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Abstract

Minimum Hellinger distance (MHD) Estimation is an appealing method of estimation for discrete
data as it works well in cases where the assumed model provides a poor fit to observed data and the
maximum-likelihood (ML) method fails. Often, spurious observations that may cause problems to the
ML method do not seem to affect the MHD method which in general performs better with such data.
In this paper we derive MHD estimates for finite Poisson mixtures. The properties of these estimators
are examined and a comparison is made of their performance relative to that of the ML estimators.
MHD estimators are both efficient and robust. A numerical example involving data sets on environ-
mental complaints is presented. An iterative algorithm that facilitates computation is provided. The
algorithm always converges to a minimum, but several initial values are needed to ensure that the
global minimum is obtained. © 1998 Elsevier Science B.V. All rights reserved.
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Introduction

Minimum-distance estimation methods are appealing in parametric inference
especially in cases where the model is suspected to be inexact. In fact, the ML
method is of minimum distance type, since the maximization of the likelihood is
equivalent to the minimization of the Kullback-Leibler distance.

A variety of distances have been considered for mixture models, especially
for normal mixtures. Choi and Bulgren (1968) and Henna (1983) examined the

* Corresponding author.

0167-9473/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved
PII S0167-9473(98)00047-4



82 D. Karlis, E. Xekalaki | Computational Statistics & Data Analysis 29 (1998) 81-103

averaged L,-norm, Bartlett and MacDonald (1968) employed the weighted L,-
norm while MacDonald (1971) and Woodward et al. (1984) considered the
Cramer—Von Mises distance. Deely and Kruse (1968) and Blum and Susarla (1977)
used the sup-norm (or Kolmogorov distance), Phillips (1990) applied the
Chebyshev norm. Further, Fryer and Robertson (1972) considered the chi-square
distance and Edelman (1988) and Clarke and Heathcote (1994) employed the
square distance. More recently Woodward et al. (1995) used the Hellinger distance
for estimating the mixing proportion of 2-finite normal mixtures and Cutler and
Cordero-Brana (1996) extended the same method for all the parameters of the
mixtures. A comprehensive review of minimum distance methods for mixture
problems can be found in Titterington, et al. (1985).

The main difficulty of all such methods is the computational complexity. Nume-
rical techniques are required limiting the applicability of all the methods. On the
other hand, the computer implementation of the MLE via the EM algorithm is easy
and inexpensive (see for example, Hasselblad, 1969). This has made the ML method
the widely used estimation technique for mixture models.

Most of the above-mentioned distances have been applied to normal mixtures
but very few have been applied to more general mixture models. Among these, the
Hellinger distance is an important member. The robustness of the MHD estimates
makes MHD estimation appealing for normal models (see Beran, 1977). Simpson
(1987) extended the method to count data and showed that the MHD method
works well for data sets prone to outliers. Lindsay (1994) made a thorough
comparison of the MHD method to the ML method.

Many robust estimators achieve robustness at some cost in the first-order
efficiency. This is not true for the minimum Hellinger distance estimates. Lindsay
(1994) shows that MLE and MHDE are members of a larger class of efficient
estimators with various robustness and second order efficiency properties. This
balancing between robustness and efficiency has caused difficulties since a re-
searcher desires an efficient and robust method. This is not always possible to
achieve, so a trade off between these two issues is necessary. The proposed MHD
method is examined in relation to both of these issues.

Before getting into to the details of the method let us consider the following
artificial example that motivated our research. A sample of size 25 is taken from
a 2-finite Poisson mixture. Table 1 contains the observed frequencies.

In order to demonstrate how an outlier can adversely affect parameter estimates
using this sample, we contaminated the data by adding a new observation far from
the bulk of the data, namely, we added an observation with value X ,¢ = 12. Table 2
contains the estimates for the uncontaminated (original) model (UN) and the
contaminated model (CO) by both the ML and the MHD methods of estimation.
Deviations from the true values are attributed to random sampling as well as the
small sample size.

The new observation (which may be considered an outlier) influenced the MLE
very much while its influence on the MHDE is almost negligible. This example
gives an indication that the MHD estimates may work better than the ML
estimates in situations when there are outliers.
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Table 1
The observed frequencies for a simulated sample of size n = 25, from a 2-finite Poisson mixture with
p1=05 A =1land A, =3

X 0 1 2 4 5 6
frequency 8 4 5 1 3 2 2 n=25
Table 2
MLE and MHDE for the uncontaminated (UN) and the contaminated (CO)
data
Model P A A
MLE UN 0.470 0.480 3.425
CO 0.591 0.768 4.813
MHDE UN 0.409 0.354 2.992
CO 0.399 0.368 3.043

If a three-component Poisson distribution is considered, then the ML estimates
will be p; =04211, p, = 0.5363, p; =0.0426, 1, = 04062, 1, =3.3031 and
A3 = 11.2976. We can see that the third component has led to a mixing proportion
of 0.0426, and a parameter estimate of 11.2976. The contamination was effected
through one of the 26 observations (x = 12) representing almost 4% of our data. In
other words, the outlier observation is treated as one more component of the model
while the other two components are very close to the values obtained before the
contamination. This fact has lead researchers to the strategy of fitting one more
component for possible outliers when using mixture methods (e.g., Aitkin and
Wilson, 1980, Harris and Basu, 1994). The above results support the use of MHD
method as robust alternative to the ML method in the presence of outliers.

In Section 2, the MHD method is described for Poisson mixtures and properties
of the estimators are examined in Section 3. In Section 4 an algorithm is given for
the derivation of the estimates, which is easily programmed and provides an insight
into the method. In Section 5, the new method is applied to a real data set. In
Section 6 the MHD method of estimation is compared to the ML method. In
Section 7, we summarize the behaviour of the new method and we discuss possible
applications of the method.

