihity
tunction of the demand for items with the same proneness
vis

x=01.. 3)

o =(__)[ 1
PX=xw) W+ l+\'}’
Let us further assume that the proneness parameter v
tollows a Beta distribution of the second kind (Pearson type
VI) with parameters 1, p and density function
oo V(1)
LV —————(l +V
AT
Then, the unconditional distribution of demand for the
period [0,1] is the Yule distribution with parameter p and
probability function

i p>0v>0. ()

px!
(p+ 1)(»1)
where ag) = I'(a+B)T (@) ,0>0. e R. At the beginning of
period [0,1], nothing is known of the demand X|(A\lv) of an
item. The best guess of its prior mean would be
EEQuV)KEV)=1/p-1):

The predicted distribution of v for period 2 as it comes
out using the Baves' rule is a Beta distribution of"a second
kind with parameters +x and 1+p and probability density
function

faex | V)=

P(X=x)= Cx=0,1,2, .. (10}

(1

C(x+DC(p+1)

This implies that Aj(v.X,=x) has a posterior distribution with
probability density tunction

\,.\'(H‘,)—(.\'+p+2)

~{h+x)

1 v }
—_— e
I'(x+l)(l+v

which coincides with that of a Gamma distribution with
parameters 1+x and [+1A. So, the conditional expected
demand for period 2 given the realized demand for period 1
is

-Mv-l)/vxx

(12)

by =

(x+1)
p

If one 1s interested in repeating the above procedure so as to
be in a position to find out the distribution of demand in a
subsequent time interval, the a posterioni distributions (11)
and (12) should be used as a prion distributions. Then, the
distributions of demand in period 1 (X;) and period 2 (Xz),
can be utilized for the determination of the quantities which
must be ordered at the beginning of the two periods so that
the total cost will be maximized. The period 2 random
distribution ot demand can be obtained as the mixture
Poisson(At) Q Gamma( 1+x,1+1A) Betall(1-x.1+p)
ANy =y WX =0

Xekalaki [13] presented: one more model which allows
ditferences in the environmental factors affecting the same
item from period to period. Let X, Y be the demand for the
items of the period 1 .and period 2 respectively (these
periods are non-overlapping time periods) and follow a
double Poisson distribution with probability generating
tunction )

Gy &y ASU=EXP (RN Mda>0. (14

(13)



Let also the “Habilin” parameters v, Adv be

independently distributed as gamma Lk;l) and gamma
v

I .
(m; — ) respectively.
v

Then for items with the same “proneness’ the joint
distribution of demand over the two periods considered has
probubility generating function given by

G{X’Yg‘V(s,t)={1+v(1—s)]‘k[l+v(l——t)]—m s

The form (15) is the probability generating function of a
Bivariate Negative Binomial distribution. If “proneness” v
vary from item to item according to a beta distribution of
second type , then the joint distribution of demand over the
two periods is the Bivariate Generalized Waring
distribution with' parameters a, k, m, p (BGWD(a:k,m;p)}
and with probability function

Pk +m) a(:wy)k(x)rn(x) 11 (16
(@ +Plgom @+K+M+P)uy X v
ak,m,p>0, xy=0,L,...
The conditional period 2 distribution given the observed
period | demandis a UGWD(a+x,m.p+k). This means that
P(Y = y!X =X)=

(p + k)(mi (a + x)(y) l
@+p+Km (a+p+k+m), ¥
Thus, the forecasts of demand in period 2 can be found by

E(Y‘X =x)= (@+xym
p+k-1
which indicates that the period 2 conditional expected
demand given the aggregate demand X=x at the end of
period 1 is a linear function of x.
The advantage of this model is that the total variance of the
observations for the total period and for each of the two
subperiods can be written in the form of a sum of three
components that can be expressed in terms of the
parameters a, K, m, p as shown in Table [ ([13}]).

P(X=x,Y=y)=

an
y=01,.

