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SUMMARY

Most of the methods used .in the ARCH literature for selecting the appropriate model are based on
evaluating the ability of the models to:describe the data. An alternative model selection” approach is
examined based on the evaluation of the predictability. of the models in terms of standardized prediction
errors. Copyright © 2005 John Wiley & Sons, Ltd
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1. INTRODUCTION

ARCH models have widely been used in financial time series analysis; particularly in analysing
the risk of holding an asset, evaluating the price of an option, forecasting time-varying
confidence intervals -and obtammg more etﬁment esumators under the existence: of
heteroscedasticity.

“In"the recent literature, numerous paramelrlc specifications of ARCH models have been
considered for the description of the characteristics of financial markets. In the linear ARCH{(g) -
model, originally introduced by Engle [1], the conditional variance is postulated to be a linear
function of the past' g squared innovations. Bollerslev [2] proposed the generalized ARCH, or
GARCH(p,g), model, where the conditional variance is postulated to be a linear function of
both the past.¢ squared innovations and the past p conditional variances. Nelson [3] proposed
the exponential GARCH, or EGARCH, model. The EGARCH model belongs to the family of :
asymmetric GARCH models, which capture the phenomenon ‘that negative returns predict
higher volatility than positive returns of the same magnitude. Other popular asymmetric models
are the GIR model of Glosten et al. [4], the threshold GARCH, or TARCH, model, introduced
by Zakoian [5] and the quadratic ARCH, ot QGARCH, miodel, introduced by Sentana [6].
ARCH models go'by such exotic names as. AARCH, NARCH, PARCH, PNP-ARCH and
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56 S. DEGIANNAKIS AND E. XEKALAKI

STARCH among others. For a comprehensive review of the literature on such models, the
interested reader is referred to Degiannakis and Xekalaki [7].

The richness of the family of parametric ARCH models certainly complicates the search for
the true model, and leaves quite a bit of arbitrariness in the model selection stage. The problem
of selecting the model that describes best the movement of the series under study is, therefore, of
practical importance. '

_ The aim of this paper is to develop a model selection method based on the evaluation of the
predictability of the ARCH models. In Section 2 of the paper, the ARCH process is presented.
Section 3 provides a brief description of the methods used in the literature for selecting the
appropriate model based on evaluating the ability of the models to describe the data. In Section
4, Xekalaki et al.’s [8] model selection method based on a standardized prediction error criterion
is examined in the context of ARCH models. In Section 5, the suggested model selection method
is applied using return data for the Athens stock exchange (ASE) index over the period August
30th, 1993 to November 4th, 1996, while, in Section 6, a selection method based on the ability of
the models describing the data is investigated. Finally, in Section 7, a brief discussion of the
results is provided. = ) .

2. THE ARCH PROCESS

Let {y«(6)}5, refer to the univariate discrete time real-valued stochastic process to be predicted
(e.g. the rate of return of a particular stock or market portfolio from time t — 1to ¢ ) where fis a
vector of unknown parameters and E(y(0)|fi=1) = Ei-1(»/(6)) = pu(0) denotes the conditional
mean given the information set available at time ¢#— 1, I,-;. The innovation process for
the conditional mean, {&(6)},s,, is then represented by &(6) = y:(8) — u,(6) with correspon-
ding unconditional - variance . ¥(¢,(8)) = E@E(0) = JZ,V(G), zero unconditional mean and
E(e/(0)e5(0)).= 0, Vt#s. The - conditional variance -of - the .process given I.; is defined
by VOdOMi—1) = Vi-1(0(0) = E:21(e4(8)) = ¢%(6). Since investors would know the informa-
tion:set I,_; when they make their investment decisions at time ¢ — 1, the relevant expected
return to. the investors and volatility are y,(6) and o%(9); respectively.
An ARCH process, {¢/(0)},>, can be presented as

; 710y =x,8+2(6)

al) = z0/0)
S M
2 2 fIEG) =0,V @) = 1)

