HERCMA 98
E. A. Lipitakis (Editor)
1998, LEA

Printed in Hellas

STATISTICAL INFERENCE ON

PROCESS CAPABILITY INDICES
Michael Perakis and Evdokia Xekalaki
Department of Statistics
Athens University of Economics and Business
76 Patision St., 10434 Athens, GREECE

Abstract

Process capability indices are unitless functions of the parameters and the specifications of a
process. The parameters of the process are the mean and the standard deviation and the
spéciﬁcations are the lower specification limit, the upper specification limit and the target value.
Various indices have been proposed, but the most widely used are Cp, Cpo Cym and Cpm. All the
indices involve the parameters of the process which are usually unknown. Hence, we have to
estimate the indices via a random sample from the process. Several authors have dealt with the
problems of estimation and statistical inference on process capability indices when the
distribution of the process is the normal distribution. The aim of the paper is to present the most
widely used indices, their estimators and their drawbacks. Furthermore, some new indices are
proposed that overcome the drawbacks of the standard indices and the sampling distributions of
their estimators are derived via simulation,

Keywords and Phrases: process capability indices; specification limits; estimation; process
yield; bootstrap method;

1. Introduction

Process capability indices (PCY’s) are primarily utilized in industry in order to measure the
capability of a production process to produce according to some given specifications that are
related to one -or more than one- measurable characteristic (.g. diameter, weight, length) of its
produced items that can describe the process. Each of these characteristics should lie between
some predetermined limits. These limits are referred to as specification limits ot tolerance
limits. Because of the inevitable variability, the characteristics can not take fixed values. So,
they can be. thought of as random variables. PCI’s. can be regarded, as measures of the
agreement between the distributions of the characteristics and the area that is specified by the
specification limits.

In the sequel, it is assumed, if not otherwise stated, that the process distribution is the
normal with mean p and standard deviation ¢ and that there is only one measurable
characteristic. In particular, it is assumed that the process is described by a characteristic whose
values must lie between two values, say L and U. The level at which the process is aimed to
produce is denoted by T. The values L and U which are the minimum and the maximum
allowable process values are known as the Jower and the upper specification limit respectively,
while the interval [L,U] is known as the specification area. Finally, the level T is known as the
target value. The target value usually, coincides with the midpoint (M) of the specification area
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i.e. T=M=(L+U)/2. This is the so called symmetric case. The case T=M is called asymmetric
case. In the sequel, both cases are examined, since the performance of the standard indices
becomes sometimes unsatisfactory in the asymmetric case.

PCI’s are unitless, nonnegative functions which combine the parameters of a given
process (p,0) with its specifications (L,U,T). A large value of a PCI for a given process is
normally an indication that the process is capable. Often, however, as will be seen, the use of the
ordinary PCI’s may lead to a high index value for an incapable process, or to an index value for
a process that exceeds the cdrresponding index value for a more capable process.

An ideal process is a process whose mean coincides with the target value and its standard
deviation equals zero. However, such a pracess is impossible to be attained in practice and the
aim thus becomes to attain a process whose standard deviation is as small as possible, its mean
is as close to the target value as possible and its yield is as large as possible. (The yield of a
process is defined as the probability of producing within the specification area). For a normal
process, the yield is maximized if the mean coincides with M. In the asymmetric case, where
T#M, the last two aims are discordant since, keeping ¢ constant, we require simultaneously a
mean close to the target value and a mean close to M. Hence, the location of the most desirable
expected value in such situations is somewhere between M and T and depends on the magnitude
of the standard deviation of the process.

The four most broadly used PCI’s are C, (Kane 1986), Cy (Kane 1986), Cp (Chan et al.
1988, Boyles 1991) and Cpmy (Pearn et al. 1992) and are defined as

C(U-LY6s,  Cpemmin{[(p-LY/30],[(U-p)/30]},
U-L U-L . p-L U-u
Com= = d Comic=min{ ; =}
B e & 0 P 0% & e

respectively.