18

Component - Period 1 Period 2 | Total period’

due to
Rand/ness ak am a(k +m)
(o%) p-1 p-1 p-1
Prc:nene&s Ka+p-1)  m°a(a+p-1) (k+mJa(a+rp-1)
tov) ®-e-D pInip-2 @D
Liability Cak(a+1) am{a + ])—-— atk + m)(a D
{o}) P=-p-2  (p-Dp-2) (-Dp-2

Table!
The components of the variance of the Generalized Waring
model. ’
Q

From this table, the contribution of each of the three tvpes
of factors assumed to affect demand in any particular time
period can be assessed.
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I, DETERMINATION OF THE BEST ORDER QUANTITY FOR
ITEMS THAT HAVE HETEROGENEOUS POISSON DEMANDS

In section II, some models which give the opportunity to
make demand forecasts, when the selling season is divided
into period 1 and period 2, were developed. If these
forecasts are used for calculating  the total expected profit
for the entire season, the determination of the order quantity
would be centered upon maximizing the total pro.it.
The model was considered by Bradford and Surgue {1 } and
is based on the following assumptions :
e The management adopts an ‘order up to " policy. This
means that orders are placed only at the beginning of
periods | and 2.
o There is no capacity restriction placed on the order size
and the lead time is equal to zero.
o For the initial ordering decision, the prior distribution
of aggregate demand is known by the management.
e Fach item has the same retail selling price R,
acquisition cost u, salvage value g and lost sale cost B. The
cost of overstocking in period 1 is deferred until the end of
the selling season, when any remaining stock is considered
to be a total loss.
When period | starts, the management decides to stock H
units of the item, where H can be Jetermined on the basis of
knowledge of the prior distribution of aggregate demand.
Thus, following Brabford and Surgue (1990), the expected
profit for the item during the period is given by

H
I, =RY P(X, =x)-x
x=0

+R-H3PX, =%)~B 3. (x-HP(X, =x)-u-H

x=H+l x=H+l

where the period 1| demand, X,. can have a Negative
Binomial distribution with parameters 1, a or 2 Yule
distribution with parameter p.
At the end of period 1, the parameters of the distribution of
aggregate demand are updated, and the conditional period 2
probabilitics and forccasts are reexamined. The period 2
conditional expected profit of the item, given Xy=x. 18

H.
r RSP, =y, =00y +

¥:0

R-H, - YPX, =y

v oL

-B- Z(y -H) P(X, =y[X, =x)+

yitly 4

X, =x)

H,
g Y (H, - yP(X, =y]X, =x)-u-(H -H+x),
v=0

x=0,1,2....H" [
where X, is the period 2 conditional demand, Hy is the
conditional stocking levet of the item in this category. and
P(L=vX=x) is the period 2 conditional distribution of
demand. Then, the period 2 expected profit is a weighted
combination of cach . of the form



Ho -
”3=ZP(XI =X) W+ Wy 'ZP(Xl =X)

X =0 x=H
and the total expected profit for the entire season is
I=00,+1;
Hence, the optimal solution can be determined by iterating
over various vatues of H and H, untit T, is maximized.
An extension of this model has been considered by
Xekalaki [13] for cases where one is interested i the joint
distribution of aggregate demand for two types of an item.

The moded 8 o based on e thove assumptions. € dw
management stocks S, units at the beginning of period 1
and $; units at the beginning of period 2, then according to
Kekalaki [13], the total expected profit for the entire season
18

n@sgﬂ%iwm=m+iww=w}

X=8;+1 y=8; +

+ R{s, 3 P(X=x)+S, SP(Y= y)}

- B{ i(x -S)PX=x)+

xSyl

Sy -SIPCY =.v)}

+8§:(SZ -yP(Y =y)-+S, - vixP(X =Xx),

where (X,Y) follows the BGWD(ak,m:p).

The optimal S,, S: values can be determined as the maxima
of T1(S1,S:) by setting the partial differences

A II(S,,8,) =TI(S, +1,8,) - TKS,,S.),
AS:H(SI,S:) =I1(5,,S, +1) -1I(S,,S,).

smaller than zero. As shown by Xckalaki [13}, the
management must stock S, units at the beginning of period
1 and S units at the end of period. 1, where 8, 8. are the
lowest values for which

A NS,.S.)=R+BPX 2§, +1)
-wS, +DPX =8, +1) <0
Aszl'l(Sl,S:)=(R+B—g)P(YZS:+l)+g—v<0.