0'%(0) = g(dt~1(0)’ a,22(0), ... 51—1(9)a 6{—2(9), O IS SO |

where x, is a k X 1 vector of éendogenous and exogenous explanatory variables included in the
information set ,_1, fisa k x 1 vector of unknown parameters, f(.) is the density function of z,,
6,(f) is a time-varying, positive and measurable function of the information set at time ¢ — 1, v;
is a vector of predetermined variables included in.Z;, and g(.)ds a linear or non-linear functional
form. By definition, &(6) is serially uncorrelated with mean zero, but with a time-varying
conditional variance equal to 03(9). The standard ARCH models assurne that f(.)-is'the density
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PREDICTABILITY AND MODEL SELECTION 57

function of the normal distribution. Bollerslev [9] proposed. using the student ¢ distribution with
an estimated kurtosis regulated by the degrees of freedom parameter. Nelson [3] proposed the
use of the generalized error distribution [10, 11}, which is. also referred to as the exponential
powet distribution. Other distributions, that have been employed, include the generalized ¢
distribution [12], the normal Poisson mixture distribution [13], the normal lognormal mixture
[14], and a serially dependent mixture of normally distributed variables [15] or student ¢
distributed variables {16]. In the sequel, for notational convenience, no explicit indication of the
dependence on the vector of parameters, 6, is given when obvious from the context.

Let us assume that ‘the conditional mean, u, = E(y4l,—1), can be adequately described by a
kth-order autoregressive [AR(x)] model: . Co : :

Ye=0Co+ Z(Q‘y:#) + & i )
=1
Usually, the conditional mean is either the overall mean or a first-order autoregressive process.
Theoretically, the AR(1) process-allows for-the autocorrelation induced by discontinuous (or
non-synchronous) trading in the stocks-making up.an index [L7, 18]. According to Campbell
et al. [19], “the non-synchronous trading arises when time series, usually asset prices, are taken to
be recorded at time intervals of a fixed length when in fact they are recorded at time intervals of
other, possible irregular lengths’. The Scholes and Williams model suggests the first-order
moving average process for index returns, while the Lo and MacKinlay model suggests an
AR(1) form. Higher orders of the autoregressive process are considered in order to investigate if
they are adequate to produce more accurate predictions.
Engle [1] introduced the original form of 62 = g(.) as a linear function of the past ¢ squared
innovations: '

o=ay+ Zq: (@) (€]
Coi=l ’

For the conditional variance to be positive, the parameters must satisfy a9 >0, @;20, for i =
1,...,q. In empirical applications of ARCH(g) models, a long lag length and a large number of
parameters are often called for. To circumvent this problem Bollerslev [2] proposed the
generalized ARCH, or GARCH(p,g), model:

g 4
d=ag+ Y (@ )+ (biol) @)
i=1 i=1 .

where >0, @;>0, for i=1,...,q, and b;>0, for i=1,...,p. Note that even though the
innovation process for the conditional mean is serially uncorrelated, it is not independent
through time. The innovations for the variance are denoted as ’

E(e)—E ) =6 -0, = ®

The innovation process {v;} is a martingale difference sequence in the sense that it cannot be
predicted from its past. However, its range may depend upon the past, making it neither serially
independent nor identically distributed.

The GARCH(p,q) model successfully captures several characteristics of financial time series,
such as thick-tailed returns and volatility clustering.first noted by Mandelbrot [20}: *.. large
changes tend to. be followed by large changes of either sign, and small changes tend to be
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58 S. DEGIANNAKIS AND E. XEKALAKI

followed by small changes...’. On-the other hand; the GARCH structure imposes important
limitations. The variance only depends on the magnitude and not on the sign of &;, which is
somewhat at-odds with the empirical behaviour of stock market prices where a leverage effect
may be present. The term leverage effect; first noted by Black [21], refers to the tendency. for
changes in-stock returns to-be negatively correlated with changes in returns volatility, i.e.
volatility tends to rise in response ‘to'bad news (¢,<0), and to fall in response to good news
(&> 0).

In order to-.capture the asymmetry exhibited by the data; a new class of models was
introduced, termed the asymmetric ARCH models. The most popular model proposed to capture
the asymmetric effects is Nelson’s [3] exponential GARCH, ot EGARCH(p,q), model:

o) =+ 3 (a2 43, (22) ) + 0 ©
i=1

Ot-i i=1
Because of the logafithmic transformation, the forecasts of the variance are guaranteed-to be
non-negative. Thus, in contrast to the GARCH model, no testrictions need to be imposed on
the model estimation. The number of possible conditional volatility formulations is vast. The
threshold GARCH, or TARCH(p,q), model is one of the widely used models:

q

&o—i
Or=i

P
(ailer i) + yles Pl <0)+ Y (biol) -

i=1 i=1

o =ag+

where d(e;<0) = 1 if &,<0, and d(e; <0) = 0 otherwise. Zakoian’s [5] model is a special case of
the TARCH model with & = 1, while Glosten ef al. [4] consider a version of the TARCH model
with é = 2. The TARCH model allows a response of volatility to news with different coefficients
for good and bad news.

