COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI 21. ANALYTIC FUNCTION METHODS IN PROBABILITY THEORY DEBRECEN (HUNGARY), 1977.

ON CHARACTERIZING THE BIVARIATE POISSON, BINOMIAL AND NEGATIVE BINOMIAL DISTRIBUTIONS

E. XEKALAKI

1. INTRODUCTION

KORWAR [1] characterized the distribution of a nonnegative r.v. X as Poisson, binomial and negative
binomial when for another non-negative r.v. Y, the conditional distribution of Y given X is binomial and the
regression of X on Y is linear. Here we state his
result.

THEOREM 1.1 (KORWAR [1]). Let X be a discrete r.v. on $\{0,1,\ldots,m\}$ $(m\in r^+\cup\{+\infty\})$. Assume that $E(X)<+\infty$. Let Y be another non-negative discrete r.v. such that

$$P(Y = y | X = x) = {x \choose y} p^{y} q^{x-y}$$
(1.1)
$$(0$$

Then

(1.2)
$$E(X|Y=y) = ay + b$$
, (a,b constants)

if and only if (iff)

The proof is based on the following theorem.

THEOREM 1.2 (KORWAR [1]). Let X,Y be as in Theorem 1.1. Assume that (1.2) holds. Then (i) b > 0, (ii) X is bounded iff 0 < a < 1. Also if X is bounded ed then b = m(1-a), (iii) $0 < a < p^{-1}$.

Obviously, Theorem 1.2 ensures the positivity of the Poisson, binomial and negative binomial parameters.

In Section 2 we consider an extension of Theorem
1.1 to the bivariate case which provides a characterization for the double Poisson, binomial and negative binomial distributions. A characterization of the double
Poisson using RAO and RUBIN's [3] condition has been given
by TALWALKER [4].

We go on in Section 3 to provide characterizations for the bivariate binomial and negative binomial distributions with p.g.f.'s $(p_{11} + p_{10}s + p_{01}t)^n$ and $p_{11}^k (1 - p_{10}s - p_{01}t)^k$, respectively. The case of the bivariate Poisson with p.g.f. of the form $\exp[\lambda_1(s-1) + \lambda_2(t-1) + \lambda_12(st-1)]$ is also discussed.

2. CHARACTERIZATION OF THE DOUBLE POISSON, BINOMIAL AND NEGATIVE BINOMIAL DISTRIBUTIONS

THEOREM 2.1. Let $\underline{X}=(X_1,X_2)$ be a discrete random vector on $\{0,1,\ldots,m_1\}\times\{0,1,\ldots,m_2\}$ $(m_i\in I^+\cup\{+\infty\},i=1,2)$. Assume that $E(X_i)<+\infty$ (i=1,2). Let $\underline{Y}=(Y_1,Y_2)$ be another non-negative random vector such that

(2.1)
$$P(\underline{Y} = \underline{y} | \underline{X} = \underline{x}) = \prod_{i=1}^{2} {x_i \choose y_i} p_i^{y_i} q_i^{x_i - y_i}$$

$$(0 < p_i < 1, q_i = 1 - p_i, y_i = 0, 1, \dots, x_i, i = 1, 2).$$

Then

(2.2)
$$E(x_i | \underline{y} = \underline{y}) = a_i y_i + b_i$$
, (a_i, b_i) constants,

iff

$$X \sim \begin{cases} \text{double Poisson} & (\underline{b}/\underline{q}) & (a_i=1, i=1,2), \\ \text{double binomial} & (\underline{b}/\underline{1-a}; (\underline{1-a})/(\underline{1-ap})) \\ & (0 < a_i < 1, i=1,2), \\ \text{double negative binomial} & (\underline{b}/(\underline{a-1}); \\ & (\underline{1-ap})/\underline{aq}) & (a_i > 1, i=1,2) \end{cases}$$

where
$$\underline{u}/\underline{v} = (u_1/v_1, u_2/v_2), \underline{uv} = (u_1v_1, u_2v_2).$$

PROOF. Necessity follows immediately.

