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Abstract

Diagnostic techniques have been developed for the detection of problems arising in the
application of regression models. These problems may be associated with violations of one or
more assumptions of the model, with the presence of outliers in the data, with the
inappropriate choice of the functional form of the model e.t.c. Most of the proposed diagnostic
techniques are suitable for the linear model, However, there are several techniques that may be
applied to more complex types of models.Our aim is to present the major developments in the
area of diagnostic methods for linear regression models, as well as diagnostic methods which
are applicable to some more general types of models. The latter include generalized linear
models, nonlinear models and errors in variables models.
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L. Introduction

Diagnostic methods intend to diagnose the existence of some potential problems in a
regression model. These problems may be associated with some violations of the assumptions
of the model, with the presence of outliers that may change substantially the estimates of the
parameters of the model, with the choice of an inappropriate set of explanatory variables or
with the choice of the wrong type of model. Most of the proposed diagnostic techniques have
been developed for the linear model. However, various other types of models have also been
used in the literature and several diagnostic techniques for these models have been developed.
A detailed discussion of various techniques that one can apply to various types of regression
models is given by Perakis (1997). In this article, we provide a succinct presentation of as
many as possible from the numerous techniques that have been developed for four broadly
used types of models. ’

The linear model, is defined as y=Xp+e, where y is the nx1 vector of the dependent
variable, B is a px1 vector of parameters and X is an nxp matrix whose columns are the jod
independent variables. The elements of the nx1 vector of errors & are assumed to be iid.
N(0,6°) random variables (rv’s). An extension of the linear model, is the generalized linear
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model (GLM) (McCullagh and Nelder 1989) in which the distribution of the error term can be
any member of the exponential family of distributions. The normal nonlinear model is defined
as: y=f(x;,p)+ei, i=l,..m, where y; denotes the i-th response, x; is its corresponding px1 vector
of explanatory variables and is a qx1 vector of parameters. The errors &; are assumed to be
iid. N(0,6%) rv’s.

In an errors in variables (EIV) model (Fuller, 1987) it is assumed that all the variables
are stochastic. A linear EIV model is defined as follows: Let y be an error-free response
variable and TI=(z;,..., ;) be a matrix of error free covariates. The variables of w and II are
assumed to be related through y=TIp+q, where B is a px1 vector of parameters and q is the
equation error vector whose elements are i.i.d. rv’s with zero mean and variance Gggq. Instead of
the unobservable y and II, we observe y and X respectively, so that y=y+v and X=T1+U. We
assume that the elements of v are iid. rv’s with zero mean and variance 6. and that the rows
of U are independent random vectors with mean the zero vector and covariance matrix Zyu.

The residuals play an important role in the development of diagnostic methods as they
carry. information on the appropriateness of the assumptions of a model. They can be used
either in plots depicting their general features or in various types of tests. So, before
introducing various types of diagnostic techniques, it is essential to provide a brief description
of the five most widely used types of residuals. (A detailed discussion of residuals and their
applications is given in Cook and Weisberg (1982) and Atkinson (1985)).

The five most widely used types of residuals for the linear model are: The ordinary least .
squares (OLS) residuals e=yr¥;, the standardized residuals € =e/[S(1-h)]'?, where h;
denotes the i-th diagonal element of the hat matrix H defined as H=X(X"X)"X" and its ith
diagonal element can be used as a leverage measure for the i-th row of the matrix X,
S?=¢'e/(n-p), and e is the vector of e’s, the predicted residuals €=y:- ¥, where 9y is the
predicted value for the i-th observation which is derived after its deletion, the studentized
residuals e} =e/[S?,(1-h)]'"”, where Sz, is given in Atkinson (1985) and the recursive

residuals vi=(yi —-xfb‘,,)/ \’fo(xf_,x,_,)—‘xi , i=p+1,...,n, where b; is an estimate of f

based on the first i observations, Xisa roatrix that consists of the first i rows of X and x; is the
i-th row of X. ,

In a GLM one can assess three types of residuals (Williams 1987). The i-th standardized
Pearson residual is defined as re=(yi-0; )/ vi(1- )12, where {1, , vi are the expected value and
the variance of Y; respectively, both evaluated at ﬁ and h; is the i-th diagonal element of the
weighted hat matrix. The standardized deviance residuals are based on the deviance defined
as D=.d?, where d} =20[logf(yi;y:®)-logh(ys i1;,9)], f is the distribution of Y; and @ is its

dispersion parameter. The ith standardized deviance residual is then given by rpi=di/[e(1-
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h)1'? and takes the sign of y-{i;. Finally, the i-th likelihood residual is defined as
o =[(1-hy) r; +h; 12 12 and takes the sign of yi- ;.. In a nonlinear model the ordinary residuals

are defined as ei=y,--f(xi,[§). Cook and Tsai (1985) suggested a new type of residuals, termed
projected residuals and they considered the use of predicted residuals in nonlinear models.
Finally, the residuals that are used in an EIV model are & =y;-B”x; while Wellman and Gunst
(1991) proposed a method for obtaining predicted residuals for such models,

Section 2 is devoted to tests for two of the basic assumptions of the linear model:
homoscedasticity and independence of the errors. Section 3 describes the problem of
multicollineariry and, finally, Section 4 examines the assessment of the influence of an
observation on the estimated vector of parameters.