2. Minimum Hellinger estimation for Poisson mixtures

Suppose that f,(x) is the observed proportion of the value x from a sample of size
n and fj (x) is the probability under the assumed model that the random variable
X takes the value x, X e &. Here & denotes the set of all possible discrete outcomes
and 0 denotes the vector of parameters of interest. The MHDE:s for discrete data
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can be derived as the vector 0,,;, which minimizes the Hellinger distance D given by

D(fa, fo) = % (A2 = {fs()}12T2 (la)
Letting p( fy, fo) = Y xexr { fu(x) fo(x)}'/* the Hellinger distance can be written as
D(fu fo) =2 — 2p(fus Jo)- (1b)

Note that minimizing D( f,, fy) is equivalent to maximizing p( f,, fa).
For k-finite Poisson mixtures fy(x) has the form
k —A,’{x

Jolx) = Z

x=0,1,..., (2)

where 8 = (p1, P2, --- » Pk~ 1> 215 A2, --- » Ax) 18 the vector of the unknown parameters
to be estimated, 4, >0, i=1,2,...,k and p;e(0, 1) for i=1,2, ...,k with
Y%, pi = L. Finite Poisson mixtures naturally arise as models when the whole
population consists of k subpopulations each having a Poisson distribution with
parameter A;, i = 1,2, ...,k, and proportions p;, i = 1,2, ..., k,. Such models are
used to describe data that are overdispersed and hence cannot be fitted by a simple
Poisson distribution. The distance given in (1a) has to be minimized to obtain
MHD estimates for the parameters of the k-finite Poisson distribution. The system
of estimating equations can be written in the form

© 1/2
Z0 (j::g;) (fx, A) —fle, A)=0, j=1,2,...,k—1, 3)
x 1/2
Z (£E§)> pj(f(X— 1,/1j) —f(X, lj)=0, j= 1,2, ..., k—1, (4)
where
— A)Ax
1% 2) =%,

i.e. the probability function of a Poisson distribution with parameter 4 which we
will denote as P(4) in the sequel.

An analytical solution of the above system of equations is not feasible. Numerical
methods are required to solve it.

3. Some statistical aspects
3.1. Properties of the estimators
Some properties of the estimators will be derived. All these properties are

consequences of the theorems given by Simpson (1987) for MHD estimators of
discrete distributions.



D. Karlis, E. Xekalaki /| Computational Statistics & Data Analysis 29 (1998) 81103 85

3.1.1. Identifiability

The identifiability of Poisson mixtures (finite or not) has been proved by Teicher
(1961). We say that mixtures of the probability function g(x|0) are identifiable if and
only if [g(x|0)h,(0) O = [g(x|0)h,(0) 8 implies that h,(6) = h,(0) for all the values
of 8. We replace the integration by summation in the case of discrete mixtures. If
g(x|0) is the Poisson distribution the mixtures are identifiable. In finite mixtures,
however, we restrict the parameters A, i = 1,2, ...,k to be in ascending order as
interchanging their values and their mixing proportions would lead to the same
finite mixture. This identifiability assumption is necessary for the application of
Simpson’s theorems.

3.1.2. Existence

From Theorem 1 of Simpson (1987), the MHD estimators exist, since the k-finite
Poisson mixtures are continuous in their parameters for each x. Their consistency is
also a consequence of Simpson’s Theorem 1. Finite Poisson mixtures are identifi-
able (see Teicher, 1961) and, thus, the estimates are consistent and asymptotically
unbiased.

3.1.3. Asymptotic Normality

Simpson (1987) imposed some smoothness conditions on the derivatives of fo(x)
to prove the asymptotic normality of the estimators. These conditions are satisfied
by the k-finite Poisson mixtures since the derivatives of the probability function of
a k-finite Poisson mixture with respect to the parameters are linear functions of the
probability functions of the component Poisson distributions. This property holds
for mixtures of any distribution for which Simpson’s (1987) conditions are satisfied.
From the above argument and Simpson’s Theorem 2, the asymptotic normality of
the estimators can be established. So, the MHD estimator follows asymptotically
a multivariate normal distribution with mean vector 8 and variance—covariance
matrix V. The variance covariance matrix V is calculated as V = H™ ' I(0) H™ !,
where H is the matrix with its ijth element equal to

_ PpUnt)
1= 5000,
Fh) o 3So)2flx)
- L, 220,06, 7 " a6, o0,
= g 2, L] G S b= 122k

and I(6) is the Fisher information matrix.

Our simulations showed that the convergence to normality is rather slow. Figs.
1 and 2 present normal plots for the estimators for simulated data from 2-finite
mixtures with parameters p; =0.5,4; =1 and 4, =3 and p; =05, 4, =1 and
4, = 10, respectively. We can see that for well-separated data the convergence is
faster. Moreover, the distribution of the MHD estimator compared to that of the
ML estimator is quite closer to a normal distribution. Finally, the distributions of
the ML estimators exhibit longer tails.
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Fig. 1. Normal P-P plots for p;, 4, and 4,. 1000 samples of size n were drawn from a 2-finite mixture

with parameters 0.5, 1, 3. The sample sizes used were n = 50, 100, 500. We can see that as the sample

size increases the estimates tend to normality. The rows are the parameters and the columns the
sample sizes.

