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1. INTRODUCTION

A shifted univariate distribution has a probability
generatlng functlon (p.g.£f.) of the form skG(s) where
G(s) 1is the p.g.f. of a distribution on the integers
0,1,2,... . The distribution with p.g.f. G(s) 1is said
to be shifted k units to the right or left according
as k is a p031t1ve or negative integer.

In the bivariate case a shifted dlstrlbutlon will
have p.g.f. of the form -skt G(s,t), where G(s,t)
'represents the p.g.f. of a distribution on {0,1,...} X
x {0,1,...} and k,m are integers. ‘

Consider now two distrete random varlables (r.v.'s)
X and Y. Assume that GY(S) = skGX(s), k integer.
Then it can be shown that the factorial moments of Y

_relate to the factorial moments of X thus

. r ) f - .
.y By = 3 DD eaCTy Geo,1,2,000

i=0

(r)

where =z = z(z-1)...(z~r+1), ;O)=1.
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Analogous is the expression for the factorial mom-
ents of the vectors X = (Xl’XQ) and Y = (Yl’YZ) with
Gy(s,t) = sktmGX(s,t) (k,m 1integers), i.e.

rot e , |
.2y By -z O e aPeaT0x,

i=0 j=0 * 2
(r=0,1,2,..., £=0,1,2,...),

For certain types of discrete distributions the
relationships between the factorial moments of their
original and shifted forms reduce to expressions which
can be shown to constitute a unique property.

In the sequel, such properties will be used to
provide characterizations for some well-known discrete
univariate and bivariate distributions. Specifically, in
Section 2 we provide a characterization for‘the geometric
which subsequently is exténded to characterize the class
of distributions which consists of the Poisson, binomial
and negative binomial distributions. A characterization
of the Hermite distribution is also given,

Section 3 extends the resﬁlts to obtain characteriz-
ations for some bivariate distributions whose marginals
are independent. Finally, Section 4 considers the case

of certain bivariate dependent distributions.

2, CHARACTERIZATION OF SOME UNIVARIATE DISCRETE
DISTRIBUTIONS '

THEOREM 2.1. Let X,Y be non-negative discrete

r.v.'s such that
(2.1) G, (s) = sG,(s)

where Gw(s) denotes the p.g.f. of W. Then the condi-
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tion

2.2) By = By (e > 1, r=1,2,...)

is necessary and sufficient for X to be geometric with

parameter ¢

PROOF. Necessity followé‘immediately.

Sufficiency. From (1.1) we have for k=1
2.3 E@) = ExEyerex Ty (2=1,2,.. 0.
Hence (2.2) holds if and only if (iff)

cE(x(r)) - E(x(r))+rE(x(r-l)j (r=1,2,...),

i.e. iff
D))o Ile x (7)) -0 (r=o,1,2,.,.),
which implies that
e - ri(e-1)7F (r;O,l,Z,..f)f

But this is the »r-th factorial moment about the origin
of the geometric distribution with parameter q-cul.

Hence the theorem is established.

Note. In the context of stochastic processes, the
characteristic property (2.2) is equivalent to the well-
-known iack-of-memory property (see PARZEN [33, p.123).

It has just been proved that the geometric distribu-

tion is uniquely determined by

ECx+1XTy = cEx$F)y  (r=1,2,...5 ¢ > 1).
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One may ask what other distributions can be cha-
racterized by similar properties. Consider for example
the more general éase where ¢ is not a constant buf
instead it is a function of r. Specifically, let X be

a non-negative discrete r.vV. with thé'property that
BTy = BTy (rmmme, )

for some positive integer 'm.  Consider the simple case

m=1 and C(r)=ar+b, a,b > 0, 1.e.

(z=1)y  (r=1,2,...).

(2.4)  ECx+1) Ty = (arep)E(x
What distributions can be characterized by this property?
By the following theorem it turns out that (2.4)
uniquely determines the class of distributions which
contains precisely the Poisson, binomial and pegative

binomial distributions.

THEOREM’Z.Z (univariate case). Let X,Y be as in

Theorem 2.1. Then the condition.
(2.5) E(Y(r?) = (ar+b)E(X(r-l)).(r=1,2,{..; a,b > 0)

holds iff X has one of the following distributions
(i) Poisson with parameter b for a=l.
(ii) binomial witb'parameters' p=l-a, n=-1+ T%E
for a < 1, _ _ . ‘
(iii) negative binomial with.pa:ameters’ q=(a—1)/a_

and ‘k=1+

for a > 1.
a-1 )

PROOF. Necessity follows immediately.

Sufficiency. From (2.3) we have that (2.5) holds
iff
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‘ E(x(r))—[(ael)r+b]E(x(’f'?) =0 (r=1,2,...), -
i.e, iff |
(2.6) E(X(?+l))-[(a-l)r+a+b-l]E(X(r))'tEO (r=0,1,2...)
Casék:a=l. Then (2.6) b?éomes
ExE Iy pEx(T)y 2 0 o (r=0,1,2,...).

