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| ABSTRACT ,
! ]
The problem of studying lifelength distributions in discrate

time is considered for cértain forms of hazard functions. A class
of life distributions that consists of the geometric, the Waring
and the negative_hypergeémetric distribuiions is shown to result
when the hazard function .is inversely proportional to some linear

function of time.
;

1. INTRODUCTION

Let T be a nonnegative random variable (r.v.) which repre-
sents some lifetime. In practice, if only because of limitations
of measuring devices, it may be appropriate to consider models
where T is a discrete r.v. Various_authors~(e.g., Cox (1972), .
Kalbfleisch and Prentice (1980, p. 7)) have touched this problem
and provided discrete andlogqu for the basic conécpts,used in re- - °
1iability theory. :
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Denote by P, thetfzbbabnigy P(T=t), t=0,1,---.
Let F(t) = P(t=st) = 2. P t=0,1,"*°, be the lifetime distri-
bution function and R(t) P(th) =1-F(t-1), t=0,1,--- the
corresponding survivor function. The hazard. function A(t) is
given by

Me) = P(T=t[T>¢-1) = P/R(t), t=0,1,:-

The main result of. this paper charncterizes 11fet1me distribu-
tions whose hazard function is of the form 1/(a+bt). Specifically,
such distributions must be either geometric, negative hypergeomet-

ric; or Waring distributions. (For information ébout Waring dis-
.tributions see Irwin (1975) and Xekalaki (1981).) This result is
- established in Section 2. The final section diAscusses the rela-

tionship with continuous time results.

2. THE MAIN -RESULTS

We first prove the followmg lemma.

Lemma: Consider a r.v. T defined on the set {0,1 2, ---,m],
m € {0,1,---]J U {+=] and such that 0< PO <1 and

Alr) = 1/(atbr), a,b€R, a>0, r=0,1,---,m. (2.1)

Then, (i) a>1 and (ii) T has a distribution with finite sup-
port (m < +®) if and only if b < 0 and in this case b= (1l-a)/m.

Proof: (i) From (2.1) for r = 0 ve have that a = 1/P - Hence
a>1. ' '

(ii) Let T have a distribut:lon with finite support. Then .
we have from (2.1), for r =m, P(TZn) = (a+bm)- P vwhich implies
-that  a+bm = 1. Thus, since a > 1, (l-a)/m < 0.

To show the converse .of this result, assume that b < 0 and
set m = sup{t:R(t) > 0}. Then, by (2.1), m = sup{t: P, >0 and
atbt > 0} < sup(t : a+bt > 0} < —E< 4w,

This, completes the proof of (ii) and thefrefore the lemma has been
established. .
The following theorem can now be proved.



i
: ! :
HAZARD FUNCTIONS AND LIFE DISTRIBUTIONS . 2505

14
]

Theorem 2.1: Let T bq a r.v. taking values in the set [0,1,2,
c--,m}, m€ {0,1,---} ‘f {+=}. Assume that O <P, <1. Then,
' I
A(t) = 1/(atbt) , t=0,1,2,---,m, , (2.2)
]
for a> 0 and real b} if and only if
(i) T 1is éeometriic with probability function

. t
o1 {a-l : : i
P, =1 (—a ) s EEO,L,2,00e, : (2.3)
4 .
or (ii) T is Waring with probability function
P, = (%1) /a(—:'--"il) s £=0,1,2,%0-, ’ (2.1)
: (t) (t)

.
where (I(t) =I"(a+t)/.l‘(u‘), a>0, t=0,1,2,°--,

or (iii) T is negati:ve hypergeometric with probability function

- 1/v -'1+1/b :
Pt=( ) t , t=0,1,--+-,m, m=(1-a)/b. (2.5)
t m-t ; m : - ) .

' . .
{These cases correspond iit;o b=0, b>0 and b< 0 respectively).
Proof: We first prove the "only if" part of the thenrem. .Let .
(2.2) hold. It follows then. that '

P(T2r) = (a4br)-Pr;, r=0,1,"**,m. (2.6)
Specializing (2.6) for- T =t and r = t+l and subt/rncting the
resulting equations we optain

Pt+l-(a-1+bt)Pt/(a+P+bt) =0, t=0,1,*"-.m. : -(2.7)
This is a first order di'fference_ vequatior; in Pt' To solve this

equation, we consider the cases: (1) b=0, (11) v>0 snd (111 bv<0.

Case (i): Let b = 0. Then, from the lemma, m'=+= and hence

(2.7) becomes Pm_l-(a—l)Pt/a'—- 0, t=0,1,--+, whose unique

solution subject to t_I_IOPt =1 is given by (2.3). (Recall a>u).
Case (ii): Let b >o0. ' Then, from (2.7) we have
Pt = Po(a—;l) %’.) .' - £=0,1,2,-- - m.
()N /() o ‘
t
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Also, from the lemma it follows that .m = +%, - Hence

Pal % ;ELA(gil)ft)/«%%E)(t) B f'

Therefore, the probability distribution of T 1s given by (2.h4).