For sufficiency we observe that using (2.1) and the identity

(2.3)
$$x {x \choose y} = (y+1) {x \choose y+1} + y {x \choose y}$$

we obtain

(2.4)
$$E(x_i | \underline{y} = \underline{y}) = y_i + (y_i + 1)q_i \times \\ \times P(x_i = y_i + 1, x_j = y_j) / (p_i P(\underline{y} = \underline{y})) \\ (i, j = 1, 2, i \neq j).$$

Hence from (2.2), (2.4) we have

$$\begin{aligned} & \frac{q_{i}}{p_{i}} & (y_{i}+1) P(Y_{i} = y_{i}+1, Y_{j} = y_{j}) = \\ & = (a_{i}-1) y_{i} P(\underline{Y} = \underline{y}) + b_{i} P(\underline{Y} = \underline{y}) & (i,j=1,2, i \neq j). \end{aligned}$$

Taking p.g.f.'s we obtain

$$(2.5) \quad \frac{q_i}{p_i} \frac{\partial}{\partial t_i} G_{\underline{Y}}(\underline{t}) = t_i (a_i - 1) \frac{\partial}{\partial t_i} G_{\underline{Y}}(\underline{t}) + b_i G_{\underline{Y}}(\underline{t})$$

$$(i=1,2)$$

where $G_{\underline{Z}}(\underline{t})$ denotes the p.g.t. of \underline{z} . But it is known (RAO [2]) that

$$(2.6) G_{\underline{Y}}(\underline{t}) = G_{\underline{X}}(\underline{pt} + \underline{q}).$$

Then equation (2.5) can be written in terms of $G_X(\underline{t})$ as

(2.7)
$$\frac{\partial}{\partial t_i} \log G_{\underline{X}}(\underline{t}) = \frac{b_i}{q_i - (a_i - 1)(t_i - q_i)}$$
 (i=1,2).

(i) For $a_1 = a_2 = 1$, (2.7) reduces to

$$\frac{\partial}{\partial t_i} \log G_{\underline{X}}(\underline{t}) = \frac{b_i}{q_i} \qquad (i=1,2)$$

therefore

$$(2.8) G_{\underline{X}}(\underline{t}) = \exp[(b_1/q_1)(t_1-1)+(b_2/q_2)(t_2-1)].$$

From Theorem 1.2 we have $b_i > 0$ (i=1,2). Hence (2.8) represents the p.g.f. of the double Poisson (b/q).

(ii) For $a_i \neq 1$ (i=1,2) we obtain from (2.7) by integration

(2.9)
$$G_{\underline{X}}(\underline{t}) = \prod_{i=1}^{2} (1-a_i p_i)^{\frac{b_i}{a_i-1}} \{q_i - (a_i-1)(t_i-q_i)\}^{-\frac{b_i}{a_i-1}}$$

From Theorem 1.2 if $a_i < 1$ (i=1,2) it follows that $b_i/(1-a_i)$ is an integer and hence (2.9) represents the p.g.f. of the double binomial $(\underline{b}/(\underline{1-a});$ $(\underline{1-a})/(\underline{1-ap})$.

If, on the other hand $a_i > 1$ (i=1,2), (2.9) is the p.g.f. of the double negative binomial $(\underline{b}/\underline{a-1};$ $(\underline{1-ap})/\underline{aq})$.

Hence the theorem is established.