A wide range of ARCH models proposed in the literature has been reviewed by Bera and
Higgins [22], Bollerslev et al. [23], Bollerslev et al. [12], Degiannakis and Xekalaki [7],
Gourieroux [24] and Hamilton [25].

3. MODEL SELECTION METHODS

Most of the methods used in the literature for selecting the appropriate model are based on
evaluating the ability of the models to-describe the data. Standard model selection criteria such
as the Akaike information criterion (AIC) [26] and the Schwarz Bayesian criterion (SBC) [27]
have widely been used in the ARCH literature, despite the fact that their statistical properties in
the ARCH context are unknown. These are defined in terms of I7(8), the maximized value of the
log-likelihood function of a model; where 0 is the maximum likelihood estimator of § based on a
sample of size T and 6 denotes the dimension of 0, thus:

AIC = I7(0) - 6 : ®
SBC = I7(f) — 278 1In(T) ©)

In addition, the evaluation of loss functions for alternative models is mainly used in model
selection. When ‘we focus on estimation of means, the loss function -of choice is typically the
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PREDICTABILITY. AND MODEL SELECTION 59

mean squared error (MSE):
MSE= 77! E 2 (10)

When the same strategy is apphed to variance estimation, the choice of thé mean squared
error is much less clear. Because of. high non-lineatity in' volatility' models, a number of
researchers constructed heteroscedasticity-adjusted loss functions. Bollerslev et al. [12] present
four types of loss functions:

T : :
Li=Y - o) an
o=l . B
e .
L= (:—'2) (12)
e ™N\) ;
@ k «
LFg(%{ﬂ 3)

T
Ly= Z (§§+ ln(af)) (14)

Pagan and Schwert {28] used the ﬁrst two of the loss functions to compare alternative estimators
with in-sample and out-of-sample data sets. Andersen ez al: [29], Heynen and Kat [30], Hol and
Koopman [31], are some examples from the literature that applied loss functions to compare the
forecast performance of various volatility models.

Moreover, loss functions have been constructed, based upon the goals of the particular
application. West et al. {32] developed such a criterion based on the portfoho decisions of a risk
averse investor. Engle ez al. [33] assumed that the objective was to price optlons and developed a
* loss function from the proﬁtab:hty of a pamcu]ar tradmg strategy

4. MODEL SELECTION BASEDA ON THE STANDARDIZED ?REDICTION'ERROR
- CRITERION (SPEC)

Let us assume that a researcher is interested in evaluating the ability of the ARCH models to
forecast the conditional variance.: Consider.the simple case of a regression-model: y, = x/ + &,
where f is a vector of k& unknown parameters to be estimated, x; is a vector :of explanatory
variables included in the information set at time.z — 1 and- ¢ =SNG, 6?). At time £ — 1, the
expectzd value. g, of y, is estimated on the bams of the information available at time ¢ — 1, i.e.
Poe1 = fly = J(ﬁ,_l, where ﬁ,_l = (X, 1Xr21)” (X,_IY,_I) is the least square estimator of § at -
time ¢ — 1, Y, is the (/; x 1) vector of /; observations on the dependent variable y;, and X, is the
(! x k) matrix whose rows comprise, the k-dimensional vectors x,.of the explanatory variables

included in the information’set, so that ’X; = [XH 1, .= [Y;' ] Here lh>k, Ly =14 +1

X
and |X,X,|#O, +=0,1,..5. In's ‘manper’ of speakmg, Py and. ,0;1,_1 can be considered as
in-sample and out‘of-sample forecasts, respectwely In other words, § P is measured on the basis
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60 S. DEGIANNAKIS AND E. XEKALAKI

of I, the information set available at time ¢, while $,,_, is measured on the basis of 7,_i, the
information set available at time 1 — 1. = -

In the sequel, the density function f(.), in Equation (1), is assumed to be that of the normal
distribution and 2y, = é,‘,,l:i,",{l denotes the standardized one step ahead prediction errors®.
The most commonly used way to model the conditional variance is the GARCH(p,g) process in
(4). The GARCH(p,q) process may be rewritten as®

o7 = (U, 1 W, ()

where 1, = (l,sf_l,...,sf‘q), m=0, w,=(71,...,02,), vV =(a0,a,....ap), {'=0, o' =
(b1;...,bp).