IV. DETERMINING REORDER POINTS UNDER UNCERTALN

DEMAND, STOCK IN HAND AND LEAD TDME
In this section, determining reorder points is considered in
the framework of two different models. The first model
determines the reorder point according to a scheme that is
known as the reorder point-system. In such a system,
additional items are ordered whenever stock falls to a
paticular value. The model has been considered in the
literature  with ditferent views by different researchers.
According o the view taken by Prichard and Eagle 6],
only the demand of an item is a random variable, while the
stock in hand and the lead time are constants. According to
the more realistic view taken by Xckalaki [12], all the
above characteristics are regarded as random variables. In
the sequel, Xekalaki's [12] model is presented and applicd
to a Yuie distributed demand.
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Let X, Y be two non-negative integer valued random
variables where X is the demand for an item in units
ordered and Y is the amount (in item units) of the inventory
on hand during the same lead time L. Consider L to be a
random variable distributed independently of X, Y and
denote by P(X=r}=p; , P(Y=1) = ¢, ., 1=0,1,2,... and F ()
>0 the probability functions of X, Y and L. respectively.
As pointed out by Xekalaki and Panaretos [14], it T
represents the fraction of L during which the item will be
out of stock, the following relationship is valid

T X-Y

L X
Then, following Xekalaki [12], an order for a quantity is
placed when stock reaches the value vo of v, where E(T)

20)

_does not exceed a given length Ao. Equation (20) and the

above rule yield

E(T]Y =y,) = E(L){P(x SRE> —P(X—“—’} < 4,
X=yo+l X

@n
Two theorems presented by Xekalaki {12] lead to a
modification.of the decision rule of the form:
P(X>Yo)-yo(1-polP(Y=yo)se
where c=A/E(L).
The above form can be substantially simplified if the
distribution of the fluctuations of demand is of the Yule
type with probability function as given by (19). Xekalaki
[11], obtained a result connecting the distributions of X and
Y which can be presented in the form of the following
theorem:
Theorem 1 (Xekalaki, 1984). Let X be a non-negative,
integer valued random variable. Then X is Yule distributed
with probability function given bv (10) if and only if

1
Pr=—(r+1)P(X =1), r=0,1,2,...
p

Using the results of theorem 1, torm  (22) is modified as
tollows:

1
E Yo+ DP(X=yo)-¥o(1-po)P(Y=yo)<c .

d
Since X=Y, the inventorv manager must select the
reorder point ¥o so that

Tp+) Tp+y, +1)
(p+Dc~ Ty, +1)

The second model that is presented in the remaining of this
section was developed by Keaton' (1995) and  utilizes
Tyworth’s (1992) approach for determining reorder points.
According to this approach, too. both the demand and the
lcad time arc regarded. to be random varables. The
particular characteristic of this approach is that it deals with
the two component distributions. the conditional demand
distribution and the distribution of the lead time and not just
with the resulting compound distribution ol demand. The
lead time is assumed to follow a discrcte probability
distribution, while the distribution of demand per day can
be cither discrete or continuous.

(23)



Tyworth considered the following situation: a desired fill
rate is specified (sav 98%) and the reorder point required so
as to achieve this in practice is to be determined. (The fill
rate is the fraction of demand met from stock). Assume that
daily demand foliows a discrete distribution with mean u
and that the lead time L ranges from n to m davs with
probabilities P(L=t)=p(t), t=nn+l,...m. Then, the
conditional demand when the lead time is t days is of the
same form as the distribution of demand but only with
different parameters and with. mean ty. The expected
number of shortages for every conditional demand
distribution are determinéd by the formula:

E(R) = g«R —x)p(ap),

where p(x[t) denotes the probability function of the demand
conditional on (L=t) ie., p(xjty=P(X=x|L=t). Then, the
expected number of shortages over the entire lead time,
denoted by ESO(R), is simply a weighted average of the
expected  shortages for each conditional demand
distribution, where the weights are the probabilities that
the lead time takes on each possible duration, i.c.,

m
ESOR)=)_p(t) E(R)
t=n
The ESO(R) is then compared to a target level TSO=Q(1-
FR), where FR is the desired fill rate and Q is the order
quantity. If the ESO(R) is far away trom the TSO, another
value for the reorder point must be determined. A major
advantage of Tyworth’s (1992) approach is that it offers
great flexibility in modeling. A discrete lead . time
distribution using “empirical” probabilities can assume any
shape. The only element that ultimatelv limits flexibility is
the choice of the dailv demand distribution.