3.2. Measures of robustness and breakdown points

To examine the robustness of estimators certain performance measures are
needed. A common measure is the influence function (IF) defined by

T((1 — t)F + tA,) — T(F)
t

IF(X, T, F) = Iimtlo

3

whenever this limit exists (see e.g. Hampel et al., 1985). T(F) is a functional based on
the distribution function F, which is usually the empirical distribution function of
the data, and A, i1s a degenerate distribution at x. For the MHD estimators the
functional T(F) is defined as T(F) = {6 € ©:D(,, fp) is minimized } where © is the
parameter space. The importance of the influence function lies in its heuristic
interpretation: it describes the effect on the estimate of an infinitesimal contamina-
tion at the point x, standardized by the mass of contamination. The IF is often hard
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Fig. 2. Normal P-P plots for py, 4; and 4,. 1000 samples of size n were drawn from a 2-finite mixture

with parameters 0.5, 1, 10. The sample sizes used were n = 50, 100, 500. We can see that as the sample

size increases the estimates tend to normality. The rows are the parameters and the columns the
sample sizes.

to calculate and thus other versions are more appropriate. One alternative is to use
the empirical counterpart of the IF, namely, the empirical influence function (EIF).
According to Hampel et al. (1985, pp. 93), the EIF of the estimator based on any
sample is a plot of the values of the estimator if one more observation (con-
taminant) is added at the point x. Fig. 3a—c provides the EIF of the sample in the
example of Section 1 for the 2-finite Poisson mixture and its estimates, for both the
ML and the MHD methods of estimation. Each time we contaminated our initial
sample of size 25 (given in Table 1), by adding to it a 26th observation at the point x,
(x=0,1,2, ...,20) and calculated both the MLE and the MHDE on the resulting
contaminated sample of size 26.

From Fig. 3a—c we can see that the MHD estimates are not influenced much by
the addition of one more observation, especially at points far from the main body of
the sample. It is interesting how stable the MHD estimator remains for x > 10.
Jorgensen (1990) proposed the use of the EIF as a diagnostic tool for the influence
of an observation in finite mixture models. He also reported the influence of
observations far from the main body of data to the MLE.
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Fig. 3. The empirical influence function for the parameters of a 2-finite Poisson mixture fitted to the
data in Table 1. Fig. 1a-c depicts the functions for 4, , 1, and p, respectively. The MHD method seems
to be more robust than the ML method when an outlier is present to the data.

An alternative measure of robustness is the a-influence function, (Beran, 1977).
This measures the change in the estimators if we add one more component in the
model and we assign to it a probability equal to o. In particular, the a-influence
function («-IF) is defined as

T({(1 — a)F + ag.) — T(F)
a 2

a—IF(z, T, F) = lim,

where g, is one more component of the same distribution (Poisson in our case), with
parameter z.
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The difference from the simple IF is that the simple IF measures the influence of
one more observation at the point x, while the o-IF measures the influence of one
more component with mixing proportion «. To illustrate this, consider the model 0.5
P(1) + 0.5 P(3) and also consider a P(12) distribution (z = 12) as a contaminant.
Analytical evaluation of the a-IF is not possible, so we calculated the a-1F numerically
for both the MHD and ML methods of estimation. These are depicted in Fig. 4a—c.

For small o (low contamination) the MHD estimates are far better than the ML
estimates but with « increasing, the two methods work in the same manner. We
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Fig. 4. The a-Influence function for the model [0.5 Poisson(1) + 0.5 Poisson(3)] with a Poisson (12)

distribution as the contaminant. Fig. 2a—c depicts the function 4, , 2, and p;, respectively. If « is small

the ML method is influenced very much. note also that the influence is larger for the parameter ,. The
MHD method seems to be more robust to contamination.
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often consider a few observations far from the main body of the data to be out-
liers. In other words, we may regard a small fraction « of the observations
as outliers. If the proportion of spurious observations is large, then clearly they
cannot be regarded as outliers. The jump of the «-IF of the MHD method at the
point « = 0.13 can be considered as the breakdown point in the sense of Simpson
(1987).

Lindsay (1994) criticized the ability of the influence function to present the
robustness properties of estimators and, in particular, the robustness of MHD
estimators. He proposed the use of the residual adjustment function (RAF). More
specifically, Lindsay (1994) showed that the Influence function underestimates the
true robustness of a method, and he proposed the use of the RAF for comparing the
robustness of different methods. It should be noted however that the RAF cannot
be used for detecting the influence of one more component. This is possible with the
use of the a-influence function which by its definition measures how the existence of
one more component influences the any estimator. Moreover, the approach based
on the RAF lacks simple interpretation which can be given using the Influence
function (i.e. the relative change of the estimate when a new observation is added).

4. The HELMIX algorithm

In this section an algorithm is given to facilitate the estimation procedure. The
algorithm is developed using the estimating equations given in Section 2. From (4),
using the recurrence relation f(x, 4) = f(x — 1, A) 4/x for the poisson probabilities
we obtain

2 (L) P we(x —2) =0,j =12, ...k,
x=0

where m denotes the largest observed value and w,; = f(x, 2,) { fo(x)} ~'/%. Solving

these equations with respect to the parameters 4; j = 1, 2, ... ,k we obtain

X o wex{ 0}
ZL’LO ij{fn(x)}l/z’

i.e., the MHD estimates are weighted versions of the sample mean. From (3) we
obtain

m 1/2 m 1/2
5 {%} flxe Ay = Zo {%%} flx ) forj=1,2, ...,k (%)

Also, multiplying the ith equation in (3) by p; and adding the resulting equations
yields

Aj

j=12, ...,k

i @Uzﬂx'l)—i{f(x)f(x)}”z for j=127i=12 k. (6)
x=0 f‘;(x) ,k—x=0 " 0 J=heaj=hL2s 0k
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Eqgs. (5) and (6) lead to

Z LRS00} = Z L} P we j=1,2, 0k, (7)
Following Behboodian (1969), we may multiply them by p; obtaining
Zx 0 pJ xj{f }1/2 . k—1
pi= , j=1,2,...,k—1,and p, =1 — .
TR U G} p=1-3%r

This provides the basis for the genesis of the following algorithm for MHD
estimation of Poisson mixtures (HELMIX). Note that this derivation is very similar
to that introduced by Behboodian (1969) for the derivation of the ML estimators in
the case of finite normal mixtures.