2. Tests for Homoscedasticity and Autocorrelation

One of the basic assumptions of the linear model, is that the variance of the errors is
constant. The term that is used to describe such cases, is homoscedasticity. On the contrary, if
this assumption is violated then the situation is termed as heteroscedasticity. The nul
hypothesis in all of the tests to be presented in this section is homoscedasticity. The alternative
hypothesis is heteroscedasticity, general or of a particular form. As will be seen, the first step in
most of the test procedures is the calculation of e and ;. Several require, an auxiliary
regression of these quantities,

The simplest test procedure is to regress el on §; (or ¥ or log(§?7)) and a constant
term. Its test statistic is nR® and is 47 distributed. An alternative test js based on the
computation of the Spearman’s rank correlation coefficients (r,) of the residuals and each of
the covariates. If n>8, the test statistic used is r(n-2)'"*/(1-¢2)'2 and is, under Hy, tu2
distributed. Another test is White’s test (see, e.g. Greene, 1993). This is based on fitting an
auxiliary regression model of e’ on the variables LYz, u. The test statistic is nR? and is
asymptotically x2  distributed, where k is the number of covariates in the auxiliary model,
without the inclusion of the constant. The variables u; are the covariates of the initial model
their squares and their cross-products.

Often, an auxiliary model is used whose dependent variable is z=log(e}), while the
covariates are the p explanatory variables of the initial model. The utilized test statistic is
SSR/4.9348, where SSR denotes the regression sum of squares of the auxiliary model and is
X5, distributed. An alternative test procedure uses an auxiliary model whose the dependent
variable is z=le;| and its covariates coincide with those of the original model. The test statistic
is  SSR/[(1-2/m)S?], where S refers to the initial and SSR to the auxiliary model. Its
distribution is the X A further test proposed is based on the recursive residuals whose test
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n ptm
statisticis: Y,v2/ 2, v: that under the mult hypothesis is Fy distributed. The choice of m

i=a-m#l [ i=pH
is arbitrary, but the value (n-p)/3 is considered as a “good” choice.

As cited above, a null hypothesis is often tested against an alternative of a specific form
of heteroscedasticity. Park’s test (see, eg. Gujarati, 1978) deals with
Hy:n( o? )=]n(cz)+Bln(x;)+v; and involves the estimation of the parameters of the regression
equation In(e? )=o+Bin(x)+vi. If B is significantly different from zero, the null hypothesis is
rejected. An alternative test with a specific alternative hypothesis was proposed by Breusch
and Pagan (see, e.g. Greene, 1993). T he null hypothesis is tested versus the hypothesis that
o =g(Yot1Zit... HYpZic)s where g is an arbitrary function. The variables z; are usually the
covariates of the initial model. The test procedure of Breusch and Pagan involves the

utilization of the regression of e? /6 on z, j=1,....k, where &%=n"Y e} . The test statistic is

SSR/2 and, under the null hypothesis, is x; distributed. A drawback of this test is its
sensitivity to violations of the assumption of normality of the errors. Because of this sensitivity
Koenker and Bassett (see, e.g. Greene, 1993) suggested a modification of the test statistic.
Finally, other useful homoscedasticity tests, are the Goldfeld-Quandt test (see, e.g.
Greene, 1993), used when one is interested in detecting whether the variances of the errors can
be written as >=c"x’ for a particular dependent variable x and the Bartlett homoscedasticity

test (see, e.g Kmenta, 1986) used in cases where there are several available observations on y,
for each different value of x.

A further assumption of the linear model is that the successive values of the. random
variable €, which refers to the error term, are independent. If this assumption is not satisfied,
then we say that there exists autocorrelation in the errors. The term autocorrelation refers to a
special case of correlation, since it refers to the relationship between the successive values of
the same variable. In the tests that are discussed in the sequel, the null hypothesis is that there
is no autocorrelation and the alternative is that the errors are autocorrelated. In some of the
tests the form of autocorrelation is specified and it may be that the errors constitute an
autoregressive (AR) or a moving average (MA) process of order h.