Case: (iii): Let b < 0 (in which case m < +=). Then (2.7)
yields

ae) (t) '
1-a atb - ve
P, = o152) /(-T) 2 bRl

(v) (o)

vhere o' °/ = afa-1)---(a-t+1), t=0,1,---,m; (@'®’=1). From the

lemma, (1-a)/b =m>0, i.e., (1-a)/b 1is a positive integer.
Hence ' P71 ='§0m(t)/(-1—a/b)(t,) = (-241/0) ™ 7(1/)™ . mererore,
for t=0,1,2,---,m, .

P, = (1/b)“in(t)/(-1+1/b)(“‘)(-1-a/b) (+)

= (_l)t(l/b)/ (_1+1/b)

m-t m
which since ('tl = (-1)%, 1leads to (2.5).
To prove the "if" pgrt of the theorem first assume that T
has the.negative hypergeometric distribution with parameters n >0,
1 and V> 0. Then,

ECN2)00) - B et o

P-(th)

_ ) nt (et Vinor-t)
= (n_tW"'_l)(t) r=0 (n—r—t)! (Wl)(n_t)

o ()

- B (:33::, - ("f‘f't’(—tl) (o) ()

i

'(nw-t)Pt/v. '

‘Therefore, A(t) 1is of the form (2.2) for a = l#n/v > 1 and
b=-vl<o.
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The kge‘o'met.ric case is trivial. Also, the Waring case follows
from Irwin (1975). Kencé the theorem has been established.

Notice that when b.— -1 the distribution in (2.5) reduces
tc the discrete uniform $n' {fo,1,--- ,a-l] Hence the following

corollary holds true. | ) .
i

( rollary: Let T be d?fined as in the theoren. »-Then,
).(t) 1/(a-t) t=0,1, t--,a—l if and only if P = 1/&.
t=0,1,'*,a=1. !

¢
. :

Obvious modificatioms in the ‘argument used to prove Theorem
2.1 lead to similar conclusionsg concerning lifelength distrﬂmtions .
when there exists a t  § 0 such that F(t) = 0 for t < t,

3. CONNECTION WITH CONTINUOU‘S TIME RESULTS
i

The results that ha&e been obtained bear striking similarities
to results concerning 11¥e1ength distributions in continuous time
obtained under. similar hypotheses. Notice, for instnnce, that both
the geometric distributibn and its continuous analogue, the expo—
nential distribution arkse on the assumption of a constant hazard
rate. On the other hand as it is shown below (Theorem 3.1), a
hazard rate of the form FZ 2) wvith t € [0,#w) and b >0 gives
rise to the Pearson type‘VI (beta of the second type) Atetributinn
that has been shown by Irvin (1975) to be the continucus analopue
of the Haring distributi n. Moreaver, wvhen b < 0, the continuous
lifelength distridbution hat arises is beta of the first kind
" (Pearson's type I) vhich is rather interesting since ‘the negative
hypergeometric that arisTs vhen t 1is discrete can be regarded as

"a discrete approxi-ation to the beta distribution. This can be

seen using the follovingiarg\ment.
, =Y -1-v o
Let fr . ( r)(n- ) / ( n ).1 Then the slope to nean ordinate
ratio st x = r-3 defi?led vy (£ f__ VLT,

relationship i

f1- fr-l e 1-v
1 - vl
2 {fr*fr—l nd5r-r

1) satisfies the

r=1,2;-.
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Let g(x) be the density function of the continuous aistribution
that [f sy T=0,1,°"" n] approxluates. Then, equating the slope-

to mean ordinate ratio at x = r--l- (—T—)- v z(x) 1 and
putting x = y—% we have . 2

d log e(y)/ dy = (1-v)/[n-y + (v#1)/2]
which by integration yields # beta density given by

ely) = (n *v—;-l*-}') T o<y< n R - (3.1)

- where ¢ 1is the normalizing constant.

The following theorem will now be shown.

Theorem 3.1: Let X be a continuous r.v. defined on (0,+=)
‘and denoting some lifelength. Then the hazard function

will be given by o . :

Mx) = 1/(a+Bx), @B €R, «>0, x € (04%) (3.2)

if and only if the distribution of X belongs to the Pearson fam-

ily of continuous distributions with a density of the' form

-1

r{x) = (1+§ ) s X € (03w), (3.3)
Proof: It can be observed that (3.2) holds if and only if
R(x) = exp[ fxa-rﬂt dat}, i.e., if and only if f(x) - ——R(x)

a

a+Bx (c“ ") B which implies that (3.3) is true.
One may notice now that if B > 0 then (3.3) represents the

density function of the Pearson type VI distribution with parame-
ters 1 and B—l and scalé parameter B/a. On the other hand, if
B < 0 then (3.3) represents the dedsity function of ‘the beta dis- -
tribution with parameters 1,. B—l and scale parameter -B/a. Note
that in the case B = -1, the lifelength distribution is the uni-
form in (0,0). Finally, if B -0 then (3.3) reducés to
f(x) =L e e™/% x>0, leading to the vell-known result for the
exponential l1ife distribution.

The above analysis shows that the results of Section 2—apart

‘from providing an insight to applied relisbility problems where
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time is actually measurdd discretely—may also be uscful in approx-

imating the usually nsex# continuous lifelength distributions when-
ever the corresponding liazard function is of the appropriate form.
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