Step 1: Given the values obtained from the ith iteration A, j = 1,2, ... ,k, and
pY.j = 1,2, ...k, calculate the weights w,; = f(x, ;) { fo(x)} ~'/?, where f (x, 4;) and
Jo(x) are calculated using the estimates from the ith iteration.

Step 2. Calculate the new parameter estimates using

m 1/2
Step 2a: AYTD = L= WsX LIX)] , =12, ...k
PR WL

)
(i + 1) r:: 0 pjl WXJ [ﬁt(x)]l/z

Yeeo LA o)1

Step 2b p; j=1 ..., k-1

and

(i+1) (i+1)
Pi Z pi 7,

where m denotes the largest observed value.

Step 3. Check if some convergence criterion is satisfied, otherwise go back to
step 1, using the current estimates as initial values to make the next iteration.

The procedure requires initial values for the estimates. If the initial values are
within the acceptable range for the parameters, the estimated values are also within
this range. In particular, the 4;’s remain positive if their starting values are positive.
For the mixing proportions p; it suffices to observe at step 2b that p{ " is less than
or equal to ¥7_ w;[f(x)]V3/37 o [AH{x) fo(x)]'* which by (7) equals 1.

Note the similarity of the HELMIX algorithm with the EM algorithm for
mixture models, introduced by Hasselblad (1969) and examined more formally by
Redner and Walker (1984). If we were to use w,; = f(x, A}")/fs(x) as weights in
step 1 and the observed frequencies themselves instead of their square roots in step
2, then HELMIX algorithm reduces to the EM algorithm for ML estimation for
finite mixture models.

The HELMIX algorithm shares some weaknesses of the EM algorithm for ML
estimation in the case of mixture models. These are slow convergence and depen-
dence on the choice of the initial values. For all our simulations the algorithm
converged to a minimum. However, the attained minimum might not be a global
one. A good strategy is to start from several different initial values so as to ensure
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that the global minimum is obtained. One may start with equidistant points from
0 to the maximum observed value given equal probabilities and stop iterating when
the maximum relative difference between the estimated parameters of two succes-
sive iterations first becomes less than a small number, say tol (we used tol =
0.00001).

5. An application

To illustrate the MHD method of estimation for data sets prone to outliers in the
case of k-finite Poisson mixtures, consider the data in Table 3. They concern the
number of environmental complaints placed by phone in an environmental station
in Nederlands for the year 1985. The high overdispersion of the data makes the use
of a mixed Poisson model appropriate to model the number of environmental
complaints. The mean is 22.11 while the variance is 324.08 (almost 15 times bigger
than the mean). Moreover, the data are highly skewed, with a very long right tail.
The ML estimators are expected to be influenced by the data at the tail and thus
their estimates will not be a reasonable choice. The MHD method of estimation
may be more appropriate as it seems not to be affected so much by the observations
at the right tail.

To these data a 3-finite Poisson distribution was fitted using both the ML and
MHD methods of estimation. Table 3 contains the expected frequencies using both
methods while Table 4 provides the parameter estimates.

In Fig. 5a—c we can see the observed frequencies with the fitted frequencies for
both the methods. From Table 3 it can be observed that the distribution fitted by
the ML method of estimation has a heavier right tail than that of the observed

Table 3
Observed and expected frequencies of environmental complaints placed in an environmental station
in 1985

Observed Expected Observed Expected
x frequencies frequencies x frequencies frequencies
MHDE MLE MHDE MLE

04 37 2295 4.70 45-49 11 7.20 2.19

59 67 96.71 85.71 50-54 3 1.85 0.30
10-14 69 60.75 114.47 55-59 3 0.30 0.13
15-19 56 70.20 26.19 60-64 7 0.03 0.49
20-24 28 37.76 8.68 65-69 2 0.01 1.47
25-29 23 12.17 25.19 70-79 3 0 7.64
30-34 21 16.08 37.42 80-89 1 0 9.05
35-39 13 22.19 26.90 90-99 2 0 3.65
4044 13 16.78 10.20 > 100* 6 0 0.60

*The actual observations were (102,108,118,134,158,185).
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Table 4
The parameter estimates for both the methods for data in Table 3

P1 P2 2 A2 A3
MHDE 0.390 0.418 7.136 17.331 37.676
MLE 0.635 0.302 10.559 32.587 81.423
a
3

120

120

80 120

Fig. 5. Histograms of the observed frequencies (3a), the expected frequencies via the ML method (3b)

and the expected frequencies via the MHD method (3¢) for the number of environmental complaints

placed by phone at an environmental station for the year 1985, are presented in Table 3. The ML

method assigns one component at the tail of the distribution due to the presence of a few large
observations.
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distribution with a bump in the range 70-89. The distribution fitted by the MHD
method, on the contrary, has a smoother right tail and it provides a relatively better
fit to the data. The ML method tries to fit a component at the tail and hence the tail
influences the estimation. The MHD method seems to ignore these observations.
These high values may be outliers, for example, some days with unexpectedly high
number of phone calls. The great difference in the two estimates demonstrates how
the choice of an estimation method can affect the results. An interpretation of why
the markedly different estimates occur is given in the next section.

