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MEASURING THE PREDICTIVE ACCURACY OF
THE CORRELATED GAMMA RATIO METHOD
FOR MODEL SELECTION

" Stavros Degiannakis” and Evdokia Xekalaki®

Abstract- Autoregressive Conditional Heteroscedasticity
(ARCH) models have fully been applied in order to
predict asset return volatility. Predicting volatility is of great
importance in pricing financial derivatives, selecting
portfolios, ring and ging in t risk more
accurately. In this paper, a number of ARCH models are
examined in the framework of a methiod for model selection
based on the Correlated Gamma Ratio (CGR) distribution
and their ability to predict future volatility is examined.
According to this method, the ARCH model with the lowest
sum of squared standardized forecasting errors is selected for
predicting future volatility. A number of evaluation criteria
are used to examine the performance of a model to predict
future volatility, for forecasting horizons ranging from one
day to one hundred days ahead. The results show that the
CGR model selection procedure has a satisfactory
performance in selecting that model that generates “better”
volatility predicti It appears, therefore, that it can be
regarded as a tool in guiding one’s choice of the appropriate
model for predicting future volatility, with applications in
evaluating portfolios, managing financial risk and creating
speculative strategies with options.

Index terms- ARCH models, forecast volatility, model
selection, predictability, correlated gamma ratio distribution.

1. Introduction

To evaluate their accuracy, volatility forecasts have
to be compared with realized volatility, which cannot be
observed. In the literature, it is common practice to refer the
observed squared returns as the actual volatility. In this
paper, a number of evaluation criteria are used to examine
the ability of the CGR model selection method to indicate
that ARCH model that generates “better” volatility
predictions, for a forecasting horizon ranging ffom one day
to one hundred days ahead. In the sequel, it is shown that
the CGR method has a satisfactory performance in selecting
that ARCH model that tracks realized volatility closer, for a
forecasting horizon ranging from 16 days to 36 days ahead.
So, it is possible to use this model selection method in
financial applications requiring volatility forecasts for a
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period longer than one day, ie. option prcing, tisk
management. In section II of the paper, the ARCH process
is presented. Section Il describes the CGR model selection
method in the context of ARCH models. Section [V
provides a brief description of the evaluation criteria and
the realized volatility measures considered. In section V the
ability of the method proposed to select the ARCH model
that generates “better” predictions of the volatility, is
examined. The results are based on Degiannakis and
Xekalaki [13]. Finally, in section VI a brief discussion of
the results is provided.

Il.  The Autoregressive Conditional Heteroscedasticity
(ARCH) Process

For P, denoting the price of an asset at time 1, let
y,=In{P,/P_) denote the continuously compounded
return series of interest. The return series is decomposed
into two parts, the predictable and unpredictable
component:

¥ =Elyy)te,, 0
where E ,,,_,) is the conditional mean of return at period ¢

depending upon the information set available at time ¢~1
and ¢ is the prediction error. Usually, the predictable
component is either the overall mean or a first order
autocorrelated process (imposed by non-synchronous
lrading')A The conditional mean, unfortunately, does not
have the ability to give usetul predictions. That is why
modern financial theory assumes the asset returns are
unpredictable. Before the start of the 1980°s, the view taken
about returns in financial markets was that they behave as
random walks and the Brock et al. {9] (BDS) statistic has
widely been used to test the null hypothesis that asset

! According to Campbell et al. [10], “The non-svhchronous
trading or non-trading effect ariscs when time series,
usually asset prices, are taken to be recorded at time
intervals of one length when in fact they are recorded at
time intervals of other, possible irregular lengths.” For more
details on non-synchronous trading see - Scholes and
Williams [34], Dimson [14], Cohen et al. [11], Lo and
MacKinlay [26], [27], Campbell et al. [10].
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ctums are independently and identically distributed. This
wpothesis, however, has been rejected in a vast number of
pplications. A rejection of the nuil hypothesis is consistent
vith some types of dependence in the data, which could
ssult in from a linear stochastic system, a nonlinear
tochastic system, or a nonlinear deterministic svstem.
‘hus, a question arises: “Are the nonlinearities connected
vith the conditional mean (so, as to be used to predict
ature retumns) or with higher order conditional momems”
utificial neural networks®, chaotic dvnarmcal systems’,