COROLLARY 1. Let $\underline{X} = (X_1, X_2)$, $\underline{Y} = (Y_1, Y_2)$ be as in Theorem 2.1. Then (2.2) holds iff $P(\underline{X} = \underline{x}) = P(X_1 = x_1) P(X_2 = x_2)$ where

(i) $X_i \sim \text{Poisson} (b_i/q_i), X_j \sim \text{binomial} (b_j/1-a_j; (1-a_j)/(1-a_jp_j))$ for $a_i=1, a_j < 1 (i \neq j; i,j=1,2),$

(ii) $X_i \sim \text{Poisson } (b_i/q_i), X_j \sim \text{negative binomial}$ $(b_j/a_j-1; (1-a_jp_j)/a_jq_j) \quad \text{for } a_i=1, a_j > 1 \quad (i \neq j; i, j = 1, 2),$

(iii) $X_i \sim \text{binomial} (b_i/(1-a_i); (1-a_i)/(1-a_ip_i)),$ $X_j \sim \text{negative binomial} (b_j/a_j-1; (1-a_jp_j)/a_jq_j)$ for $a_i < 1, a_j > 1$ ($i \neq j; i, j = 1, 2$). 3. CHARACTERIZATION OF THE BIVARIATE (DEPENDENT) BINOMIAL, NEGATIVE BINOMIAL AND POISSON DISTRIBUTIONS

Before proving the main result, we need to show the following

THEOREM 3.1. Let $\underline{x}=(x_1,x_2)$, $\underline{y}=(y_1,y_2)$ be as in Theorem 2.1. Assume that for some constants a_i , b_i such that $a_i \ne 1$, $b_i/a_i-1=b_j/a_j-1=h$ $(i\ne j)$ we have

(3.1)
$$E(x_i | \underline{y} = \underline{y}) = a_i y_i + (a_i - 1) y_j + b_i, (i \neq j, i, j = 1, 2).$$

Then

(i)
$$b_i > 0$$
 (i=1,2),

(ii) \underline{X} is bounded iff $0 < a_i < 1$ (i=1,2). Moreover if \underline{X} is bounded then $b_i = (m_1 + m_2)(1 - a_i)$ (i=1,2),

(iii)
$$0 < a_i < p_i^{-1}$$
 (i=1,2).

PRUUE.

(i) Letting $y_1 = y_2 = 0$ equation (3.1) becomes (since $\underline{Y} \le \underline{X}$)

$$0 \le E(x_i | \underline{Y} = \underline{0}) = b_i \qquad (i=1,2).$$

But equality cannot hold since it would imply that

$$\sum_{x_1,x_2} x_i q_1^{x_1} q_2^{x_2} P(\underline{x} = \underline{x}) / P(\underline{y} = \underline{0}) = 0 \quad i.e. P(\underline{x} = \underline{x}) = 0$$

for all \underline{x} . But \underline{x} is non-degenerate. Hence $b_i > 0$ (i=1,2).

(ii) Let \underline{x} be bounded. Then from (3.1) since

 $X \ge Y$ we have

$$m_i = E(x_i | \underline{Y} = \underline{m}) = a_i m_i + m_j (a_i - 1) + b_i$$

$$(i \neq j, i, j = 1, 2),$$

i.e.

$$(3.2) b_i = (m_1 + m_2)(1 - a_i) (i = 1, 2).$$

From the positivity of b_i it follows that $a_i < 1$ (i=1,2). Also from (3.1) we have

(3.3)
$$m_i \ge E(x_i | \underline{Y} = \underline{0}) = b_i$$
 (i=1,2).

Hence from (3.2), (3.3) it follows that $a_i > 0$ (i=1,2). So, if \underline{X} is bounded then $0 < a_i < 1$ (i=1,2). The converse is also true since if for $0 < a_i < 1$ \underline{X} were unbounded we would have from (3.1) that

$$y_{i} \leq a_{i}y_{i} + (a_{i}-1)y_{j} + b_{i}$$
 (i \(i \), i, j = 1, 2),

i.e.

$$(1-a_i)(y_1+y_2) \le b_i$$
 (i=1,2).

But it holds for all \underline{y} only if $a_i \ge 1$ which is a contradiction.

(iii) It has been proved that either $0 < a_i < 1$ or $a_i > 1$. In the latter case, from (3.1), (2.1) we have

$$E(x_i)(1-a_ip_i) = b_i+(a_i-1)p_jE(x_j) \ (i\neq j,\ i,j=1,2).$$

From the finiteness of $E(x_i)$ (i=1,2) it follows

 $a_i < p_i^{-1}$ (i=1,2). Also $a_i < 1$ implies $a_i < p_i^{-1}$. Hence $0 < a_i < p_i^{-1}$ (i=1,2). This completes the proof of the theorem.