For the data with a long right tail that can be attributed to “unexpected” or even
“unreasonable” values (due to some mistakes in the collection of data) the ML
method must be used with care while the MHD method offers an interesting
alternative.

6. Comparison of the minimum Hellinger distance method to the
maximum-likelihood method

6.1. General comparison

In parametric estimation two fundamental — but potentially competing — aspects
are of interest: The aspect of efficiency when the model has been appropriately
specified and the aspect of robustness when it has not. Unfortunately, satisfying
both is very difficult and thus a trade-off between them is necessary. We will
compare the MHD method for finite Poisson mixtures to the ML method with
reference to both aspects.

For the parameter 6; , the estimating equation in the case of the ML method is
given by

Jolx) o)
Z o folx) 00,

while in the case of the MHD method it is given by
o 1/2
5 [f,.(x)} %) _
x=0

Jo(x) 00,

Clearly, if the model is well specified and the sample size is large (n — co) the
quantity under the square root must be close to 1 and, hence, the square root of this
quantity is itself close to 1; we expect that the two methods will behave similarly. In
the ideal case of exact specification of the model, the ratio f,(x)/fy(x) equals 1 for
every x, and the two methods thus coincide. On the other hand, for values of x for
which the ratio f,(x)/fy(x) is large (as in the case of outliers) the MHD method gives
less weight to the estimation being thus not so sensitive to outliers. As a result, the
MHD method works better with datasets prone to outliers. Simpson (1987) showed
that for large values of x, an improbable count has little impact on the MHDE
rather than the MLE. Our results referring to the example of Section 1 on how
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a new observation far away from the bulk of data influences the two methods are

not in disagreement with Simpson’s findings.
Note also that the quantities
fn (x):ll/Z

JAGY and Ayp(x) = [——

Al =70 7i(x)

are similar to the residuals adjustment functions introduced by Lindsay (1994) in
investigating the robustness of estimators.

In robust analysis we consider a contaminated model of the form (1 — e) M; +
eM,, where M, is the underlying model, M, is a contaminant which causes the
departure from model M, and e is the probability that an observation belongs to
the contaminant. Note that the quantity e itself is of practical interest since as
Simpson (1989) and Lindsay (1994) pointed out, for every model there is a value of
e which gives an upper bound of possible contamination. Above this point there is
a breakdown point for the model.

Clearly, the above model is a mixture and it is true that contaminated models are
described as mixture models (e.g. Titterington et al., 1985, pp. 22). So, for example,
a contaminated model for a 2-finite Poisson mixture can be considered as a 3-finite
Poisson mixture. The ML method usually models the contamination with an
additional component. In our case the ML method will work well for a three-
component model, but not for a model with two components.

The remainder of this section is devoted to simulation comparisons of the two
methods. The HELMIX algorithm was used for deriving the MHD estimates. It
converged in all the cases. The iterations were stopped when the maximum relative
difference between the estimated parameters of two successive iterations is less than
0.00001. For the ML method the EM algorithm described by Hasselblad (1969) was
used. The same stopping rule was used, but now the relative increase in the distance
between two successive iterations was considered. Two sets of initial values were
used to increase the chance that the obtained maximum (minimum) was not a local
extreme. For both methods, the true parameter values and equiprobable values
m =+ 0.5, around the sample mean m were considered initial values as such. We
examined both correctly specified models and contaminated models. We used
a table look-up method for generating the variates. All the programs were written
in Pascal.

6.2. Simulation comparison for correctly specified models.

First, we examined the case where the model is correctly hypothesized to be
a 2-finite Poisson mixture. For each parameter vector four sample sizes were
examined, namely, n = 50, 100, 250, 500 and each case for given parameters and
sample size was replicated 1000 times. The values given to the parameters of the
2-finite Poisson mixtures used in the simulation are shown in Tables 5-8.

The usual method for comparing two methods in multiparameter model estima-
tion utilizes the ratio of the generalized variances of the estimators. For our case,
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Table 5

The ratio of generalized variances of the ML estimator divided by that of the MHD estimator for
certain 2-finite mixtures and sample sizes. The reported values have been calculated using 1000
replication samples

n 50 100 250 500 50 100 250 500

D1 }.lzl /1“.2'—_2 /11=1 Az=3

02 9.293 16.035 6.104 1.952 3.897 5.056 3.390 1.301

05 4725 4.115 3.261 0.929 1.625 1.182 1.164 0.955

08 4238 2.772 1.904 1.113 1.359 1.103 0.806 0.680
A=1 Ay =15 A= Ay =8

02 1612 1.271 1.098 1.025 0.702 0.850 0.962 0.994

0.5 0.908 0.964 0.976 0.973 0.628 0.821 0.965 0.980

0.8 0.505 0.662 0.866 0.906 0.570 0.645 0.873 0.934
)»1=2 2224 )»1=2 ;».2=

02 7119 6.317 4.102 1.794 2.579 1.679 1.419 1.103

05 2510 3.062 1.740 0.869 1.140 1.091 0.963 0.937

0.8 2.707 1.865 0.854 0.714 0.952 0.722 0.687 0.660
Ay=28 A, =32

02 17.607 28.969 22.886 2.213

05 4771 14.784 5.547 0.954

08 9.286 9.510 4.449 0.844

the generalized variances were computed on the basis of the covariance matrices
calculated from the simulation. Table 5 summarizes the results for several 2-finite
Poisson mixture distributions. The entries are the values |V |/|Vmupl, Where V|
denotes the determinant of the covariance matrix, and the subscripts indicate the
method used.