onlinear parametric and nonparametric models® are some
xamples from the literature dealing with conditional mean
sredictions. ARCH models’ and Stochastic Volatility
nodels® are examples from the literature dealing with
onditional variance modeling. However, no nonlinear

nodels that can significantly outperform even the simplest

inear model in out-of-sample forecasting seem to exist in
he literature (neither in the field of stochastic nonlinear
nodels nor in the field of deterministic chaotic systems).
)n the other hand, the ARCH processes and Stochastic
folatility"‘models appear to be more appropriate to interpret
onlinearities in financial svstems on the basis of the
nditional variance. If an ARCH process is the true data
‘nerating mechanism, the nonlinearities cannot be
iploited to generate improved point predictions relative to
linear model.

In the sequel, the conditional mean is considered

san /" order autoregressive process defined by

- x) co"'z SV - @

ssuming the unpredictable oomponem in (1) is an ARCH
ocess, it can be represented as:
E, = z( Ul

iid
z,~N(.Y) )
o’lz =/(o.r~l’o-l~1’ ’él-l’el-l’“"x[-l)’
here z, is an independently and identically distributed
id) process, E(z)=0, ¥{z)=1 and o, is a time-

rying, positive measurable function of the information set
time ¢-1. The unpredictable component has variance

7, conditional on information given at time ¢—1. The

nditional variance is a linear or nonlinear function of
gged conditional variances, past prediction errors,

“or an overview of the Neural Networks literature see
>ggio and Girosi [32], Hertz et al. [19], White [41]
utchinson et al. [24].

3rock [8], Holden [22], Thompson and Stewart {38] and
sich [23] review applications of chaotic systems to
1ancial markets.

’riestlev {33], Tong [39] and Tcrawma etal [37}covera
ide variety of nonlinear models.

‘or an overview of the ARCH literature sce Bollersiev ct
. [6], [7), Bera and Higgins [2), Hamilton [18],
ourieroux {17].

see for details Taylor [36] and Shephard [35].

exogenous and endogenous variables measurable at time
t—1. The conditional prediction error is normally
distributed, but the unconditional prediction error and the
conditional variance of it have an unknown form of
distribution. The conditional standardized prediction error,
2,,; » is standard normally distributed:

bpo ~N0,07) = 2, 28,07 ~ N(O). @

In the recent literature, one can find a vast number
of parametric specifications of ARCH models motivated by
the characteristics explored in financial markets. A
researcher, who is looking for the “best” model, would have
in mind a variety of candidate models. The most commonly
used conditional variance functions are the GARCH
(Bollerslev {4]), the Exponential GARCH, or E-GARCH,
(Nelson [29]) and the Threshold GARCH, or TARCH,
(Glosten et al. [16]) functions. In the sequel, these ARCH
models are considered in the following forms:

The GARCH(p,q) model

o-,2 =a, +i (a,é‘,l_,v)*i (b,-o'xz-x) (&)

=1 =

The E-GARCH(p,q) model

o) =a, + i( =2 y(a_]] Sbuez)

i=l i

The TARCH(p,q) model

Ja
a-l: =+ i(ci“:/z-,)*' }/gtz—ldbl + Z(blai-l)’ ™
=l i=1
where d, =1 if 5, <0, and d, =0 otherwise.

Maximum likelihood estimates of the parameters
are obtaned bv numerical maximization of the log-
likelihood function using the Marquardt algorithm
(Marquardt [28]), a modification of the Berndt, Hall, Hall
and Hausman, or BHHH, algonthm (Bemdt et ai. {3]). The
quasi-maximum likelihood estimator (QMLE) is used, as
according to Bollerslev and Wooldridge [5], it is generally
consistent, has a normal limiting distribution and provides
asymptotic standard errors that dre valid under non-
normality.