Often, the process parameters that are involved in the computation of the indices, the
mean and the standard deviation, are unknown, In such cases these parameters are usually
replaced by their sample counterparts, the sample mean (X ) and the sample standard deviation
(S) using a random sample of n observations from the examined process. Consequently, the
resulting estimators of the indices Co, Cox, Com and Cpy are

C,=(U-Ly6s, C. =min{[U- X )/3S],{( X -L)/3S]},
ém _ U-L U-L

Sk el ey
6;§(Xi—T) 6\/n S +(X-1)

U-X X-L )
3\/5’%52 +HX-1) 3\/"7'132 +HX-1)
respectively. Some authors have derived the exact distributions of these estimators under the
assumption that the process distribution is the normal. Kotz and Johnson ( 1993) provide the

distributions of these estimators and sorme approximations that have been proposed due to their
complexity.

and C,,, =min{
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The indices Cp, Cpy Cpm and Cpmi, do not perform very well in all the situations. In
particular, in some situations these indices may be unable to judge the most capable among
some processes, or they may judge a process as capable even if it is incapable. In particular, the
index C, ignores p and T and assigns the same degree of capability to all the processes with
common o. Furthermore, it increases arbitrarily as o tends to zero (even when p is far from T).
The index Cy ignores T and increases arbitrarily as o tends to zero (even for a value of u far
from that of T).

The index Cy, in the asymmetric case cannot distinguish between processes with the same
& whose means are equidistant from T. For example, let us assume that the specifications are
L=10, U=20 and T=17.5 and that we want to compare the capabilities of processes A and B.
The mean of Process A is 16 and its variance is 1, while the corresponding values for process B
are 19 and 1. The index Cp is 0.92 for both processes although process A is clearly more
capable than B, since despite the fact that the means of the two processes are equidistant from
the target value and their standard deviations are equal, the yield of process A (1) is sufficiently
greater than the yield of process B (0.8413).

Finally, using Cpmx in the asymmetric case it is not possible to know whether the
importance should be ascribed to the proximity of pto T or of p to M. In order to illustrate this
shortcoming, let us consider a situation where L=10, U=20 and T=18 and let us have two
processes. The first has mean 17 and standard deviation 0.4 and the second has mean 18.5 and
standard deviation 0.4. Since both processes have common (0.4) and yield (1), one would
expect to assess a greater Cpme value for the second process while its mean is closer to T than
the mean of the first. Nevertheless, Com is 0.928 for the former and 0.781 for the latter since it
is affected by the distance between p and M despite the fact that the processes have the same
yield (1). In section 2 some new indices are proposed that overcome this deficiency. Their
sampling distributions are derived in section 3 using bootstrap.

2. Some new Process Capability Indices

In this section two new PCI’s are proposed that perform in the asymmetric case (T#M)
better than the well known indices Cpm and Cpx. In the symmetric case (T=M) the new indices
coincide with Cpm and Cpni respectively.

2.1 The index C,,

By its definition, the index C,r, measures the proximity of the process mean to the target
value. In the asymmetric case, though, it is not always desirable to have processes with means as
close as possible to the target value, while if the standard deviation is sufficiently large, a
process with a mean different from the target value but closer to M, achieves.a much better
yield. Hence, if T#M the value of p that maximizes the index (keeping ¢ constant), must be
intuitively somewhere between M and T if M<T, or between T and M if M>T. For simplicity, it
is assumed in the sequel that M<T. However, the analysis is similar in the case M>T.
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Consider now a variant of C,m, denoted by C,,, and defined by
¢ o U-L U-L
- 6\/E(X— m'y’ 6\/62 +(-m)
where m’ € [M,T]. This is an index which is maximized if the standard deviation is held fixed,
at a value between M and T. Evidently, if M=T (symmetric case) m’ =M=T and the index C

coincides with the index Cym. The value of m’ should be selected so that if o is sufficiently
small, m’ is proximal to T and if 6 is large, m' is close to M. Finally, if o is mbderate, m' .
should be the midpoint of the interval [M,T]. The magnitude of variability must always be
assessed from the parameter ¢ and from the length of the specification area [L,U].