The most commonly used test for autocorrelation is the Durbin-Watson test (see, e.g.
Greene, 1993) whose test statistic is d=Zn:(ei —eH)2 ief . Its alternative hypothesis is that

iz p
the errors are AR(1). The values of d are between 0 and 4. A value of d close to 0 4), is
indicative of positive (negative) autocorrelation while if d is close to 2, no autocorrelation can
be deduced. The exact distribution of d cannot be tabulated, but it can be shown that the true
distribution of d lies between the distributions of two other rv’s that can be tabulated. The next
test that is presented was designed by Berenblut and Webb (see, e.g. Judge et al, 1985) for
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H;:AR(1). The test statistic is g= RSS'/RSS, where RSS is the residual sum of squares of the
original model and RSS" is the residual sum of squares of the regression of the first differences
of y on the first differences of X without a constant term. If the initial model contains a
constant term, then the bounds of the Durbin-Watson test can be used. Note that this test is
more powerful than the Durbin-Watson test when the autocorrelation is high.

Breusch and Godfrey proposed a Lagrange Multiplier test (see, e.g. Greene, 1993), for
testing the null hypothesis, versus the alternative that &=AR(h) or &=MA(h). According to this
test we regress €; on x;’s and e.y,...,6;». The values of the residuals that are missing are
replaced by zeros. The test statistic is nR? and is distributed according to the x? distribution.
An alternative test for autocorrelation was proposed by Box and Pierce (Q-test). (see, e.g.
Kmenta, 1986). The alternative hypothesis of this test is that &=AR(h) or ¢=MA(h) and its test
statistic is Q=nirj’ , Where 1= iet e, Zn:ef . The distribution of Q under the null

=1 t=j+l t=l'
hypothesis is the 2 distribution. A drawback of this test, is that the choice of L is arbitrary, A
modification that makes the Q-test more powerful was proposed by Box, Pierce and Ljung

L
(see, e.g. Kmenta, 1986) who proposed the use of Q' =n(n+2) 3 r? /(n - j) instead of Q.
P

Durbin developed a test for models of the form yia+B xityyi e The test (see, e.g.
Kmenta 1986) is known as Durbin’s h fest, its H;: &=AR(1) and its test statistic is
h=(1-d/2)[n/(1-ns?)]'"?, where d is the Durbin-Watson test statistic, and s? is the variance of
the estimated coefficient of the lagged variable. Its asymptotic distribution under H, is N(0,1).
An alternative test procedure, which is also used when there is a lagged dependent variable and
performs better than Durbin’s h test (see, e.g. Kmenta 1986), is the m fest. Its alternative
hypothesis is that &=AR(h). According to this test we TEgress e; on Xy, Yii, €il,...,eip and a
constant and we do not reject the null hypothesis if the coefficients of €i1ye++,€ich ArE ZETO.

We conclude this section with three tests of randomness of the residuals. According to
the turning pojnt test we count the number of turning points where e, is a turning point if e, ;<e,
and e>ei or if e.i>e; and e<en,. If T is the number of turning points, its asymptotic
distribution under H, is N(ur, o3 ), where ur=2(n-2)/3 and o2=(16n-29)/90. In the difference
sign test a count of the number S of instances where e>e;.; is made. Under Ho, the asymptotic
distribution of S is normal with mean Hs=(n-1)/2 and variance o? =(n+1)/12. Finally, the test

statistic of the recursive t-test is [&° (n-p)]™”? Zvi » where v; is the i-th recursive residual and
i=p+l
1 = \2 e e
Z(V.’ - v) . Its distribution is t,.,.,.
n-p- 1 i=p+l

&=
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4. Tests for Multicollinearity

A problem with which one may often be faced is that of multicollinearity which refers to
high correlation among the covariates that does not allow one to examine the individual effect
of each of them. In the presence of multicollinearity the estimates of the parameters are not
stable, they have very large standard errors and their coefficients may have the wrong sign. If
there exists multicollinearity, the matrix of regressors X is not of full rank. There are several
methods that one can use in order to determine whether there is multicollinearity.

