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ON CHARACTERIZING THE BIVARIATE POISSON, BINOMIAL AND
NEGATIVE BINOMIAL DISTRIBUTIONS “
E. XEKALAKI

1. INTRODUCTION

KORWAR [131 characterized the distribution of a non-
negative r.v. X as Poisson, binomial and negative
binomial when for another non-negative r.v. Y, the condi-
tional distribution of Y given X is binomial and the
regression of X on Y 1is linear. Here we state his

result.

THEOREM 1.1 (KORWAR [(11). Let X be a discrete r.v.
on {0,1,...,m} (m€I+U{+w}). Assume that E(x) < +=.

Let Y be another non-negative discrete r.v. such that
X x-
Py = ylx = x) = ()p7d"7¥
(1.1)

(0 <K p< 1, g=l=-p, y=0,1,2,...,x).

Then
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(1.2) E(x|ly = y) = ay + b, (a,b constants)

if and only if (iff)

Poisson (b/q) (a = 1),
X ~ { binomial (b/1-a, (1-a)/(1-ap)) (0 < a < 1),
negative binomial (b/a-1, (l-ap)/aq)
‘ (a > 1).

The proof is based on the following theorem.

THEOREM 1.2 (KORWAR [11). Let X,Y be as in
Theorem 1.1. Assume that (1.2) holds. Then (i) b > 0,
(ii) X 1is bounded iff O < a < 1. Also if X is bound-
ed then b = m(l-a), (iii) 0 < a < p '.

Obviously, Theorem 1.2 ensures the positivity of the
Poisson, binomial and negative binomial parameters.

In Section 2 we consider an extension of Theorem
1.1 to the bivariate case which provides a characteriz-—
ation for the double Poisson, binomial and negative bi-
nomial distributions. A characterization of the double
Poisson using RAO and RUBIN's (3] condition has been given
by TALWALKER [£413.

We go on in Section 3 to provide characterizations
for the bivariate binomial and negative binomial distribu-
tions with p.g.f.'s (pl] + PioS * pO]t)n and
pfl(l ~ PgS - poitf » respectively. The case of the
bivariate Poisson with p.g.f. of the form exp[A](s - 1)+
+_A2(t - 1) + Alz(st - 1)] 1is also discussed.
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2. CHARACTERIZATION OF THE DOUBLE POISSON, BINOMIAL
AND NEGATIVE BINOMIAL DISTRIBUTIONS

THEOREM 2.1. Let X = (xl,xz) be a discrete random
+
vector on {O,I,...,ml} X {0,1,...,m2} (miGI Uf{+eo},
i=1,2). Assume that E(Xi) < 4o (i=1,2). Let Y = (Y!,
YZ) be another non-negative random vector such that
X, ¥; X,y

P(y
(2.1) i

[}
e
I
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'
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Then

(2.2) E(XiIZ =y) = a,y, + bi’ (ai’bi constgnts,

i=1,2).

double Poisson (b/g) (ai-l, i=1,2),
X ~ double binomial (b/1-a3 (1-a)/(1-ap))
(0 < a; <1, i=1,2),

double negative binomial (b/(a-1);

(1-ap)/ag) (a; > 1, i=1,2)
where u/v = (u‘/V15u2/v2), uv = (ulvl’uZVZ)'
PROOF. Necessity follows immediately.

For sufficiency we observe that using (2.]) and the
identity

(2.3)  x(y) = wen)(yey) *+ v(y)

we obtain

- 371 -



(2.4) E(x;ly=y) = 9i+(yi+1)qix

XP(r; = g +1, Y, = y) /(p; P(X = p))

(i,3=1,2, i+j).

Hence from (2.2), (2.4) we have

q; ; p
— (y,+1)P(y, , .=y,
5, y;+DP(y, P f j

"
o
+
.
=
1
LS
~
[l

(]

= (a;-Dy P(¥ = y)+b.P(Y = y) (i,5=1,2, itj).

Taking p.g.f.'s we obtain

q.
i @ _ )
2:5) g we; G (® = ;00D g 6y (0)vb 6, (8)
1 2 — i — -
(i=1,2)
where Gz(E) denotes the p.g.t. or Z.
But it

is known (RAO {2])- that
(2.6)  6,(8) = Gylptra).
Then equation (2.5) can be written in terms of Gx(g) as

(2.7) -

'] .
ati log G{(E) (i=1,2).

- i
qi-(ai-l)(ti~qi)

(i) For a, = a, = 1, (2.7) reduces to

S 2

log GX(E) = (i=1,2)

3
at; q;

therefore
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(2.8)  G,(£) = expl (b;/q,) (£, =1)+(b,/q,) (t,~1)].