The vector 0 = (,V,{,) denotes the set of parameters to be estimated for both the
conditional mean and the conditional variance at time ¢.

The residual &1 = y; — Py1 reflects the difference between the forecast and the observed
value of the stochastic process. Xekalaki et al. [8] suggested measuring the predictive behaviour
of linear regression models on the basis of the standardized distance between the predicted and
the observed value of the dependent random variable. The estimate of the standardized distance
was defined by '

= Ve = Py
VYV G-1)

where V(Pg-1) = (Vo1 — Xee1Brot) (Vimt = Xem1 feo)( + 20X Xomn) 5oy — )7 A scor-
ing rule to rate the performance of the model at time ¢ for a series of T'-points in time,
(t=1,...,T), was defined by

7
Re=T"'3 1}
=1
the average of the squared standardized res1duals As an ARCH model estimates simultaneously
the conditional mean and the conditional variance, its evaluation is two fold. In the sequel, this
approach is adopted using the average of the squared standardized one step ahead prediction
errors as a scoring rule in order to rate the performance of an ARCH model to forecast both the
conditional- mean and the conditional variance, in particular,

T 2
Et:l zz|r-l
T

21 = By_16yL; isthe estimated standardized distance between the predicted and the observed
value of the dependent random variable, when the conditional standard deviation of ‘the
dependent variable given /.7 is defined by arr ARCH model; ¥ (y:|-1) = 2. .

Let(6;) denote the vector of ‘unknown parameters to be estimated at time #. Under the
assumption of constancy of parameters over time, (0;) = (0;) = -+ ='(07) = (6), the estimated

Rr = 15)

*Consider the case of the AR(1)GARCH(1,1) model as defined by Equatjons (2)and 4), fork=1landp=g=1,
respectively. The estimators of the one step ahead predlcnon error and its variance conditional on the information set
available at time ¢ —1 are given by dye—1 = yr — fos-1 = 17,1 and 63, ) = dos- |+ 18y, I+b1, wf lieis
respecnvely The estimated parameters are indexed by the subscrlpt ¢ to indicate that they may vary with time
$The conditional variance is written in the form: W, 1 W, L, w), which includes the most widely used’ ARCH models
such as the TARCH and th¢ EGARCH processes.

Copyright © 2005 John Wiley & Sons, Ltd. - = Appl. Stochastic Models Bus: Ind.; 2005; 21:55-82



PREDICTABILITY AND MODEL SELECTION 61

standardized  one step ahead - prediction  errors . Zy,—1,Z.1jss .. -, £7y7=1 - are - asymptotically
independently standard normally distributed. Symbolically; .

Zp1 = —9,|,A1)&;}_1 ~ NO1), t=1,2..,T (16)

To verify this, observe that at time 7 — 1, the expected value of y, is estimated on the basis of the
information available at time 7~ 1, i.e. D=1 = x,ﬁx—l and the expected value of the conditional
variance is estimated on the basis of the information available at time r—1, ie. ‘7%1[-1 =
(u, 1), w’)(v,_l,C, 1, ®—1). Note that the elements of the vector (u), 7}, w}) belong to the I,_i; so
are considered as known values. The Z;,_; can be written as

.= ﬁt!t—l)

2t|t—1 = %
V O-t|t—1

R R )

J a2
V/ -1

_ & (x' B~ ﬁtvl))

Y} I\l 1 \ t[t 1

RN N )

22 22
Otje-1 Olje-1

B (AT UA D) i (B~ b))
(@ 1 WY1z, Camts D D (s 10 W1, Ei 1, 1)

We assume that a sample of T -observations has been used to estimate the vector of
unknown parameters. According to Bollerslev [2], the maximum likelihood estimate 6,
is strongly consistent for § and asymptotically normal with mean 6. In other words,
plim@,) =0 & phm(ﬁlt, ﬁ,,l,, @) =(f,v,{,a), where plim denotes limit in probability
as the size of the sample, T, goes to infinity. By Slutsky’s theorem (see, e.g. Reference
[34, p. 118]), for any continuous function g(xr) that is not a function of T, plim g(x7) =
g(p lim x7). Hence

plim(2y;1)

