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Abstract

A predictive P-value is proposed to measure the difference between an actual and predicted out-
come in assessing the validity of an hypothesized prediction model. The concept is illustrated
by applications to multiple regression prediction and to the validation of forecast models.
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1. Introduction

In spite of the concerns of some statisticians about their merit, P-values play
a prominent role in statistical analysis and reporting, measuring as they do the
discrepancy between an hypothesized model and the statistical evidence bearing
on the model’s validity. It is proposed here that the role of P-values be expanded
to include a predictive P-value as a measure of the agreement between a prediction
made by a model and the actual outcome. Roughly stated, a predictive P-value
is the probability, under the hypothesized prediction model, that the prediction
error might have been larger than was actually observed. A small predictive
P-value suggests therefore that the prediction model might not be appropriate.
A predictive P-value is interpreted in the same manner as P-values in standard
hypothesis testing and is based on a similar conceptual framework. It therefore
should be of value in statistical education and readily accepted in statistical
practice.

2. Theory

For expository convenience, we limit our presentation of the basic theory to
univariate predictions. We denote the quantity to be predicted by ¥ and assume
that Y is a continuous random variable that is generated by a true but unknown
statistical model Mz. We let & denote a set of prediction intervals for ¥ derived
from an hypothesized prediction model My. The intervals in & may be random
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or fixed, depending on the application. For generality we shall treat them as
random. We require & to have two properties. (1) For each number c¢ (0,1)
there is an interval I,¢3¥. (2) For each I,c¥, Pr{Yecl;}=c if Mo=Myp. The
index ¢ denotes the confidence coefficient of interval I,. The first property requires
I to be a complete set of intervals in the sense of containing an interval for
every confidence level. The second property requires that prediction interval
I, have coverage probability ¢ if the hypothesized model M, is in fact a true
model. The probability statement Pr{¥¢I;}=c is understood to apply prior
to the realization of the interval I, (if it is random) and the outcome Y. Thus,
the coverage probability takes account of the randomness of both ¥ and I,.
We define a predictive P-value, denoted here by P, as follows.

(2.1) 1~P:ig{f{c| Yelg}.

Thus, the complement of a predictive P-value is the smallest confidence coeffi-
cient among prediction intervals in &{ that cover Y.

Prior to realizing the actual outcomes of ¥ and I,, the predictive P-value is
a random variable that is uniformly distributed on the unit interval if the hypo-
thesized prediction model is a true model, i.e.,

(2.2) P is distributed as U(0,1) if Mo=Mp.
The result holds because, for each p¢(0,1), we have
(2.3) Pr {P=p}=Pr {igf[c] Yel]z1—p}=p.

The first equality follows from definition (2.1). The second equality follows from
the fact that of is complete and Pr{Y ¢ I.}=c when the hypothesized prediction
‘model is a true model.

The distribution of P when the hypothesized model is not a valid model, i.e.,
My= My, depends on the nature of the family of prediction intervals 3 and on
the precise way in which My departs from M,. In most applications, invalid
models will tend to give predictive P-values close to 0 or to 1. For example, if
My has much greater dispersion than My, leading to excessively wide intervals
1., then P is likely to be large. If M, has much less dispersion than My or has
substantial bias in location, leading to excessively narrow or dislocated intervals,
then P is likely to be small. The latter tends to occur frequently in practice.
The consistency of predictive P-values against alternative models and their -
power to detect alternatives is taken up again in the discussion of Section 4.

Prediction results for a model can be aggregated using predictive P-values.
For example, if a sequence of predictions by a model A yields the & predictive
P-values, Py, ..., Py, then the following geometric mean is a summary descriptive
measure of the validity of model A.

k 1/k
(2.4) PA:[E P¢] .
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An extreme value of P4 suggests that one or more of the k predictions are inap-
propriate. For example, if an application yields the five predictive P-values,
0.053, 0.236, 0.146, 0.101, and 0.074, then formula (2.4) gives P,=10.1064 which
is a low P-value.

Predictive P-values derived from the same sample data will have a degree
of statistical dependence. Even though the Y outcomes to be predicted in several
applications may be independent, if the prediction intervals I, are calculated
from common data then some dependence of the predictive P-values will result.
If, however, the P; are independent then from (2.2) it follows that the P; con-
stitute a random sample from U(0,1) if My is a true model. In this case, Fisher’s
method (1932) for aggregating evidence gives the result that

(2.5) —(2k) In(P4) is distributed as »2(2k) if Mo=Mrp.