Solving we obtain

Ex(F)y = BT (r=0,1,2,...)

which implies that X 7~ Poisson (b).

Case a#l. We have from (2.6)

E(x(r+l))_(a_l)(r+ -a—i)-]— +l)E(X(r)) - 0

(r=0,1,2,...).
Solving we find that
(r)y o (a-1)7 (2 . |
(2.7) ;(x ) = (a-1D)7 (55 +1%r) (r=0,1,2,...)

where Z (1) =.Z(Z+l)...(z+r-l?, z(o)?l.
Obviously, for a > 1, (2.6) represents the 'r-th

factorial moment of the negative binomial distribution

with parameters q = (a=-1)/a and k = 1+ afl

If now a < 1 we have from (3.4) for . r=0 .that
b

1 < E(xX)+1 = a+b or 17 > 1. Then (2.7) becomes

.
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: o - (l'a)r(Tg; _i)(r) for.()s.rs{AE% -1
(r)
(2.8) E(x )

0 otherwise

where [w] denotes the iﬁtegral part of w.

Therefore, the distribution of X is terminating,

.

i.e. there exists an integer m > 0 such that P[x=r]=.

=0 for every ‘;‘> m. Then, we have from (2.6):for r=m
E(X(m+l))“[(a~])m+a+b"l]E(X(m)) = 0

which implies that
(a=1)m+a+b-1 =0

or equivalently

(2.9) =2

which implies that T2 is a positive integer.
Hence (2.8) represents the -t factorial moment of
. : co s . . b

the binomial distribution with parameters n = =z !

and p=l-a.

Note. It can be seen from (2.9) that when X 1s
bounded ' ‘
qf_f> 0
I-a
which (since b > 0) impliesi‘a < 1. Hence X is bounded -
iff a <€ 1. This shows that the~class‘of-distfibutions
characterized by (2.5) contains precisely the Poisson,

‘binomial and negative binomial distributions.
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LAHA and LUKACS [2] provided characterizations of
the Poisson, binomial and negative binomial among other
distributions by the quadratic regression‘of the statis-

tic

on S = nX.

Since all the distributions they have got are_unique?
ly determined by their moments their result can altern-
atively be obtained by a method analogous to that 6f the
previous theorem. This is 'so, because under their assump-
tions concerning the finiteness of the second moment and
the validity of the regression equation, the distribu-
tions have all their moments to be finite; this implies
that they satisfy certain recurrence equations which
will lead us to the moments of the distributions in
question.

To some extent, our results bear also an analogy to
those obtained by SHANBHAG [417,

By Theorem 2.2 the univariate Poisson distribution
has been characterized. It is of interest now to examine
whether similar characterizations can be derived for
generalized Poisson distributions, i.e. for distributions
with p.g.f. of the form exp{i(g(s)-1)}, where X > O
"and g(s) wvalid p.g.f.

Specifically, we turn our attention to the partic-
ular case where g(s) = Al(s~1)+A2(sz-]) (Ai >0, i=1,2).

The distribution defined by

(2.10) G(s) =:§xp{a](s—1)+a2(s?—l)}‘ (a, > 0, i=1,2)

ie known in the literature as the univariate Hermite

distribution and was introduced by C.D. KEMP and A.VW.
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KEMP C1]. It is a special case of the Poisson-binomial
distribution (n=2) and may be regarded as either the
distribution of the sum of two dependent Poisson vari-
ables or that of the sun of a Poisson and an independent
Poisson "doublet" variable.

The following theorem proéides a chracteristic pro-

perty for this form of generalized Poisson distribution.

THEOREM 2.3, Let X,Y be as in Theorem 2.1. Then

the condition

(2.11) Ecr®)y w abx Tty upE (x(2))
(a > 0, b € 0; r=0,1,2,...)

holds iff X has the Hermite distribution with param-

b 1
2 and a, 55 ¢

eters a; = =
PROOF. Necessity. It has been shown (C.D. KEMP and
A.W. KEMP [11) that if X 1is Hermite (al,az) then
i 1

rl/2 4 7 )
H) (2a2) + a](Za

@2.2) Ex)) - (2ay) )

(r=0,1,2,...)

where
[n/2] n-23j
HE GO = 3 —RE T (a=0,1,2,.. 383 GO =1).
j=0 (n=-2j3)1j12
Moreover

1 1 ’ 1

2,13 Ex*D)y o 2a%| (222 %4a, (22, 2

E(X(r)) +

. 2a2rE(x(‘"’)) (r=1,2,...).
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Combining (2.3), (2.12) and (2.13) we find that By

.satisfies a relationship of the form (2.11) with

a = (2a2)_] and b = -al(2a2)-1. Obviously a > 0 and

b < 0. |
Sufficiency. From (2.3) it follows that (2.11) holds

iff -

Ex )y arEx Dy w 2B yapE (x (7))

(r=1,2,,..),

By o 122 g (Pye Loex 57Dy

(r=1,2,...).