The majority of practical applications, i.e. option
pricing, determination of the value-at-risk, require more
than one-day-ahead volatility forecasts. More than one-step-
ahead forecasts can be computed by repeated substitution.
The forecast recursion relation of the GARCH(p,q) model
is:

Ulz’llr = a(()’) + i (a:(',)grz—i‘llr)*' i (br(’)o-::-uw)
im —a(()') + z((l o, Hn)

furr s

e, )+ Z(b"’ )

ies
Jorizs

¥
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For s >¢, the forecast of predictive error ¢, conditional on
informiation available at time ¢ equals to its zero expected
value, E(g,|1,)=0. On the other hand, the estimated value
of &) measured at time ¢ should be equal to o, for s > .

For s<t, the predictive error and its square are computed
by the model with the available information at time ¢. The
forecast recursion relationship associated with the E-

GARCH(p,q) model is:
st Slafezlo(fes])
. ®
Info, )= al? + Z [ 7,‘:)( o ﬂ
ﬁmz’ Oy ivsit

i=l
+J—— i Y +i b(r) ln( - Hs'll))

=l
fur:(.v

| Eriely |

l—t+lu

+3 61 (o)

i=1

I—l+.|11

Ot ivsle

that associated with the TARCH(p,q) model is:

o'mu = ao) +i }') z—mu )"’7’ gmd +
=t
+ t (b}')a :z-miz)
=1 .
(10)
Unznu = al(),) i( ,(')o':—nm )+ i(c§')glz-lfa’l )+

i=]

=1
Jorics Jorizs

+ 7(')a/:—lultE(dl )+i i(')o.lzﬂ'uu)
i=l
E(d,) denotes the percentage of negative innovations out of
all innovations. Under ‘the assumption of normally
distributed innovations, the expected number of negative
shocks is equal to the expected number of positive shocks,
or £(d,)=0.5.

The forecast of the conditional variance at time ¢
over a horizon of ¥ days ahead is simplv the average of
the estimated future variance conditional on mtormanon
given at time ¢:

v
2 -1 2
Oyw) = N z Craine an
=

Il The Correlated Gamma Ratio (CGR) Model
Selection Method
Degiannakis and Xekalaki [12] compare the
torecasting ability of ARCH models using the Correlated
Gamma Ratio (CGR) distribution. This is a distribution
derived by Panaretos et al. [31] as the distribution of the
ratio of two variables jointly distributed according to
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Kibble's [25] Bivariate Gamma distribution. Kibble [25]
proves that if, for ¢t=12,., the joint distribution of
(i e '} is the Bivariate Standard Normal, then the joint

distribution of T Zr'”‘ and T~ Zr(” is Kibble's

i=1
Bivariate Gamma dlS‘ﬂbU[lOIL As pointed out by Panaretos
et al [31], 7 and r® could represent the standardized
prediction errors from two regression models (not
necessarily nested) but with a common dependent variable.
The distribution of the ratio of the sum of their squares is
ule Correlated Gamma Ratio distribution,

T I
2R [ Y 4 ~CGRk,p), where k=T/2 ond
=1 =l

p=Cor(r,(‘),r;(”). Thus, two regression models can be
compared through testing the null hypothesis of equivalence
of the models in their predictability against the alternative
that model {4) produces “better” predictions. The null

hypothesis is rejected if Zr,(m Zr,(’”2 >CGRk, p,a),
1=1 =1
where CGR(k,p,a} is the 1-a percentile of the CGR
distribution’.
Let us now assume that we are interested in
comparing the predictive ability of two ARCH models:
Model A

) o, L)
& =2,0,

ifiv(o 1)

o= ot )
Model B

£

£
=2,,0,

23, T‘V(OI)

) o,\fm 8(3)2 (B12

. m)
11 sees g s Xpy

olen _f( f2n

r
The joint distribution of 7~ 'Zz“‘)z —T“'Zei:,‘_'f [at®
t=1

ad T"Zzﬁlf’? T ‘Ze,‘;’; a'®® is Kibble's Bivariate
=1

Gamma distribution. Thus, the standardized one-step-ahead

prediction errors can be used to test the null hypothesis of

equivalence of the models in their predictive ability against

the alternative that the first model  produces “better”

predictiom The null hypothesis is rejected  if

-
D Zzi,*”. >CGRk, p.a).
1=

Aucordmg to the CGR model selection method,
the models that are considered as having a better ability to
predict future values of the dependent variable, are those
with the lowest sum of squared standardized one-step-ahead

7 Percentage points of the CGR distribution can be found in
Panaretos et al. {31}.
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prediction errors. It becomes evident, theretore, that these
models can potentially be regarded as the most appropriate
to use for volatility forecasts too.