Thus, for instance, if the five P-values in the preceding numerical example are
independent then k=5, P4=0.1064 and, hence, —(2k) In(P4)=22.40. Comparing
the latter value with the fractile x2(0.95; 10)=18.31 suggests that one or more
of the five predictions of model A are inappropriate.

Again, if Py, .... Py are k independent predictive P-values produced in asequence
of predictions by a model, then from (2.2) it follows that a P—P plot or a test
of fit to U(0,1) provides a check on the validity of the model. Even if the P-values
have some degree of dependence the P — P plot provides a useful approximate
check on model validity.

3. Applications

Case 1. Consider the usual multiple regression model in which response variable
Y is distributed as N(Xp, 62) where X is a vector of k explanatory variables
including a constant term and f is the corresponding vector of regression coef-
ficients. Suppose that n independent realizations of the model, (X;, ¥;), i=1, ...,
n, are available and that it is desired to predict an independent (n+ 1)th realiza-
tion Y = Y4 with X =X,1. Following standard procedures [see, for example, .
NETER, WasSERMAN and KUTNER (1985: 246—247)], a prediction interval for
Y having confidence coefficient ¢ takes the form

(3.1) Y+is{Y-¥},

where t=t[(1+¢)/2;n~k] is the (1+c¢)/2 fractile of a ¢(n—#£) distribution,
Y is the point predictor of Y derived from the fitted model using X = X,.1, and
s{Y — Y} is the estimated standard deviation of the prediction error Yy-7¥.
The predictive P-value associated with the actual outcome Y is the probability
number P which solves

(3.2)  t[1—(P/2);n—k]=|Y—T|/s (YT},

As a numerical example, suppose that a multiple regression model is used to
o2
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predict crop yield based on weather and other explanatory variables. For a
particular application of the model, n=15, k=3, ¥ =59.30 and s {¥ — ¥} = 2.28171.
If ¥ =65.57 is the actual crop yield then (3.2) gives

t[1—(P/2); 12]=(65.57—59.30)/2.28171 = 2.748

and the associated predictive P-value is P =0.0177. This P-value is small enough
to suggest that the actual outcome might not be consistent with the fitted multiple
regression model. :

Case 2. The predictive P-value represents a natural performance score for
validating forecasting models. It is closely related to scoring rule (3.4) proposed
by XekAvLAkT and KATTI (1984: 178). These authors give results of two forecast
models for corn yields in the years 1963—69 and 1971—80 in two crop reporting
districts (CRDs) of the state of Indiana, U.S.A. _

Through the courtesy of the authors, the data have been made available to
calculate the predictive P-values for these models. The predictive P-values are
given in Table 1 and are displayed in overlaid P — P plots in Figure 1. The plot-
ting symbols for the four cases (1, 2,3, 4) correspond to model A for CRD-20 and
CRD 30 and model B for CRD 20 and CRD 30, respectively.

Table 1 shows that the P-values are positively associated across the four
cases. The positive association is expected because the two models are predicting
the same actual yield in each district and the two districts are in the same state
and thus have similar yield patterns over the years. Observe that the actual
yields in 1974 (which were very low in both districts) were not predicted well

Table 1

Predictive P-values of crop-yield forecast models A and B for 1963—69 and 1971—80 in two crop
reporting districts (CRD 20 and CRD 30) cf the state of Indiana, U.S.A..

Model A Model B
Year CRD 20 CRD 30 CRD 20 CRD 30
1963 0.747 0.631 0.637 0.520
1964 0.135 0.136 0.229 0.112
1965 0.045 0.026 0.017 0.069
1966 0.683 0.757 0.652 0.939
1967 0.149 0.815 0.885 0.685
1968 0.375 0.308 0.623 0.108’
1969 0.813 0.846 0.288 0.603
1971 ©0.348 0.795 0.355 0.853
1972 0.662 0.679 0.541 0.323
1973 0.406 0.716 0.778 0.831
1974 0.000 0.012 0.000 0.000
1975 0.852 0.808 0.646 0.419
1976 0.087 0.442 0.177 0.645
1977 0.819 0.413 0.780 0.145
1978 0.468 0.895 0.687 - 0.672
1979 0.800 0.791 0.725 0.266

1980 0.030 1.000 0.006 0.820
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by either model. The P — P plots show that the hypothesized predictive distribu-
tions tend to have (1) thin tails in all four cases, resulting in too many small
P-values, and (2) low kurtosis in cases 2 and 3 (model A in CRD 30 and model B
in CRD 20), resulting in too many P-values in the upper middle range of the

(0,1) interval.
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Case 3. Although the regression prediction setting is an important one for
predictive P-values, the concept can be more widely applied. Suppose, for example,
that M, specifies that ¥ has the probability density function fo(Y). Let the
prediction intervals I, in & be defined by

(3.3) Ie={y | fo(y)=r}
where r is chosen so

If foly) dy=c .