The reason why we want the index to be maximized at M if the standard deviation goes to
infinity and at T if the variance goes to zero, is that if the variability is small, the importance of
having a process with a mean near the midpoint of the specification area is small too, since even
a process with mean far from M may achieve a sufficiently large yield. On the other hand, if the
variance of the process is very large and the mean is near to the target value but far from M, the
yield of the process may be very small,

The value of m' must be a weighted average of M and. T defined so that for a relatively
large standard deviation the weight of M is greater than the weight of T, while for a relatively
small standard deviation the weight of T is greater than the weight of M. Finally, for a moderate
o the weights of M and T are equal and so m’ is the midpoint of [M,T].

In the sequel, we examine two alternative approaches for the assessment of m’ . The value
of m’ that arises through the first approach is denoted by m;], while the value of m’ obtained
via the second is denoted by m, .

According to the first approach the weights of T and M are assumed to be functions of the
specification limits (L and U) and of the standard deviation of the process. Thus, m; can be
written as m; =Wi(L,U,6)T+W(L,U,0)M. Note that the first subscript of W is associated
with the approach and the second is associated with the weight ie. 1 for the weight of T and 2
for the weight of M. For simplicity, we will denote Wii(L,U,0) by Wi, and Wi(L,U,0) by Wi,.
Both Wy, and Wy, must take values between 0 and 1 and they sum up to unity. In addition, both
Wi and Wi, must be equal to 0.5 if the variability is moderate. A value of the standard
deviation that can be regarded as moderate is (U-L)/1.35. The reason is that, under the
assumption that y=M, a normal process with standard deviation (U-L)/1.35 achieves a yield
equal to 0.5, The weight function W;; must finally tend to unity if the variance tends to zero and
to zero if the variance tends to infinity. Since W12=1-W1,, Wy, must go to zero if the variance
tends to zero while it must go to unity if the variance tends to infinity. A function Wi that
seems to be an appropriate selection is W1 =(U-L)/(U-L+1.350). Indeed, this function satisfies

all the required conditions sinceWn[L,U,0=(U-L)/1.35}=0.5,
lim W“(L,U,c)=lixr3[(U—L)/(U—L+1.350)]=1 and lim W, (L,U,0)=

=lim[(U~ U/AU-L+ 1.350)] =0. Taking into account the relationship between W;, and W, it



follows that Wiz(L,U,0=(U-L)/1.35)=0.5, lim W,(L,U,6)=0 and lim W,,(L,U,c)=1. For

these reasons, Wy, and Wy, as defined above constitute a plausible set of weights for Tand M
leading to
m, =[(U-L)/(U-L+1.350)] TH1 -(U-L)A(U-L+1.350)]M.

An alternative approach for assessing the value of m’ would be to consider the weights of
T and M to be dependent on the yield of the process. In particular, the weight of T can be
defined to be equal to the process yield and the weight of M can be defined to be equal to 1-
(vield). Then, since the yield is defined as ®[(U-p)/o}-®[(L-p)/o], we obtain
Wai(U,L,1,0)=0[(U-p)/6)-®[(L-p)/c] and WU, L,u,6)=1-®[(U-p)/c]+®[(L-p)/c] leading to
a value of m’ given by

m} ={®[(U-p)/c]-®[(L-w)/c]} T+{1-O[(U-p)/c]+@[(L-w)/c];M.

Obviously, the weights in this case depend on U, L, pand o and so they are more general
than the weights used in the assessment of m{ which depend on L, U and o only. Note, that if
p=M and o=(U-L)/1.35 the values of m; and m coincide. ‘

Let us now examine the properties of these weights. From their definition it is apparent
that W+Wx=1. In addition, lim W,u(L, U, 11,0)=0(e)-0(-0)=1, lim W(L, U, p,0)=0(0)-
®(0)=0, lim W, (L, U, 1,6) =1-®(c0)+®(-c0)=0 and lim W,(L, U, 1, 6) =1-®(0)+®(0)=1. It has
to be remarked that in this case a unique combination of p and o that gives Wo=W2,=0.5 does
not exist, while for any given pair of specification limits, an infinite number of pairs (u,0) end up
to processes with yield equal to 0.5.