From Theorem 1.2 we have bi > 0 (i=1,2). Hence

(2.8) represents the p.g.f. of the double Poisson (b/q).

(ii) For ai#l (i=1,2) we obtain from (2.7) by

integration
i _ i
‘ ai-l
l(l-aipi)

{qi-(ai-l)(ti-qi)}

n'=|v

(2.9) GX(E) =
= i

From Theorem 1.2 if a,; < 1 (i=1,2) it follows
that bi/(l—ai) is an integer and hence (2.9) represents
the p.g.f. of the double binomial (b/(l1-a);
(1-a)/(1-ap)).

If, on the other hand a, > 1 (i=1,2), (2.9) is the
p-g.f. of the double negative binomial (b/a-1;
(1-ap)/agqg).

Hence the theorem is established.

COROLLARY 1. Let X = (X;,X,), ¥ = (¥,,Y,) be as

in Theorem 2.1. Then (2.2) holds iff P(Xx = x) =

= P(Xl = xl) P(X2 = x2) where
(i) X, ~ Poisson (bi/qi)"xj ~ binomial (bj/l-aj;
(l—aj)/(l—ajpj)) for ai=]’ aj < 1 (1#.7; iaj=132)’

(ii) Xi A~ Poisson (bi/qi)’ xj ~ negative binomial
(b./aj-l; (l—ajpj)/ajqj) for ai=l, aj > 1 (itj3 i,j=
2)
s ’

—

(iii) X, =~ binomial (bi/(l—ai); (l—ai)/(l—aipi)),
X, ~ negative binomial (b./a_.-1; (l-a_p.)/a.q. for
3 8 J/ 373 ( JpJ)/ JqJ)
a; <1, a; > 1 (i#j; i,j=1,2).
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3. CHARACTERIZATION OF THE BIVARIATE (DEPENDENT)
BINOMIAL, NEGATIVE BINOMIAL AND POISSON
DISTRIBUTIOUNS

Before proving the main result, we need to show the

following
THEOREM 3.1. Let X = (x],xz), Y = (Yl,Yz) be as
in Theorem 2.1. Assume that for sSome constants ai, bi

Such that ai#l, bi/ai-l = bj/aj-l = h (i#j) we have

(3.1)  E(x,ly = y) = aigi+(ai—{)gj+bi, (i#j, i,j=1,2).

Then

(i) b, >0 (i=1,2),

(ii) X is bounded iff 0 < a, < 1 (i=1,2).
Moreover if X is bounded then bi = (ml+m2)(l-ai)
(i=1,2),

' (i=1,2).

(iii) O < ai < p;
PRUUE,

(i) Letting yl=y2=0 equation (3.1) becomes
(since Y < Xx)

0 < E(x.]ly =0) = p, (i=1,2).

But equality cannot hold since it would imply that
X, X
x40, P(X = x)/P(x =0) =0 i.e. P(x = x) =0
*X1:%2
for all x. But X is non-degenerate. Hence bi >0
(i=1,2).

(ii) Let X be bounded. Then from (3.1) since
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I
v

Y we have

8
It

E(x,|Y = m) = am

i+mj(ai—l)+bi

i#j, 1,3=1,2),

(3.2) bi = (m1+m2)(l—ai) (i=1,2).

From the positivity of bi it follows that a,; <1
(i=1,2). Also from (3.1) we have

(3.3) m, 2 E(xl.l_x_r_ =0) =b (i=1,2).

i

Hence from (3.2), (3.3) it follows that a, > 0 (i=1,2).
So, if X is bounded then 0 < a; <1 (i=1,2).

The converse is also true since if for 0 < a, < 1| X

i
were utbounded we would have from (3.1) that

y; < a;u;+(a; -1y +b, (i#j, i,3=1,2),

(l—ai)(y]+92) S b, (i=1,2).

But it holds for all y only if a, 2 1 which is

1
a contradiction.

(iii) It has been proved that either 0 < a, <1or
1

a, > - In the latter case, from (3.1), (2.1) we have

E(Xi)(l—aipi) = b.i+(a.i-l)ij(xj) (i#35, i,j=1,2),
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From the finiteness of E(xi) (i=1,2) ¢ follows
that a;, < p;l (i=1,2).
. » -l ‘l
Also a, <1 implies ai < P, . Hence 0 < a; < p;
(i=1,2). This completes the proof of the theorem.

THEOREM 3.2. Let X=(x,x,), v = (Y',Yz) be as
in Theorem 2.1. Then (3.1) holds iff

bivariate binomial (=h; (l-a])qzlc,
X (l-az)q'/c) (ai >1, i=1,2)
bivariate negative binomial
(h; (a,-l)/ql(al+a2~l),
(az’l)/gz(a]+a2-l)) (ai <1, i=1,2)

where ¢ = (al+a2~l)qlq2+(]-al)q2+(l-a2)gl.