Since fo(y) is given, the intervals in this case are not random. A predictive P-
value can be calculated using (2.1) to check the agreement of the outcome of ¥
with the hypothesized model fo(y). For example, if fo(y) is the normal density
function corresponding to N (80, 100) then the prediction intervals defined by
(3.3) have the form 80+ 10z where c=Pr {|Z| =|2|} and Z is the standard normal
deviate. If the actual outcome is, say, ¥ = 93, then z= (93 — 80)/10=1.30 and the
associated predictive P-value is P=1-Pr {|Z] =1.30} =0.1936. The moderately
large value of P here suggests that the actual outcome is in fair agreement with
the hypothesized model.



982 G. A. WHITMORE, E. XERALARI: Predictive Validity

4. Discussion

The concept of a predictive P-value may be extended in a number of ways. For
example, the use of a predictive P-value is not restricted to a univariate outcome.
It can be computed from definition (2.1) for cases where the predicted outcome
Y is multivariate and I. is a multidimensional prediction region. The concept
also extends readily to situations where a set of simultaneous predictions of ¥
are to be made, as for example, with simultaneous predictions of response variable
Y at different levels of the explanatory variables X in a multiple regression
application.

The predictive P-values calculated from an hypothesized model reflect the
validity of the model but not its predictive accuracy. For example, the normal
regression model described in Case 1 above will yield predictive P-values that
are uniformly distributed on (0,1) if it is a true model for the particular applica-
tion of interest. Likewise, however, a predictive model that is based simply on
the corresponding marginal distribution of response variable ¥ will also yield
uniformly distributed predictive P-values in the same application. Both models
are valid but the first will be more accurate if the explanatory variables X have
any degree of predictive power.

As noted earlier, the consistency and power of predictive P-values in detecting
alternatives to the null model M, is a practical concern. We now discuss this
issue briefly.

We have not insisted in our theoretical development that the set of prediction
intervals 3 be constructed in any way that would optimize their power to reject
an invalid model. Predictive P-values can be calculated whether & has optimal
properties or not. We note, however, that the set of prediction intervals can be
constructed so that they are consistent against all alternative models. To demon-
strate this claim, suppose that ¥ has support on the whole real line and the in-
tervals'in J{ are the set of half-lines (— , u) where « ranges over all real numbers.
In this case, the predictive P-value has a uniform distribution if and only if M,
is a true model. This conclusion follows from the result in (4.1) below, in which
Fy and F; denote the cumulative distribution functions of ¥ under the null and
alternative hypotheses, respectively.

(4.1) Pr{P=p}=Pr {igf [c| Yel]=1-p}
=Pr {inf [Fo(u) | Y€ (— e, w)]=1-p}=Fi[F5'(p)] .-

Since Fy and Fo are continuous cumulative distribution functions, it follows
that the right-most expression in (4.1) can be identical to p for all pe(0,1) if
and only if F1=F,.

On the other hand, there are sets of prediction intervals & that are optimal
in several respects and yet are not consistent against all alternative models.
In (3.3), for example, suppose that fo(y) denotes the standard normal density
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function. Then the set of intervals &{ defined by (3.3) in this case are of the form
(—2,2) for all z€ (0, «). Let (y) be any odd function of y having the property
that

(4.2) fiy)=foly)+h(y)=0 forally.

For instance, h(y)=fo(y) sin(y) is such a function. It is readily shown that fi(y),
defined in this manner, represents a proper probability density function. More-
over, predictive P-values calculated from the intervals in  in this case will be
uniformly distributed whether Y is distributed according to fo(y) or fi(y). Al-
though the intervals in & here are not consistent against this peculiar type of
alternative model, set & is consistent and powerful against a whole range of
plausible alternatives. For example, if the plausible alternatives consist only of
symmetrically distributed random variables, set 3 will perform very well.

Thus, to achieve consistency against plausible alternative models and, more-
over, to achieve reasonable power, the type of prediction interval employed
must be chosen with some care. Thereafter, the calculation of predictive P-
values can prove effective in assessing the validity of prediction models in com-
parison with plausible alternative models.
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