@4

V. THE BIVARIATE GENERALIZED WARING AS A DEMAND
DISTRIBUTION IN THE CONTEXT OF A POISSON STOPPED SUM
MODEL AND ESTIMATION OF THE SUMMAND DISTRIBUTION.

The distributions congidered in the previous sections have
been derived in the context of mixture models. However,
they can also arise as distributions of a Poisson stopped sum
of independently and identically distributed random
variables (see e.g. [9]).

Consider the initial and first generations of a branching
process. Let the Gy(z) be the probability generating function
(pgf) of the size N of the initial generation and suppose that
each individual i of the initial generation independently
gives rise to a random number Z; of first gencration
individuals, where Z,, Z,,... have the same distribution with
pef G«(2). The total number of first gencration individuals
is then

=75t o, - (23)

where N and Z;, i=1.....N ar¢ mutually independent. The
stopped-sum  distribution has pgt’ Gx=Gi(Gx(z)). So. for
example, as is well known, the negative binomial
distribution can be obtained as the distribution of such a
sum with N as a Poisson variable and Z, being distributed
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according to a log series distribution. The Yule and, more
generally, the generalized Waring distribution on the other
hand, can also arise in a similar manner being self
decomposable as shown by Xekalaki [10]. However, the
torm of the distribution of the summand variables in the
Poisson stopped sum representation cannot be expressed in
a closed form. It can though be determined numerically (see
eg [4]). In the context of the inventory problems
considered in this paper, N may represent the number of
orders placed, while Z; mav denote the i-th order quantity
(in item units).
Whenever the interest is on the joint distribution of demand
for two types of an item over a given period, a bivariate
extension of this model might be usetul. For a Generalized
Waring distributed aggregate demand, such 4 model could
refer to the mechanism giving rise to the BGWD(a;k,m:p)
as defined by (16) with X' = X,, ¥ =X, as Poisson
stopped sums of independently and identically distributed
random variables in the sense of (25). In particular, (16) can
be regarded as the distribution of the vector

X=X, YD+ (Xs, Y+ +(Xn, Ya),  (26)
where N is the total number of orders placed in the entire
period of observation, each for a certain number of items of’
tvpes | and 2, i, the vector (X, Y) represents the joint
aggregate demand for types 1 and 2 of an item when N
orders (X;, Y, i=1.2,....N are placed in the entire period
with X; and Y being the order quantities associated with
order i for type 1 and tvpe 2, respectively. in analogy to the
single type case, N is assumed to be Poisson(}) distributed
independently of the pairs (X, Y), i= 1, 2, ..., N which are
mutually independent and identically distributed according
to same distribution with some probability function P(X, =s,
Yi=v)=1fs.v),s=0,1,2, .. :v=0, 1,2, ... Thepglfol(X,
Y) will obviously have the form

G.\'.Y (S,t) = GN (GX. I (S, f)) = ei-(G? 5500 . Q7

In the sequel, an algorithm based on Panjer’s [5] recursions
is comstructed to estimate the summands in (26) which leads
to a probability function of aggregate demand, say g(x, v),
of the BGWD form given by (16).

According to Sundt {7], when N follows the Poisson
distribution with parameter A, the above setting leads to the
recurrence relationship

X Y
g(x.y) = Zlk-sjzf(s. VIB(X =5,V ~ V)

X veo

28
x=1L2..and yv=0.1..