Let us assume that M candidate ARCH models
are available and that we are looking for the “most suitable”
model at each of a sequence of points in time. At time &,
selecting a strategy for the most appropriate model to
forecast volatility at time k+1 (k=7,T+l..) could
naturally amount to selecting the model which, at time %,
has the lowest sum of squared standardized one-step-ahead
prediction errors, on the basis of the CGR criterion. Table I
summarizes the estimation steps comprising this approach.

=1 12K+l

Time
Model k=T k=T+1 k=T+K
r ' ra ’ 1+x "
= i 1)z e
m=1 Zyem zzm-t z Zoer
= =2 r=gel
r " T 2Y's
= {2
m=2 sz
t=1

[¢473 (£33
z Zrie-y Z Zya -

T+E

Mr -
Z Za1

r=£ 43

’ T ' £+ '
mes Tawr S
t2) tz2
Table
The estimation steps required at time k for each model
m by the CGR model selection method. (At time & _‘
(k=TT +1..), se!ect the model m with minimum i
2
. In the next section, the methodology applied to
evaluate the performance of a model in estimating future
volatility is presented, while in section V, the ability of the
CGR model selection method to indicate those ARCH
models that generate “better” volatility predictions is
illustrated on a set of real data on daily retumns of the
S&P500 stock index.

IV, Evaluating the Volatility Forecast Performance

The main problem in evaluating the predictive
performance of a model is the choice of the function one
should use to measure the distance between estimations and
observations. Evaluating the performance of the variance
forccasts requires knowledge of the actual volatility, which
is unobservable. Thus, in~ evaluating the predictive
performance of a variance model a question of a dual nature
arises: that of determining the realized volatility and of
considering the appropriate measure to evaluate the
closeness of the forecasts to the corresponding realizations.

A Realized Volatility Measures

Practitioners” most popular volatility measures are
the average of squared daily returns and the variance of the

7
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daily returns. These measurcs, expressed on a dailv basis
for a horizon of N days ahead, are:

N
Sl =N,
i\
N
‘;jND = (‘V - l)_lz(yr»: ‘-vl(.\'l)-’
=l

N
respectively, where .F:(NFA‘V-IZ.V,«. is the average
i=l

retum.

B Evaluation Criteria

A large number of forecast evaluation criteria exist
in the literature. However, none is generally acceptable.
Because of high non-linearity in volatility models and the
variety of statistical evaluation criteria, a number of
researchers constructed economic criteria based upon the
goals of their particular application. West et al. [40] develop
a criterion based on the decisions of a risk averse investor.
Engle et al. [15] assume that the objective is to price
options and develop a loss function from the profitability of
a particular trading strategy. In the sequel, we focus on
statistical criteria to measure the closeness of the forecasts
to the realizations, in order to avoid restrictions imposed by
economic theory. Moreover, we consider statistical criteria
that are robust to non-linearity and heteroscedasticity.
Pagan and Schwert [30] use statistical criteria to compare
parametric and non-parametric ARCH models with' in-
sample and out-of-sample data. Besides, Heynen and Kat
[20] investigate the predictive performance of ARCH and
Stochastic Volatility models and Hol and Koopman {21)
compare the predictive ability of Stochastic Volatility and
Implied Volatility models. Andersen et al. [1] applied
heteroscedasticity-adjustéd  statistics to examine the
forecasting performance of intraday returns. Denoting the
forecasting variance over an N day period measured at

day t by o}y, and the realized variance over the same
period by s,z( »)» the following evaluation criteria are
considered:
Squared Error (SE):