THEOREM 3.2. Let $\underline{x} = (x_1, x_2)$, $\underline{y} = (y_1, y_2)$ be as in Theorem 2.1. Then (3.1) holds iff

$$\underline{X} \sim \left\{ \begin{array}{l} \text{bivariate binomial } (-h; \ (1-a_1)q_2/c, \\ \ \ \ \ \ \, & (1-a_2)q_1/c) \quad (a_i>1, \ i=1,2) \\ \text{bivariate negative binomial} \\ (h; \ (a_1^{-1})/q_1(a_1^{+a_2^{-1}}), \\ (a_2^{-1})/q_2(a_1^{+a_2^{-1}})) \quad (a_i<1, \ i=1,2) \end{array} \right.$$

where $c = (a_1 + a_2 - 1)q_1q_2 + (1 - a_1)q_2 + (1 - a_2)q_1$.

PROOF. Necessity follows immediately. Sufficiency. From (2.4) and (3.1) we obtain

(3.4)
$$P(Y_{\underline{i}} = y_{\underline{i}} + 1, Y_{\underline{j}} = y_{\underline{j}}) q_{\underline{i}} = p_{\underline{i}} [(a_{\underline{i}} - 1)(y_{\underline{1}} + y_{\underline{2}}) + b_{\underline{i}}] / (y_{\underline{i}} + 1) P(\underline{Y} = \underline{y}) (i \neq \underline{j}, i, \underline{j} = 1, 2),$$

i.e.

(3.5)
$$P(\underline{Y} = \underline{y}) = P(\underline{Y} = \underline{0}) \prod_{i=0}^{y_1-1} h_i(i,0) \prod_{j=0}^{y_2-1} h_2(y_1,j)$$

where $h_i(y_1, y_2) = P(Y_i = y_i + 1, Y_j = y_j)/P(\underline{Y} = \underline{y})$ $(i, j=1, 2, i\neq j)$. Hence

$$P(\underline{Y} = \underline{y}) = c_1 \frac{\Gamma(h+y_1+y_2)}{\Gamma(h)y_1!y_2!} [p_1(a_1-1)/q_1]^{y_1} [p_2(a_2-1)/q_2]^{y_2}$$

where $c_1 = (1 - p_1(a_1-1)/q_1 - p_2(a_2-1)/q_2)^h$. Then from

$$G_{\underline{X}}(\underline{pt+q}) = c_1(1-p_1(a_1-1)t_1/q_1-p_2(a_2-1)t_2/q_2)^{-h},$$
i.e.

$$(3.6) G_{\underline{X}}(\underline{t}) = c_2 (1 - (a_1 - 1)t_1/q_1 (a_1 + a_2 - 1) - (a_2 - 1)t_2/q_2 (a_1 + a_2 - 1))^{-h}$$

where
$$c_2 = (1-(a_1-1)/q_1(a_1+a_2-1)-(a_2-1)/q_2(a_1+a_2-1))^h$$
.

Using Theorem 3.1 it follows that if $a_i < 1$ (i=1,2), h is a negative integer and hence (3.6) represents a bivariate binomial $(-h; (1-a_1)q_2/c, (1-a_2)q_1/c)$. Also if $a_i > 1$ (i=1,2), (3.6) represents the bivariate negative binomial $(h; (a_1-1)/q_1(a_1+a_2-1), (a_2-1)/q_2(a_1+a_2-1))$.

NOTE. If we allow $a_i=1$ (i=1,2) then (3.1) reduces to the necessary and sufficient condition for \underline{x} to be double Poisson (Theorem 2.1).