Using (27), we obtain g(0,0) = & ™ or, equivalently,

f(0,0) = 1 + Ing(0,0)/A. Solving equation (28) m fix.y),

we armive at the reeurrence relationships:

e I

vl
Y s¥ f(s.v)g(x —s5.v - v)
Ag(0.0)  xg(0.O)TF T & 4

Sk vt - ko
xg(0.0) 7 k.y)etx - k)

N=23...v=1.2,. . 29



- g(x.0) 1 ul .
f(x,0) = - I sf(s.0)glx ~s,0). x = 2,3....
() 22(0,0) xg(o.mﬁs“s Jglx =80 x =2,
30
8(0.y) 1 & )
{0.y)= e 0.v)g0.y-v), v=L12..
V) 2 0.0) yg(().O)g;Vf( VgO.y )
3Gh
gl.y) 1. &,
fllyy=="20 - N f(Lv)gO.y-v). vy=12
1= 00 gom & EOY T
32)

and (combining (16) and (28))
1,0 ak
f1,0)= 30 _ _
2g(0,0) (a+k+m+p)r
Multivariate extensions of (26) (or, equivalently, of (27))
can also be considered for the description of the joint

Poisson stopped aggregate demands for n items (n22) of a
Generalized Waring form.

V1. SOME APPLICATIONS.

In this section, the two models based on the Bivariate
Generalized Waring - distribution, that were considered in
sections II, [I and the two models based on the Yule
distribution that were considered in section IV are applied
to some real data sets. The first set refers to data from a
small retail firm which is housed: together with other retail
firms in the Greek army department stores (EKEMX) and
sells silver icons. The data concern the demand for 200
types of icons of the same size in 1999. The total period is
split into two 6-month periods, period | and period 2, and
the BGWD model is used to forecast period 2 demand from
period | demand. Furthermore, the model introduced by
Xekalaki {13] is used to determine the quantities that must
be ordered at the beginning of periods 1 and 2 for each
icon, so that the total expected profit will be maximized.
The data are fitted quite satisfactorily. by the BGWD with
parameter estimates ?

a=2612 p=1045 k=1608
as judged by the ' goodness of fit test
treedom=4, P((26.96)= 0.138).
However, what is important is the possibility that this
model allows for predicting demand for period 2 on the
basis of demand in period 1. Table II contains the
frequencies of actual demand in period 1, the average
demand in period 2 and the forecasted demand in period 2.
As revealed by this table, the BGWD model provided

satisfactorily accurate forecasts ( P( xﬁzo‘ 1382)=0.9996)
and can thus be a usetul tool for an inventory manager,

m=1.735
(degrees of

Actual Frequency | Average Forecasted
Demand in Demand in | Demand in
Period | Period 2 Period 2

0 144 0.424 0.442

I 34 0.441 0612

2 15 0.867 0.781

3 4 | 0951

2 1 112 |

| =

1 1

1.289 !

Table I

Forecasts uccording to the BGIWD maodel for the icon data.

The advantage of the BGWD model over the NB model is
to be sought in the features of the model that allow the
partitioning ‘of the total variance for cach sub-peniod and for
the total period into three additive components, one duc to
the effect of endogenous factors, one due to the effect of
exogenous factors and one due to the effect of random
factors. Table [II contains all the estimated components in
the case of the icon data.

Component Period 1 | Period 2 Total
due to Period
Random factors 0.445 048 0.924
(59.9%) | (58.5%) (51.6%)
Endogenous 0.108 0.13 047
factors (14.5%) (15.9%) (26.3%)
Exogenous 0.19 0.21 0.4
factors (25.6%) | (25.6%) (22.4%)
Total 0.743 0.82 1.79
(100%) (100%) (100%)
Table II
Estimated variance comp under the Generalized

Waring model

The above table reveals that the random factors affect the
most the demand in both periods and in the total period
while the endogenous factors have the least effect on the
demand in periods | and 2. Additionally, the contribution of
the exogenous factors is about 25% in each of the three
periods.