(o.le’ - S':':V')z
Absolute Error (AE):

I"riw) “:ZW)I

Heteroscedasticity Adjusted Squared Error (HASE):
(1 - SI:lAV)/o-l:(.V})—

Heteroscedasticity Adjusted Absolute Error
(HAAE):

14
as)

(16)

an
ll‘“"ﬁ‘v)/"&m’

Logarithmic Error (LE):

l“(sr:(.w/o'::wl):

18)
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The first two functions have been widelv used in the
literature (sce, e.g. Heynen and Kat [20]). The HASE and
HAAE functions were considered bv Andersen et al. [1],
while the LE function was utilized by Pagan and Schwert
[30].

Usually, the average of the evaluation criteria is
considered. However, when stmulating an
AR(1)GARCH(1,1) process, which is the most commonly
used model in financial applications, the distributions of
(af“v,—x,‘(.v,), (1"'3:2(1«)/0'::(:«)) and ln(":zm/"'xz(.w) are
asymmetric with extreme outliers. It would therefore be
advisable to compute both the mean and the median of the
evaluation criteria. Figure 1 depicts the histograms of the
one-step forecast error distribution from the following
simulated process:

¥, =0.001+0.1y,_, +¢,
o? =0.002+0.05¢}, +0.907, 19)

ud
g =0z and z,'~N‘(0,1)

Figure 1.
Histogram of 67,y - ¥} from an AR(1)GARCH(1.1)
simulated process
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V.  Examining the Performance of the CGR Model
Selection Method

In this section, the ability of the CGR model
selection method to lead to the ARCH models that track
closer future volatility is illustrated on a real stock index
daily return series. As follows from section II. the retum
series can be modeled in the following form:

W= E(,Vm—l)'*’e:

!
E(,Vm-l ) =6t z €Y
=

.
£ =20, 0

z, < N1

0 = [0t 0l o i)
In the sequel, the above form is considered in connection
with the ARCH models defined by (5), (6) and (7), for
1=01234, p=012 and ¢=12, thus yielding a total of
85 cases®. \

The data set consists of 1661 S&P500 stock inde
daily returns in the period from November 24", 1993 t
June 6™, 2000. The ARCH processes are estimated using
roll sample of constant size equal to 500. Thus, the firs
one-step-ahead volatility prediction, O',im, is available at
time ¢ =500. Applying the CGR model selection method,
the sum of squared standardized one-step-ahead prediction
errors, Zi.zr:!H , was estimated considering various values
for T, and, in particular, 7 =5(5)80. This is an indirect
way 10 examine the performance of the CGR model
selection method for various values of 7. Thus, the
evaluation criteria were applied on the one-step-ahead
torecasts using 1661 -300-80 =1081 data points, on the
two-step-ahead forecasts using 1661-300-81=1080 data

¥ Numerical maximization of the log-likelihood function,
tor the E-GARCH(2,2) model, trequently failed to
converge. So the five E-GARCH models for p=¢ =2
were excluded.
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points and on the k"-step-ahead forecasts using 1081k +1
data points.

Our main purpose is to examine the application
potential of the CGR method of selection of models on the
basis of their forecasting ability in terms of volatility. So,
the mean and the median value of each of the 5 evaluation
criteria, in equations (14)-(18), were computed, yiclding a
total of 10 evaluation criteria for each forecasting horizon
from one day to one hundred days ahead. However,
volatility is cxpressed cither as the variance or as the
standard deviation of the returns. Thus, in order to examine
possible differences between forecasting the variance and
its square root; the evaluation criteria were, also, applied on

the standard deviation. Therefore, o}y, and s, in

equations (14)18), were replaced by o,y and syy),
respectively and 10 more evaluation criteria were
computed. In total, 20 evaluation criteria were computed for
a horizon ranging from one day to five months. In section
IV.A, two realized volatility measures were mentioned. The
results are based on the realized volatility as defined by

E,’(,,,). (Results based on the realized volatility as defined by

Sty are similar and are not reported.)