The case of the bivariate Poisson is more complicated as the regression of X_i on \underline{Y} is not linear. However, if we observe that its p.d.f. has the form

$$\exp\{-\lambda_{1}^{-\lambda_{2}^{-\lambda_{12}}}\}\lambda_{1}^{x_{1}^{\lambda_{2}}}\lambda_{2}^{x_{2}^{\mu_{0}}}(-x_{1}^{-\mu_{2}};;\lambda_{12}^{-\mu_{12}^{-\lambda_{12}}})/x_{1}!x_{2}!$$

where
$$2^{F_0}(a,b;;z) = \sum_{r}^{a} a_{(r)}^{b}(r)^{z^{r}/r!}$$

$$a_{(r)} = a(a+1)...(a+r-1) (r=0,1,...; a_{(0)}=1)$$

 $\lambda_1, \lambda_2, \lambda_{12} > 0$

a characterization can be obtained as follows.

THEOREM 3.3. Let $\underline{x} = (x_1, x_2)$, $\underline{y} = (y_1, y_2)$ be as in Theorem 2.1. Then

(3.7)
$$E(x_i | \underline{y} = \underline{y}) = y_i^{+a} 2^{F_0} (-y_i^{-1}, -y_j^{-1}; c) / 2^{F_0} (-y_1, -y_2^{-1}; c)$$

$$(i \neq j, i, j = 1, 2)$$

where a_i , c are constants such that c>0, $a_iq_ic/p_i<1$ (i=1,2) iff

$$\frac{x}{p_1} \sim \text{bivariate Poisson} \left(\frac{a_1}{p_1} - \frac{a_1 a_2 c q_2}{p_1 p_2}\right),$$

$$\frac{a_2}{p_2} - \frac{a_1 a_2 c q_1}{p_1 p_2}; \frac{a_1 a_2 c}{p_1 p_2}\right).$$

PROOF. The "necessary" part is straightforward. Sufficiency. From (2.4) and (3.7) we obtain

$$\begin{split} & P(Y_i = y_i^{+1}, Y_j^{-y}_j) / P(\underline{Y} = \underline{y}) = \\ & = p_i^a_i \ 2^{F_0} (-y_i^{-1}, -y_j^{-1}; c) / q_i (y_i^{+1}) 2^{F_0} (-y_1^{-y}, -y_2^{-y}; c) \\ & \qquad \qquad (i \neq j, i, j = 1, 2). \end{split}$$

Applying formula (3.5) we have

$$P(\underline{Y} = \underline{y}) = c^* a_1^{y_1} a_2^{y_2} 2^{F_0(-y_1, -y_2; ; c)/y_1! y_2!}$$

where $c^* = \exp(-a_1 - a_2 - a_1 a_2 c)$. Hence from (2.6)

$$G_{\underline{X}}(\underline{t}) = \exp\left[\frac{a_1 p_2 - a_1 a_2 c q_2}{p_1 p_2} (t_1 - 1)\right] \times \exp\left[\frac{a_2 p_1 - a_1 a_2 c q_1}{p_1 p_2} (t_2 - 1) + \frac{a_1 a_2 c}{p_1 p_2} (t_1 t_2 - 1)\right].$$

It can be easily proved using a method similar to that employed to prove part (i) of Theorem 3.1 that $a_i > 0$ (i=1,2). Therefore the parameters of (3.8) are positive. Hence the result.

REFERENCES

- [1] R.M. Korwar, On characterizing some discrete distributions by linear regression, Comm. Stats., 4(1975), 1133-1147.
- [2] C.R. Rao, On discrete distributions arising out of methods of ascertainment, International Symposium on Classical and Contagious Discrete Distributions, Statistical Publishing Society, Calcutta, 1963.

 (Also reprinted in Sankhya A, 25(1964), 311-324.)
- [3] C.R. Rao, H. Rubin, On a characterization of the Poisson distribution, Sankhya A, 26(1964), 295-298.
- [4] S. Talwalker, A characterization of the double Poisson distribution, Sankhya A, 32(1970), 265-270.

Miss Evdokia Xekalaki

18 Paxon St.

Athens 812, Greece