PROOF, Necessity follows immediately.
Sufficiency. From (2.4) and (3.1) we obtain

(3:4) Py, = g 41, 379509 = pil(ay-1)(y vy, 4 byl/

/(yi*'l)P(!_ = Q_) (i¢jl ilj=1’2),
i.e, _
y,-1 y,-1
(3.5) Px=yw =P(x=0) on Bi(.0) T hy(y,,5)
i=0 3=0
where h;(yy59,) = Py, = y;*1, Y, = yj)/P(Z =y
(i,j=l,2, i#j). Hence

P(h+y,+92) Y, Y,
P(y = y) = clm![plcal-l)/ql] [pz(az"l)/qzl

where €, = (r - p!(al~l)/q] - pz(az—l)/qz)h. Then from
(2.6) we have
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-h
G, (pt+g) = cl(l-pl(al-l)tl/q]-pz(az-l)tzlqz) .

(3.6)  Gylt) = cz(l-(a]-l)tllql(a]+a2-1)-(a2—1)t2/q2(a]+a2-l))—"

where c, = (l—(al-l)/ql(a]+a2—l)—(a2-l)/qz(al+a2-l))h.

Using Theorem 3.1 it follows that if a; <1
(i=1,2), h 1is a negative integer and hence (3.6)
represents a bivariate binomial (-h; (l-al)qzlc,
(l-az)q]/c). Also if a; > 1 (i=1,2), (3.6) represents
the bivariate negative binomial (h; (al-l)/q](a‘+a2—l),

(az-l)/qz(al+a2-1)).

NOTE. If we allow ai=l (i=1,2) then (3.1) reduces
to the necessary and sufficient condition for X to be

double Poisson (Theorem 2.1).

The case of the bivariate Poisson is more com-
plicated as the regression of X; on Y is not linear.
However, if we observe that ijts p.d.f. has the form

xX X
1 2
-2 =X - = .. 1
exp { l] A2 ).12}11 Az 2.17'0( Xys~Xy3 3 klzlllkz)lx‘.le

. = . r
where (a,b; 32) f a(r)b(r)z /r!

2Fo
() T a(a+1)...(a+r=1) (r=0,1,...5 agy=1)

A A

1° Ao A >0

12

a characterization can be obtained as follows.

THEOREM 3.3. Let X = (XI’XZ)’ Yy = (YI’YZ) be as

in Theorem 2.1. Then
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B.7) E(x|r=y = y;*a; oFp(-y,-1, Y53 c)/ZFO(-yl, ~Y,55 ©)

(i#j, i,j=1,2)

where ai, ¢ are constants such that

c >0, aiqic/pi <
<1 (i=1,2) iffF

a, a]ach2
X n bivariate Poisson C——‘ —_—,
Py pypy
a, ) alach] . a‘azc )
- ’
Py pypy pyp,

PROOF. The "necessary" part is straightforward.

Sufficiency. From (2.4) and (3.7) we obtain

= Dp;a, 2l"o(--yl.-l,-yj; ; C)/qi(yiﬂ)zFo(-yl.—yz;; c)
(i#j, i,5=1,2).

Applying formula (3.5) we have

v, 4,

= = * - - . -

*B - - -
where ¢ exp ( a,-a, a]azc).

Hence from (2.6)

a p,-a a,cq |
172 T1%2%99
t = -
G,_((__) exv{ 5,7, (t, I)Jx

(3.8)

a,p,-a a,cq a.a,c
2717219269, 192
x exp[ p;7, (t, 1)+ -ET;;~(t't2 !)}.
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It can be easily proved using a method similar to
that employed to Prove part (i) of Theorem 3.1 that
a, >0 (i=1,2). Therefore the Parameters of (3.8) are
positive. Hence the result.

REFERENCES

L1137 R.M. Korwar, On characterizing some discrete
distributions by linear regression, Comm. Stats.,
4(1975), 1133-1147.

21 C.R. Rao, On discrete distributions arising out of
methods of ascertainment, International Symposium
on Classical and Contagious Discrete Distributions,
Statistical Publishing Society, Calcutta, 1963.
(Also reprinted in Sankhya A, 25(1964), 311-324.)

£33 C.R. Rao, - H. Rubin, On a characterization of the
Poisson distribution, Sankhya A,26(1964), 295-298.

L4131 s. Talwalker, A characterization of the double
Poisson distribution, Sankhya A,32(1970), 265-270.

Miss Evdokia Xekalaki

18 Paxon St.
Athens 812, Greece

- 379 -