It was examined whether the ARCH models
selected by the CGR method achieve the lowest value of the
evaluation criteria. The main focus was on the median
values of the criteria and mainly on the heteroscedasticity
adjusted criteria since they are more robust to asymmetry.
Figure 2 shows, for each “evaluation criterion and each
torecasting horizon, whether ARCH models selected by the
CGR method achieve the lowest value of the evaluation
criteria. In the first part of Figure 2, the performance of the
models, which are selected by the CGR method, on the
basis of the conditional variance is depicted, while, the
sccond part refers to their performance on forecasting
standard deviation. The general conclusion is that the CGR
method led to the selection of the ARCH processes which
track closer the realized volatility in the majority of the
cases. Specifically, for the forecasting horizon ranging from
Il to 52 days, the models selected by the CGR method
achieve the lowest criteria values, irespectively the
evaluation criteria. The percentage of cases, that the models
selected by the CGR method achieve the lowest value of the
evaluation criteria, is higher around the forecasting horizon
ranging from 16 to 36 days ahead, or 4 to 7 trading weeks
ahead. The ability of the CGR method to select the ARCH
models that generate “better” predictions of the volatility,
around a forecasting horizon of 4 to 7 weeks ahead, is
indicative of its usage potential in applications exploiting
volatility forecasts as, for example, in pricing derivatives,
estimating the risk of a portfolio etc. Table II presents the
percentage of cases the models selected by the CGR method
perform “better” as judged by the evaluation criteria, for 3
different horizon ranges. Note that, in terms of the MSE and
MAE criteria, none of the models chosen by the CGR
method appears to perform better in any of the forecasting
horizons considered. But, in terms of the median values of
the criteria and the heteroscedasticity adjusted criteria,
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which are robust to asvmmety, the models selected by the
CGR method appear to have a better performance in all the
forecasting horizons considered.

It is interesting to note that. via the evaluation
criteria considered, the optimum sample size, T, for the
CGR model selection method can be determined. The CGR
model selection method has been applied for 7 = 5(5)80. In
the sequel, the value of T for which the CGR selection
method achieves the best performance according to the
evaluation criteria used, is examined. Figure 3 shows a plot
of the average T, suggested by the evaluation criteria,
across the forecasting horizons. The bar charts of Figure 3
are a graphical representation of the number of evaluation
critenia by which the performance of the models selected by
the CGR method were judged “best” (measured on the right
hand side vertical axis).

For a 16 to 36 day ahead forecasting horizon, the
appropriate T, as concems the specific data, ranges around
20 days with a standard deviation of 3.6 days. Table Il
provides more details for the sample size of the CGR
selection method suggested by the evaluation criteria and its
standard deviation for both the entire 16 to 36 day ahead
forecasting horizon and for each day individually. The CGR
model selection method shows a better performance for a
samiple size of about 20 days.

In order to test the importance of selecting the
appropriate T', for the model selection method suggested,
the evaluation criteria were run for 7 = 5(5)80. The resuits

are indeed in support of a sample size of around 20 days for
the CGR method to manifest a better performance. Figure 4
presents the percentage of the evaluation criteria by which
the CGR method, with specific T, selects those ARCH
models that generate “better” volatility predictions. For T
ranging from 15 to 35, the CGR selection method appears
to have the highest performance. ’

VI  Conclusions

A method for selecting an ARCH model among
several competing models was suggested based on the CGR
distribution. It amounts to selecting the model with the
lowest sum of squared standardized forecasting errors. A
number of evaluation criteria, for forecasting horizons
ranging from one dav to one hundred davs ahead, were
applied and it was found that the ARCH models, selected
by the CGR model selection method, generate “better”
predictions of the volatiity. Thus, the CGR selection
method appears to be a useful tool in guiding one’s choice
of the appropriate model for estimating tuture volatility,
with. applications in evaluating portfolios, denvatives and
tinancial risk.
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Figure 3

Sample size of the CGRmodel selection method,
50 - ., suggested by the Evaluation Criteria. . 20
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The percentage of evaluation criteria rating the performance of the CGR
100% method ‘best’. Forecasting Horizon ranging from 16 to 36 days.
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