In order to illustrate the superiority of C;, over Cpm in the asymmetric case, let us
reconsider the example, where L=10, U=20 and T=17.5. As seen in that example, a process

with p=16 and o=1 (A) and a process with =19 and c=1 (B) correspond to the same value of
Com (0.92), although the former is by far more capable. The use of the index C,, instead of Cpm

overcomes this problem, since the value of Cl, is 1.06 if m'=m;] and 0.92 if m'=m; for
process A and 0.81 if m'=m; and 0.77 if m'=m), for process B. Hence, C,. is able to detect
the most capable between processes with the same standard deviation, but with different means
that are equidistant from the target value. Note that for the first process m;=17.2026 and
m/,=17.49 and for the second process m;=17.2026 and m)=17.1034. Apparently, the value of
m! is the same for both processes because of the equality of their standard deviations. On the
other hand, the values of m, differ since mj, depends also on p and the two processes have

different means.

Let us now reconsider the example in which the index Cpok Was unable to indicate the
most capable between two processes. The index Comk resulted in the values 0.9285, for process
A, and 0.7809, for process B, although as explained earlier the latter was more capable.
However, the value of C,, for process A is 1.7805 or 1.5475 according as m'=m; or
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m’=m} respectively, while the corresponding values for process B are 2.1748 or 2.6021,
respectively,

The computation of the index C. Tequires knowledge of the process mean and the
process standard deviation. Unfortunately, these parameters are often unknown and hence it is
not possible to assess the actual value of Cim for a given process. Instead of the index C., one
may obtain an estimate of it, based on a random sample X;,...,X, from the examined process. A
plausible estimator of Cl.. denoted by é:,m , 18

A - -L
& o Uu-L U

T %i(xi-m')z GJn_ISZ+(Y—1ﬁ’)2
i=t

n
where ' can be any of 1fy =[(U—L)/(U-L+1.355)]T+[1-(U—L)/(U-L+1.350)]M or
; ={®[(U- X )/S]-B[(L- X )/S] JT+H{1-O[(U- X )SHO[(L- X )/S]I M.

IfM=T, @'=M=T and the estimator @;m coincides with the estimator ém of the index

Com that was proposed by Boyles (1991). This estimator can be used for making statistical
inference for Cym, and so if T=M for Ciw - Boyles (1991) suggests two approximations of the

distribution of C,,.

2.2 The index C;,,

The value m’ defined above can also be used in connection with the index Conk leading to
a new index, denoted by C;mk , thus

. p-L U'-p . u-L U'-p
e ind WEK—m) By | o' +u-m) o+ ()
where m’ can be any of m! or m; defined earlier, L'=m’-d, U’ =m’+d and d=min{m’-L,
U-m'}. Note that, Chmi 18 set to be equal to zero if found to be negative. Evidently, if T=M,
then m'=T=M=(L+U)/2 and so d=(U-L)2, L'=M-(U-L)2=L and U’ =M+(U-L)/2=U.
Consequently, in the symmetric case the index Cluic coincides with the index Comic-

In order to illustrate the’ superiority of C.,, over Cpy, let us now reconsider the fifth

example of Section 3 where the index Cpmic does not perform well. According to Cppy, the first
process is judged more capable although both processes achieve yields equal to unity and the
mean of the second process is closer to T. The vatue of Cpry is 0.9285 for the first process and
0.7809 for the second. The index Comic Tesults in the values 0.46 if m’ =m; and 0.30 if m'=m|,
for the first process and the values 0.65 and 0.78 if m'=m/ and m’=m)} respectively for the
second process. Hence, through the use of this index the superiority of the second process is
revealed. Note that m/=17.84 and m} =18 for the first process, while the corresponding values
for the second process are m; =17.84 and m)=17.99 respectively,
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A plausible estimator of the index Cl, is
. X-1 0 -X
Clax =min{ ] , 7
3\["—;52 +(X-m) 3\["—11—52 +(X-a)

where @' can be any of ] or fi, that were defined above, fr=m'-d, 0'=f'+d, and

b

finally d=min{ i’ -L,U-@' }. The distribution of the estimator C,, is fairly intractable.
However, if T=M, the estimator C;m coincides with the estimator of Cpy that Pearn et al.

(1992) proposed. This estimator is denoted by ém and its sampling distribution is

d
(;—x{(l)) / (N )
where d=(U-L)/2, v=0/+/n and x;*() is the noncentral chi-square distribution with 1 degree
of freedom and noncentrality parameter A=n(p-T)/c’.