But this is the recurrence relationship that the factor-
ial moments of the Hermite distribution with parameters

-bfa and 1/2a satisfy. Hence the result.

Note. The Poisson "doublet" distribution or the
distribution (P(X=2r)=e-AAr/r!, P(X=2r+1) =0, r =
= 0,1,...)) can also be characterized by Theorem 2.3

if we allow b to take on the value O.

3. CHARACTERIZATION OF SOME BIVARIATE DISTRIBUTIONS
WITH INDEPENDENT COMPONENTS '

We now turn to the problem of providing characteriz-
ations for bivariate versions of the distributions
examined in the previous section. We first consider the
simplest case of having a bivariate form with independ-
ent marginals. In what follows a bivariate distribution
whose marginals are independent and of the same form

- will be called "double" (e.g. double Poisson).
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Indeed,'byﬁarguméntS,which are analogous to those:
used in-Secion 2 the following theorems can be proved to

hold for double distributions.

; THEOREM 3.1 (characterization of the double . geomet-
ric distribution). Let X = (xi,xz), Y = (YI,Yz), zZ =
= (ZI’ZZ) be random vectors with non-negative integer-

-valued components. Assume that

GY(s,t)

L
5]

Gi(s’t)’

(3.1)

[ ]
(22

Gz(s,t) Gx(s,t)-

Then the conditions

(3.2)
Bz 23" - cZEcxfr’xg*’)”

(r=1,2,%00e) 8=1,2,...3 c],cz > 1)

are hécessarg and sufficient for X to have the double
‘ ' ' -1 =1

geométrié distribution with parameters .cl 3Co

"THEOREM 3.2 (characterization of the double Poisson,
b1nom1a1 andnegatlve blnomlal dlstrlbutlons) Let X =
= (X,,%,), ¥ = (Y Y,) and z = (z Z,) ‘be as in

. Theorem 3.1. Then the conditions

( (r) (2')) = (a r+h )E(X(r l) ('Q'))

(3.3)
E(z (r) (2)) - (a, W+b )E(x(r) (2 Dy

(rsl,z,...;_z=1,2,...; a;sb, > 0, i=1,2)

- 262 -



are necessary and sufficient for X 'to have one of the
distributions ' | | ’
(1) double Poisson with parameters (b],bz) if
1, (i=1,2), |
(ii) double binomial with paraméters :pi=l—ai,
n; = -1+b./1-a ., if a; <1 (i=1,2),

(iii) double negative binomial with‘parametgrs

g, = (aiwl)/ai and ko= l+bi/(aiw1) if a; > 1 (i=1,2).

V]
]

An immediate consequence of Theorem 3:2 is the
following theorem which enables us to characterize
bivariate distributions whose marginals are not ne-

cessarily of the same form.. -

- THEOREM' 3.3. Let X = (X;,X,), ¥ = (¥,,¥,), Z =
(zl,zz) be as in Theorem 3.1. Then the conditions

(3.3) hold iff P(x = x) = P(x, = x,)P(x, = x,) where

, n . n i . _ 20
(i) X, Poisson (bi)’ Xj binomial ( 1+bj/l aj,

l—aj)j_for & = 1, a; < 11 (i#73 i,j=l,2),. .
.. . N . i oL
(ii) Xi ~ P01sson_(bi), Xj neg. bin. (1+ aj_],

(aj—l)/aj) for a; = l,_aj > 1 (i#j; 1,7=1,2),
. : b . .
éiii) XiN binomial (—1+‘1_;i; l—ai), XjN neg, bin,
. a., : . ' : ) -
¢ g2p5 =279 for a, <1, &y > 1 (i45; 4,5=1,2),
J J - : _
THEOREM 3.4 (characterization of the double
Hermite). Let X = (XI,XZ), Y = (Yr{Yz), E,=«(ZJ’22)4be

as in Theorem 3.1. Then the conditions

E(Yfr)yén)) ; a]E(Xfr+1)X§g))+b]E(Xfr)X§g))’
(3.4) ‘ -
' E(zfr)zéz)) - azE(Xfr)X§2+1))+b2E(Xfr)X§£))

(a; >0, b, <0; i=1,2; r=0,1,2,...5 2=0,1,2,...)
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hold iff X has the double Hermite distribution with
parameters -bllal, 1/2a1, -b2/a2, l/2a2

4. CHARACTERIZATION OF SOME BIVARIATE DISCRETE
DISTRIBUTIONS WITH DEPENDENT COMPONENTS

Let us now consider the problem of charactefizing
dependent forms of bivariate distributions. We restrict
ourselves to the case of the bivariate binomial and
bivariate negative binomial with p.g.f."'s of the form
(p}]+plos+p01t) and P]l(l “PoS” pOlt) -k respectively.