Judge et al. (1985) propose three such methods. The first is based on the calculation of
the correlation coefficient (r) between any pair of covariates. A value of r far from zero is an
indication of the presence of multicollinearity. Furthermore, one can compare these coefficients
with the R? of the model. If any of the r’s is greater than R?, there may be multicollinearity. A
disadvantage of this method is that it cannot detect multicollinearity that involves more than
two variables. The second method is based on the comparison of the t-test, which tests if a
parameter equals zero, t0 the F-test, which tests if all the parameters equal zero. The case
where none of the null hypotheses of the t-test is rejected, while at the same time the null
hypothesis of the F-test is rejected, may be indicative of the presence of multicollinearity.
Nonetheless, this method does not always detect multicollinearity and does not provide any
information on the invoived regressors. According to the third method we regress y on all the
sets of p-1 regressors that can be selected from the p regressors. If there is multicollinearity,
the R of the full model, must be very close to the highest of the R? coefficients of the partial
models. A drawback of this method is that it does not show the relationship among the
multicollinear variables. Furthermore, a small difference between the R? of the initial and the
partial models may be the result of the wrong choice of regressors.

Another method proposed by Klein (see, e.g. Greene 1993), leads to the calculation of
R}, =1,....p, where R} is the R? of the regression of the j-th covariate on all the remaining

ones. If any of these coefficients is greater than the R? of the examined model, there may exist
multicollinearity. If the multicollinearity involves only a few variables, the estimated
coefficients may reveal its form. However, if many regressors are involved then the same
problem is faced in the fitting of the auxiliary model.

The next approach for the detection of multicollinearity is based on the determinant of
the matrix X"X (after the normalization of X). The value of IXTX| is between 0 and 1 and if the
columns of X are orthogonal, it is close to 1, while if the columns of X are multicollinear it is
close to 0. A disadvantage of this measure is that it does not provide information on the form
of the present linear dependencies. Another method that involves the use of the matrix XX is
the calculation of its condition number. The condition number of a matrix is the square root of
the tatio of its largest to its smallest eigenvalue, ie. ()vm/)\mx)m. Evidently, it is always greater
than or equal to 1 and it is equal to 1 if all the eigenvalues are equal. If there is high correlation
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among the regressors, the condition number becomes large. As Belsley et al. (1980) points out,
the condition number is greater than 30, some problems are likely to arise due to the presence
of multicollinearity.

Finally, a three-step procedure for testing multicollinearity hypotheses was proposed by
Farrar and Glauber (see, e.g. Koutsoyiannis 1977). The first step amounts to checkning if there
is mutlicollinearity among the p variables, the second to determining which of the regressors
are collinear and the last step to determining the variables that cause multicollinearity.

A remedy for the problem of multicollinearity is achieved by the use of the ridge
regression estimator. Although this estimator is biased, it is preferable to the maximum
likelihood estimator because its errors are much smaller. The ridge regression estimator is
defined as b~(X"X +rD)"X"y, where D is a pxp diagonal matrix whose diagonal elements are
the diagonal elements of the matrix X"X. The choice of r is arbitrary. In practice, one starts
from a small value and then increases r slightly until the estimates of the parameters become
stable.

Weissfeld and Sereika (1991) suggested a method for testing for multicollinearity in a
GLM which is based on the observed information matrix. Finally, Gamboa and Gunst (1992)
proposed a method that enables us to examine the existence of collinearity in EIV models and
Rasekh and Fieller (1995) proposed two ridge estimators which can be used in such cases.

5. Assessment of Influence

The influence that an observation has on the estimates of the parameters of a model is
certainly of great interest and has motivated research efforts towards developing diagnostic
tools for its detection. The basic influence measures are based on the deletion of the
observation whose influence has to be examined. The statistic that Cook proposed for
examining this influence is known as Cook’s distance (see, e.g. Cook and Weisberg, 1982) and
isdefinedas D= e!>h/[p(1-h;)]. There is also a modified form of the Cook statistic (see, e.g.
Atkinson 1985) given by C={[(n-p)p][hy/(1-h)]} 2 e
be obtained via a slight modification of Ci. The resulting measure is known as DFFITS (Belsley
et al, 1980) and is defined as DFFITS:=[hy/(1-h)]'”¢;". In order to determine the most

influential observations, a list or a plot of the values of the preferred influence measure is
constructed. If D; (or equivalently C; or DFFITS) is large, the i-th observation has high
influence on the estimates of the vector B. Andrews and Pregibon proposed an alternative
influence diagnostic measure (see, e.g. Cook and Weisberg 1982). If X'=(X,y), i.e. X" is the
matrix X with one additional column which is the vector ¥, the proposed diagnostic measure is
defined as R=| X7, "X, [/1X'TX"|, where I denotes the cases whose influence is examined and

. An alternative influence measure can

Xy is the matrix X" after the deletion of the I rows.
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Atkinson (1985) and Cook and Weisberg (1982) considered the assessment of influence
in the context of nonlinear models and they proposed two alternative influence measures which
are based on a linearization of it. Finally, Wellman and Gunst (1991) proposed influence
measures for EIV models.
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