3. The Sampling Distributions of the Index Estimators via the Bootstrap Method -
A Simulation Study

In this section, the sampling distributions of the estimators of the indices introduced above
are derived via the bootstrap method of estimation (Efron and Tibshirani, 1993). In particular, a
simulation study is performed so as to examine the forms of the sampling distributions of the
estimators ép, épk, Cm, Cm, é;m (with m’ equal to m| or m}) and C;,mk(with m' equal
to m] or m}) and how the behave as the sample size (n) increases.

Under the assumption that the specifications are L=10, U=20 and T=16 random samples
of size 20, 100 and 200 were generated from the normal distribution with parameters u=14, 16
and 17 and o=1 and 2. For all these combinations, bootstrap samples of size B=2000 were

generated from the initial samples and the values of the estimators Cp , épk R CW , ka , C;,m,
Ge. Ct, with m'=m}), C,,,, Gie. Cppy With m'=my), Gl (e Cigy with m'=m]), and
C;,,m (ie. C;mk with m’ ='m;) were assessed, for each of the 2000 samples.

Since, the bootstrap distribution of an estimator is an estimate of its sampling distribution,
the B bootstrap values of each estimator were used to check if its distribution resembles the
normal. Tables 8.1, 8.2 and 8.3 provide the p-values of the Kolmogorov — Smirnov (KS) test
for n=20, n=100 and n=200 respectively, for all the combinations of the values of p and ©
considered. Recall that the null hypothesis of the KS test is normality while the alternative is
nonnormality. It can be observed that when n=20 (Table 8.1), the sampling distributions are far
from being normal. (Only two of the p-values are greater than 0.05). However, as n increases
the sampling distributions of all the estimators tend to normality (table 8.2 and 8.3).
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Table 8.1 KS test p-values for n=20

Index | Distribution |C, |Cx [Cpm |Comk |Com | Comz | Coma | Comic
p-value | N(14,1%) .00 .00 [.007 [.004 |.004 |.006 |0.004 |.007
p-value | N(16,1%) 00 [00 .00 [.00 [.00 |.00 |o0.003 |.00
p-value | N(17,19) 00 1.00 .00 [.003 [.006 [.00 |0.003 |.004
p-value | N(14,2%) 00 |00 .00 [.00 [.00 [.00 |o0.001 |.00
p-value | N(16,2%) 00 1.00 {.00 [.011 [.00 [.00 |0.343 |.385
p-value |N(17,2%) 00 | .00 [.001 [.002 [.00 |.001 [0.001 |.001

Table 8.2 KS test p-values for n=100

Index | Distribution | C,  [Ca [ Com | Cpuk | Comt | Comz Comi1 | Cpruir
pvalue [N(14,15) | 344 |.047 |.057 |.105 |.065 |.054 |.091 |.063
pvalue [N(16,1%) | .024 |.067 |.024 |.088 |.051 |.026 |.354 | 039
p-value | N(17,1%) 09 |(.013 |.022 [.031 |.024 |.023 |.038 |.036
p-value | N(14,2°) .00 042 [.061 |.016 |.076 |.047 |.004 |.004
pvalue [N(162")  |.116 [.100 |.095 |.347 |.030 |.104 | 517 | 219
pvalie | N(17,29) 201 [.376 |.182 |.229 |.130 | 217 |.115 | .238

Table 8.3 KS test p-values for n=200

Index Distribution | C, Gk |[Cm |Cok |Com |Comz | Cooi | oo
p-value | N(14,1%) 105 |.166 [.146 |.255 |.167 |.148 |.375 | .29
p-value | N(16, 12) 038 1.037 [.023 {.052 |.050 [.024 [.109 |.052
p-value | N(1 7,12) 231 |.668 |.195 |.299 |[.184 |.208 |.306 |.287
p-value | N(14,2%) 297 [.723 | 485 | 208 |.472 |.425 |.a26 | 315
p-value | N(16,2%) 006 |.428 [.025 |.537 [.023 |.019 [.489 |.810
p-value N(17,22) 237 .87 |.176 [.191 |.118 [.184 |.125 |.196
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