Table 5 confirms that the ML method works far better for models with well-
separated components. Hasselblad (1969) warned that ML estimators have large
standard errors when the components are close together. In this case the MHD
method is far superior for all sample sizes. Generally, the MHD method performs
better for small sample sizes and low mixing proportions.

Usually, the ML method works better for well-specified models as compared to
the MHD method (Lindsay, 1994). However, our results constitute a case in which
the MHD method performs better. To further examine this remarkable result we
report in Table 6 the estimated relative efficiencies for the parameters. The entries
are values of the relative efficiency of any parameter ¢ defined as reff(¢) =
Var(¢mi)/Var(¢mup). The subscript denotes the method used for obtaining the
estimator. The corresponding variances have been calculated using

Var@) = . (3i— ),

i=1
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Table 6
Relative efficiencies of the MHD estimators of the parameters of a 2-finite Poisson mixture for certain
2-finite mixtures and sample sizes. The reported values have been calculated using 1000 replication
samples

py =02 p1 =05 py =08
D1 Ay A2 D 2 Ay D1 A1 A2
n A =1 Ay =2
50 1.78 1.00 2.33 1.29 1.00 2.07 1.06 1.05 1.98
100 1.60 0.95 2.72 1.19 093 1.93 0.96 0.95 1.87
250 1.32 0.86 2.03 1.00 0.83 1.76 0.82 0.79 1.89
500 1.05 0.76 1.51 0.87 0.75 1.29 0.76 0.73 1.68
Ay=1 Ay =3
50 1.38 0.96 1.81 1.12 0.95 1.53 0.93 0.93 141
100 1.44 0.96 2.09 1.03 095 1.30 0.86 0.87 141
250 1.23 1.00 1.58 0.99 0.97 1.16 0.81 0.82 1.19
500 1.10 0.96 1.13 0.95 0.95 1.03 0.78 0.84 1.06
111 = 1 Az = 5
50 1.27 1.07 1.36 0.96 1.04 1.03 0.72 0.88 0.99
100 1.14 1.10 1.07 097 1.02 1.01 0.82 0.95 0.97
250 1.04 1.03 1.02 0.98 1.01 0.99 0.93 0.99 1.00
500 1.01 1.00 1.00 0.99 1.00 0.99 0.96 0.99 0.99
Ay = 1 j.z = 8
50 0.92 1.00 0.94 0.88 1.01 0.90 0.87 0.99 0.83
100 0.96 1.02 0.97 0.95 1.00 095 0.90 0.99 0.89
250 0.99 1.01 0.98 0.98 1.01 0.98 0.97 1.00 0.96
500 0.99 1.01 0.99 0.99 1.00 0.99 0.98 1.00 098
iy =2 iy=4
50 1.67 0.95 2.17 1.23 0.94 1.89 1.05 1.01 1.77
100 1.58 0.91 2.34 1.12 0.90 1.72 0.94 0.89 1.70
250 1.29 0.87 1.69 1.02 0.91 1.51 0.84 0.79 1.51
500 1.07 0.86 1.32 0.93 0.85 1.13 0.73 0.71 1.17
=2 Ay=75
50 1.50 0.87 1.84 1.06 0.92 142 0.92 0.92 1.29
100 1.36 0.93 1.51 1.00 0.94 1.27 0.84 0.84 1.25
250 1.21 1.01 1.19 0.98 0.97 1.08 0.80 0.85 1.10
500 1.07 0.96 1.07 0.96 0.96 1.02 0.80 0.89 1.01
AL =28 Ay =32
50 2.20 1.14 2.64 1.62 1.18 2.63 1.27 1.21 2.21
100 224 1.05 3.29 142 1.11 2.88 1.21 1.21 2.30
250 1.78 1.01 3.00 1.22 0.98 2.17 0.87 0.85 2.70

500 0.96 0.77 1.91 0.75 0.67 1.74 0.63 0.60 1.93
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Table 7
Relative MSEs for the ML and MHD methods (correctly specified models) for certain 2-finite
mixtures and sample sizes. The reported values have been calculated using 1000 replication samples

p1=02 p1 =05 p1 =08
P1 Ay l2 Pt A1 Az D1 Ay Az
n Ay=1 iy =2
50 3.62 098 5.58 1.56 1.00 3.54 1.15 1.13 217
100 2.85 0.89 7.57 1.26 0.88 333 0.87 0.90 2.13
250 1.96 0.76 4.44 0.88 0.65 3.04 0.55 0.59 2.87
500 1.14 0.58 2.34 0.67 0.50 1.69 0.47 0.48 2.35
Ay = /12 =3
50 2.14 0.94 341 1.09 0.85 1.91 0.81 0.83 1.28
100 2.28 0.92 433 091 0.81 1.43 0.62 0.67 1.39
250 1.58 0.92 2.48 0.86 0.80 1.21 0.53 0.58 1.08
500 1.23 0.85 1.25 0.81 0.81 091 0.50 0.61 0.92
j‘l =1 }.2 =
50 1.70 1.16 1.60 091 1.01 0.78 0.52 0.70 0.71
100 1.33 1.18 0.97 093 098 0.79 0.66 0.83 0.67
250 1.09 1.06 0.94 0.96 0.99 0.78 0.85 0.94 0.75
500 1.02 0.99 0.93 0.96 0.98 0.87 0.89 094 0.80
/11 = 1 2.2 = 8
50 0.84 1.01 0.74 0.69 0.98 0.60 0.55 0.90 0.59
100 0.93 1.04 0.81 0.84 0.99 0.70 0.69 0.95 0.57
250 0.98 1.02 0.85 0.93 1.01 0.77 0.90 0.98 0.67
500 0.99 1.01 0.88 0.98 1.01 0.86 0.93 0.99 0.77
/11 == 2 /‘»,2 =4
50 3.23 0.89 4.52 1.37 0.88 2.64 1.12 1.06 1.50
100 2.81 0.84 5.40 1.07 0.77 2.57 0.78 0.76 1.70
250 1.80 0.76 294 0.84 0.69 2.05 0.55 0.55 1.78
500 1.20 0.69 1.76 0.77 0.63 1.19 0.41 0.42 1.08
/11 =2 A.z =35
50 2.49 0.76 3.16 1.02 0.79 1.61 0.83 0.82 1.02
100 1.97 0.86 2.21 0.85 0.76 1.23 0.59 0.64 1.08
250 1.53 0.95 1.37 0.86 0.83 0.89 0.54 0.62 0.91
500 1.16 0.88 1.07 0.86 0.85 0.90 0.53 0.69 0.76
A =28 Ay =132
50 5.32 1.37 7.38 2.52 1.44 6.93 1.69 1.50 4,37
100 5.40 1.16 1.38 193 1.30 8.02 1.50 1.51 4.75
250 3.26 1.09 9.21 145 0.99 4.62 0.73 0.73 6.94
500 0.92 0.63 372 0.54 045 2.78 0.38 0.37 374