The fitted BGWD(2.612, 1.608, 1.735, 10.45) modei will
now be used for the determination of the quantities which
must be ordered at the beginning of period 1 and period 2,
respectively to replenish stock. The retail price, the
acquisition cost, the salvage value and the lost sale cost per
icon are 44000 drs, 32000 drs, 8000 drs and 6000 drs,
respectively. Implementing Xekalaki's [13] procedure
described in section Il via an algorithm considered by
Demetrakopoulou and Xekalaki [2), leads to the assertion
that the manager of the icon firm should stock 9 items of
each icon at the beginning of period 1 and 3 items at the
beginning of period 2:

To illustrate Xekalaki's  {12] procedure for - the
determination of the reorder point (section [V) we now
consider the data of a Greek medical cquipment company
(SPIMA) on the demand ftor diathermic apparatus during
1999. First, the observed demand distribution is fitted by
the Yule distribution which olten appears to be appropriate
for describing demand fluctuations in the casc of slow-
moving items. The parameter p of the Yule is estimated by

s=Li1= +12326. As judged by the ¥
X 0.4426
goodness of fit test the fit was quite  satistactory



{P(x3>1.53=0.821). Hence, the stock level at which to
reorder  disthermic  apparatus so that the company’s
warchouse does not run out of stock can be determined on
the assumption of a Yule distributed daily demand with
estimated mean (- 1) '=0.44.

The lead time is one. two or three davs with probabilitics

0.3. 0.4 and 0.3, respectively. Thus, the expected value of

lead time is 2. (E(L)=2) . The specified length of time A, is
assumed to be equal to 0.1. Theretore using an algorithm
developed by Demetrakopoulou and Xekalaki [2] ior
determining the reorder point through iterative formula
(23), one may assert that an order should be placed when
the stock level drops at 2 units.

In the sequel, SPIMA’s medical equipment demand data are
used to illustrate Tyworth’s approach for determining the
reorder point. Using this approach the distributions of lead
time and demand can easily be updated as conditions
change. Thus, when the demand is Yule distributed with
parameter p and mean p, the  conditional demand
distributions when lead time equals 1 day, 2 days and 3
days have means equal 1o, 2p and 3p respectively. Hence,
the conditional demand distribution. for period 1 is the
Yule(p), the conditional demand distribution for period 2 is
the Yule((p+1)/2) and the conditional demand distribution
for period 3 is the Yule((p+2)/3). So, for the data under
consideration, the three estimated conditional demand
distributions when the lead time (mneasured in davs) equals
1, 2'and 3 are the Yule(3.26) with mean equal to 0.44, the
Yule(2.13) with mean equal to 2.0.44 =0.88 and the

Yule(1.75) with mean equal to 3-044=1.32,
respectively.  Figure 1  depicts these conditional
distributions.
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Figure 1. Conditional distributions of demand
lead time is 1, 2, or 3 days

Then, the expected number of shortages over the entire
random lead time 1s a weighted average of the shortages for
cach conditional distribution according to tormula (24).
Using Demetrakopoulou and Xekalaki's [12] algorithm
that has been constructed for this procedure, the reorder
point in the case of SPIMA’s data was determined equal to
R=7 units tor an order quantity of Q=40 units and for a fill
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rate equal to 0.95 (starting values R=12, min=0 and
max=23-p=2 64).

VII.  CONCLUSIONS

In this paper problems regarding when to place an order or
how large a quantity to order have been considered. The
models that have been presented are applicable when the
demand can be regarded as a discrete variable. Analogous
models can be designed in the case of a continuous demand.
The three models presented in section I are used to
determine the best order quantity which maximizes the
expected profit during a season. The fits that are provided
by these models are similar, being thus, far from indicating
appreciable ditferences among them. However, the BGWD
model has an advantage over the other models considered
as it allows the researcher to have an insight into the
underlying factors which affect the placement of an order.
Moreover, the re-order point can be determined using the
two different approaches presented in section IV. A
characteristic that both models have in common is that the
demand and the lead time are considered as random
variables.
Finally, an alternative model was introduced which regards
the distribution of demand as the distribution of a Poisson
stopped sum of independent variables and Panjer’s (1999)
bivanate recursions were used to estimate the summand
distribution. All the models presented in this paper can be
considered in several other contexts such as accident theory
and can thus be of interest to the policy makers of insurance
comparnies.
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