A change in the characterizing conditions (3.8) is

necessary as it is seen in the following theorem.

THEOREM 4.1 (characterization of the bivariate

binomial and negative binomial). Let X = (xl,xz),

Y= (¥,,¥,), 2= (z,,2,) be as in Theorem 3.1. Then the

conditions

E(y fr) (Q)) = [a r+(a —l)£+b ]E(X(r D (2))

(4.1)
E(z (r) (2)) = [ (ay=1)r+a,i+h ]E(x(r) (2-1),

(r=1,2,..0.3 4=1,2,.0.3 ai’bi >0, ai#l, i=1,23

b‘ b2 :
Py e S
1 2

are necessary and sufficient for X to have one of the
distributions ' ' V ' '
(i) blvarzate binomial with parameters n=-h-l,

-l-al, pOI 1-32 for a, <1 (i=1,2),

(ii) bivariate negative binomial with parameters
ksh+1, plot(a l)/(a +a, -1), p01=(a2—1)/(al+a2-1) for
a; > 1 (i=1,2). .

Pyo
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Necessity follows immediately.
From (1.2) for k=m=1 we have that

1) hold iff

PROOF,
Sufficiency.
the conditions (4.

E(x (r) (“)) (a 1) (z424b /2, —1)E(x(’ 1 (“)) = o,

E(Xfr)xéﬁ))—(az—l)(:+1+b2/a l)E(x(r) éz 1)) -0

(r=1,2,.003 2%1,2,...),

i.e, iff

E(x (’*‘) (“)) (a, —1)(r+£+h+l)E(x(r) <”)) =0,

(4.2)
(r) (2)) -0

E(xfr)xgz*‘))-( ~1) (r+2+h+1)E (x|

(z=0,1,2,...3 2=0,1,2,...).

The solution is given by
=1
E(x(r) (l))-E(x(o) (0)) l‘[ (a «1)(i+h+1) 11 (a -1)(r+_7+h+l)-
3=0 _

(4.3) = (al-l)r(az-l) (h+l)(r)(r+h+l)(£) =

. ] . 2 .
= (a,~-1%(ay=1) (B+1) gy

(£m0,1,2,...3 2=0,1,2).

In the case a, <1 (i=1,2) (4.3) represents the
(r,2)-factorial moment of the bivariate negative binomial
with parameters k=h+l and p‘oﬂ(al—l)/(a]+a2—1),

=(a,=1)/(a +a,=1).
Assume now that a, > 1 (i=1,2).
yrmi=0 that 1 < E(Xx,)+1 = b.+a,
i i i

Then from (4.2)
(i=1,2)

Poi

we have for
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iff -h > 1.
Then (4.3) becomes

' (1-a,)7 (1-2,) * (-h=1) 7+
) B - @S zsl-h-1, 052 S(-bl-D),

0 °  otherwise. -
That is When"ai < 1 (i=1,2) the distribution of X is-
terminating i.e. there exists a vector m = (mf’mZ)
with non-negative integer-valued components such that

P({ = x) = 0 whenever X 2 ml+l and also whenever

X, 2 m2+l.
Then, we have from (3.10) for r=m L=m2
(m;+1) (@) | (m)) (m)
E(Xi Xj V)+(ll-ai)(‘ml+m2+h+,l)E(xi X, )=0

(i#j3i,73=1,2)
which because I-ai$02 (i=1,2) implies that.
ml+m2+h+l = 0,

i.e.

(4.5)  h+l = =(m +m,).
_ 172 .
This shows that ~-h-1 'is a positive integer.
' Then (4.4) represents the (r,f)-factorial moment
of the bivariate binomial distribution with parameters
n=-~h-1] apd ploél—a], P01=1‘32- Hence the theorem is
established. '
Note 1; The relatibnship (4.5) tellsﬂsométhing'more;
It shows that when X has a terminating distribution

then
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b,
1
a.,~1

i «

<0 o (i=1,2)

which since bi >0 (i=1,2) ‘implies that a, <1

(i=1,2). Hence X has a terminating distribution iff

a, <1 (i=1,2), ‘
Moreover, since b,/(a]-l)=b2/(a2-l) and b, >0

(i=1,2) it follows that the differences a,-1 and

a2-1 have the same sign. Hence the class of distributions

chracterized by the conditions (4.1) contains precisely

the bivariate binomial and negative binomial distribu-

tions.

Note 2. If we allow a, (i=1,2) to take the value
1, then the conditions (4.1) reduce to the characterizing

conditions of the double Poisson (Theorem 3.2).
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