where @; is the estimate of the ith sample and ¢ is the mean of the estimated
parameter over all samples.

The ML estimator of A, is usually better than the MHD estimator. The differ-
ence in the performance of the two estimators is greater with respect to 4,. An
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explanation for this might be that for count data outliers most often occur only at
the right tail. As a result, outliers influence this parameter more. In addition, the
covariances of the parameter estimators were in general smaller in the case of the
MHD method, resulting in the superiority of the MHD method as judged by the
generalized variance ratios reported in Table 5.

The relative mean-squared-errors are also reported in Table 7. The relative mean
squared—error RMSE(¢) of a parameter ¢ is defined as RMSE(¢) = MSE(pu)/

~

MSE(@wvup) Where the mean-squared error (MSE) of an estimate ¢ is given by
MSE($) = 3, (¢: — ¢)*/n,
i=1

where ¢ is the true value of the parameter.

Examining the relative MSEs of the two methods reported in Table 7, we can see
that, for the parameter 1, the performance of the ML estimator is inferior. It is the
presence of outliers that contributes to this situation. On the other hand, the ML
estimator is more accurate for A; and in the case of models with well-separated
components.

6.3. Simulation comparison for contaminated models

We now examine the robustness of the method when the model is not correctly
specified. For this purpose, it was assumed that the data come from contaminated
2-finite Poisson mixtures. In particular, it was assumed that an additional compo-
nent was present at the right tail of the distribution. The probability o associated
with this component, (the level of contamination), was allowed to take three values
so as to investigate whether the amount of contamination affects the plausibility of
the method. Specifically, « was given the values 0.01, 0.05, 0.1.

The RMSE defined previously was used as a measure of robustness. For some of
the models considered the notion of contamination is not well defined. The reason
is that the level of contamination is very high relative to the mixing proportion of
the smallest component. In this case it is not clear with respect to what parameter
the mean-squared error should be calculated. For example, when the parameter
p1 = 0.8 and the contamination level o is high, the probability associated with the
second component is very close to the probability assigned to the contaminant,
namely p, = 0.18 and « = 0.10.

The relative MSEs for several contaminated models are tabulated in Table 8a—d;
45 is the parameter of the Poisson variable which is assumed to contaminate the
2-finite Poisson model.

Tables 8a—d show that the MHD estimator is more robust than the ML
estimator when the incorrect model is hypothesized, particularly when the sample
size is small, the mixing proportion is small and the contaminant is far from the
other components. We note again the same behaviour with respect to the para-
meters, namely that for 4, the MHD estimator is almost always more robust while
for 4, it is less robust, depending on the mixing proportion. A dependence of the
robustness of the method on the mixing proportion is again manifested. Careful
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Table 8a
Relative MSEs based on 1000 replications from a 2-finite Poisson mixture distribution with p, -p,
Ay =1, 2, = 3, and contamination « from a distribution with A; =7

a = 0.01 a =005 oo =0.1
P Ay Az D1 A1 22 Pi Ay Az
n p=02
50 2.84 0.98 9.12 291 1.26 8.86 205 1.39 4.56
100 291 1.09 9.36 2.38 1.55 6.08 1.80 1.61 3.03
250 2.57 1.34 10.73 2.00 1.72 3.65 1.37 1.36 1.81
500 1.84 1.25 5.87 1.69 1.58 245 1.22 1.21 1.46
p=05
50 1.17 0.89 3.62 1.34 1.08 4.40 1.29 1.36 353
100 1.13 0.95 432 1.45 1.29 398 1.34 1.46 2.20
250 1.22 1.07 345 1.56 1.56 240 1.33 142 1.61
500 1.35 1.17 2.26 1.47 1.50 1.75 1.22 1.27 1.36
p=08
50 0.69 0.74 2.55 0.55 0.70 3.08 0.46 0.87 2.17
100 0.55 0.65 331 0.45 0.80 2.68 0.52 1.12 1.78
250 0.54 0.71 3.34 0.92 1.29 1.89 0.95 1.29 141
500 0.80 1.03 2.54 1.26 1.40 1.55 1.05 1.23 1.24

Table 8b
Relative MSEs based on 1000 replications from a 2-finite Poisson mixture distribution with p, _p,
Ay =1, 4, = 3, and contamination « from a distribution with 4; = 12.

a =001 o= 0.05 a=0.1
P1 A1 Az P 2y Az P Ay iz
n p=02
50 5.58 1.31 44.50 496 2.12 16.04 276 2.00 5.50
100 6.71 1.85 74.63 3.06 2.48 7.07 1.70 1.70 272
250 7.04 332 51.94 1.84 1.87 3.01 1.06 1.12 1.32
500 798 5.33 48.85 1.29 1.32 1.70 0.99 1.02 1.12
p=05
50 1.59 1.12 19.43 2.32 1.83 13.85 1.64 1.80 433
100 2.03 1.52 43.09 2.25 243 6.58 1.35 1.72 2.28
250 3.56 311 42.44 1.88 2.19 3.15 1.03 1.18 1.31
500 5.69 532 48.36 1.34 1.51 1.85 0.97 1.05 1.11
p=038
50 0.65 0.76 11.59 0.32 0.73 6.69 0.22 0.96 2.74
100 0.49 0.63 14.63 0.39 0.93 3.28 0.32 1.08 1.61
250 0.67 1.18 18.28 0.86 1.40 1.73 0.70 1.18 1.15

500 1.62 2.88 16.43 093 1.23 127 082 1.12 1.08
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Table 8¢
Relative MSEs based on 1000 replications from a 2-finite Poisson mixture distribution with p; . p,
A, =1, A, =5, and contamination « from a distribution with 1; = 12

o = 0.01 a = 0.05 o =0.1
D1 Ay Az P1 A Az P1 A A2
n p=02
50 2.81 1.56 8.57 401 2.70 11.75 3.10 2.78 7.19
100 2.52 1.74 5.62 4.50 324 1043 3.73 3.36 5.84
250 1.69 1.40 2.05 5.86 4.24 7.60 3.27 2.89 4.04
500 140 1.34 1.96 6.69 4.78 6.35 3.17 2.82 3.32
p=05
50 1.00 1.22 1.94 1.33 2.20 548 1.35 249 4.45
100 1.03 1.20 1.54 1.62 2.35 4.70 1.66 2.50 343
250 1.09 1.19 1.86 1.93 2.58 3.77 1.87 245 2.57
500 1.21 1.26 2.24 2.20 2.64 3.08 1.91 2.26 2.24
p=038
50 0.51 0.88 2.03 0.39 1.02 273 0.47 1.48 2.14
100 0.62 0.95 2.03 0.54 1.50 3.03 0.64 1.60 1.90
250 0.97 1.24 2.76 0.95 1.96 254 086 1.50 1.49
500 1.20 147 340 1.09 1.83 2.09 1.00 1.35 1.29

Table 8d
Relative MSEs based on 1000 replications from a 2-finite Poisson mixture distribution with p, . p,
Jy =2, }; =5, and contamination « from a distribution with 4, = 10.

a =001 o = 0.05 =201
P 2 i2 P1 A Az P1 A A2
n p=02
50 291 0.82 6.52 293 1.10 9.46 2.37 1.27 5.07
100 2.54 1.01 6.33 2.21 1.46 490 1.84 1.54 322
250 2.29 1.27 447 2.39 1.89 428 1.59 1.49 2.09
500 1.60 1.12 2.00 1.99 1.75 2.63 141 1.35 1.64
p=05
50 1.07 0.84 345 1.16 1.00 4.37 1.17 1.24 3.20
100 1.03 091 322 1.47 1.34 3.80 1.41 1.54 2.52
250 1.19 1.04 2.06 1.68 1.66 2.35 1.45 1.52 1.74
500 1.25 1.19 1.95 1.62 1.62 1.89 1.30 1.35 1.44
p=028
50 0.64 0.67 1.98 0.40 0.55 2.59 0.38 0.83 2.04
100 0.51 0.56 275 043 0.76 2.50 0.48 1.12 1.81
250 0.57 0.79 2.55 0.84 1.32 2.02 0.86 1.30 1.44

500 0.78 1.08 2.54 122 141 1.59 1.02 1.24 1.25
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examination of the results reveals some points that might give some explanation for
this fact. For some samples with large p, the other components are represented in
the sample with a few observations not far from the origin. As a result, the other
components were confounded with the first component yielding thus an MHD
estimate of p, that was close to 1. An indication supporting this observation is the
increased relative MSEs when the sample sizes were increased.

Concluding, we can say that the MHD method for finite Poisson mixtures is
appealing compared to ML method with respect to both efficiency and robustness.

7. Discussion.

The MHD method for finite Poisson mixtures seems to be a very attractive
method of estimation, because it can optimize the estimates with respect to both
efficiency and robustness. The attainment of robust estimates with high efficiency is
very important in mixture models because of the failure of the standard likelihood
approach on the one hand, and of the fact that mixture models are very often not
appropriately specified on the other. The latter include cases where the number of
components cannot be assigned prior to the analysis, and thus the ML method with
an incorrect number of components can cause some problems. The MHD estima-
tion method seems to be more reliable in such situations.

In this paper the robustness of the MHD method was examined under contami-
nation models. Examining the performance of the technique under models with at
least one component distribution being not Poisson is another question of interest
that needs to be and is currently being investigated by the present authors

Another very interesting aspect is that we may use similar devices to the
well-known likelihood ratio test for hypothesis testing. The derivation and use of
a Hellinger deviance test (see Simpson, 1989) for detecting the presence of a mixture
is still an ongoing research by the authors.

The application of MHD estimates for clustering purposes seems also appealing.
Mixture models are widely used in Cluster Analysis, for more details the reader is
referred to the book by McLachlan and Basford (1989). Symons et al. (1983) used
ML estimates for 2-finite Poisson mixtures in a clustering application. The robust-
ness of the MHD method relative to the ML method makes this method very
appealing for clustering applications.
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