Sl ] 1/2 ’ ]
PR B ORI (A 0) ) . ( _ @B-bo) )
P ‘mf(«w,,n;,u/,)(ﬁ,_l,cf_l,aax_l))‘/z T )G B G )2
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62 S. DEGIANNAKIS AND E. XEKALAKI

Using-Shutsky’s theorem, the right-hand side of this relationship can be written as

20 1 WY, G ) (cpim(f — fi-1)
@ 1 WP B it G, B0) - (p (Gl 1), W)t Gty D))

= 200 1, WD, G, o)) Cep im(B — B, 1))
w0, L) (Gl WP (i, o, 1))

- [EAV]
(Gt 1l W, L, )2
=2z

As convergence in probability implies convergence in distribution, the 2,1, 5,41y, ..., Zpy7-1 are
asymptotically standard normally distributed:

N q

21 Dz = 8y Sz ~ N, D)
This result implies that the Ze—1,2e11pp, .. -, E77_1 are asymptotically independently standard
normally distributed, since, from the definition of convergence in probability

P(I(X17, Xz, ooy Xoy) — (W1, Way. .., W] > ©)

sP([X;T - wi> ,/52/;1) +P(1X27 — Wyl > ,/32/n) +--'—FP(|X,,T — W, > ,/s2/n)

which asserts that component wise convergence in probability always implies convergence of
vectors, i.e.

ftlr—l E’ Zy ‘L‘? N(O, 1)

Hence, (16) has been established.
The result of formula (16) is valid for all the conditional variance functions with consistent
estimators of the parameters. :

Remark

AF concerns the EGARCH and the TARCH models; the maximum likelihood estimator @, =
@, 9,,C,; ;) is consistent.and asymptotically normal. In particular; the EGARCH(p,q) model
can be written as ) ; :

In 67 = (ut, 17, W3, L, @)

where 1 = (1, le1/01-1),... ., l6r-g/0e—gl), = (/[€t~l/af~1]a o feg/ogD,
W= (0ol 002 ,), Y = (a0, a1, 0), { = (s 1,), & = (b by).

According toANelsgn [3], under-sufficient regularity conditions; the maximum likelihood
estimator §, = (8, %, {}, &,) is consistent and asymptotically normal. Also, for the Glosten ef al.’s
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[4] TARCH(p, q) ptoeess, the-conditional variance can be written as

: R o = (W 1y ,)(v, {,w)
Whersui = (L8 18t ) )= (@1 S0)62 ), W, ==(a,_1, SO = (a0 an 0 U=
&), @' = (b1,...,bp), d(a,so) = 1if &<0, and d(s,s()) 0 otherwise.

As pointed out’ by Glosten et al. [4], as long as the conditional mean.and variance are correctly
specified, the maximum likelihood estimates will be consistent and asymptotically normal,

According to Slutsky’s. theorem, if plim 2y =z ~ N©O,1) and g(6y-1) = 10, (5,|,v1),
which is a. continuous function, then plim s (zﬁ,_l) = 2,_, (z9). As convergence in
probability 1mplxes convergence in distribution, 2,_1(z,|,_,)—» E,_l (z ) ~ 2% . Henee, as
%41 are asymptotically standard normal vanables, the variable TRT is asymptoucally ©
distributed with T degrees of freedcm, ie.

TRT"’XT ‘ B an

According to Kibble [35], if, for ¢.=1,2,...,T, z,‘,_l and zgﬁil are standard normally
distributed variables, followmg Jomtly the bzvamate standard normal distribution, then the joint
distribution of (T'/2 RT ,T/2 RT ) is the bivariate gamma distribution with probability density
function (p.d.f) given by

Tramp 282509

_exp(=(x +2)/1~ ) < ( (p/(1 — 2)) (7/2)-1- «) =0 - (18

T(T/2)1 - )77 § TG+ DG+ (T2 » By (18)
where T() is the gamima futiction and p'is the correlation coefficient between e&r}ll and £ z,,,_l, ie
pE Cor(zgﬁll.iff),,) Xekalaki ef dl, 18] shﬂwed that, when the joint distribution of (7/2R%”,

T/2RP) is Kibble's bivariate gamma the distubutwn of the ratio Z(A’”’ = RY/RD is defined
by the following p.d.f.; .

g —(T+l)/2 :
gl “ﬂz)m T/2-1 -7 (2‘0) ’
ffr‘"‘”-mz SR L v 20 )
where B(T/2,T/2) = T(T/2)*/T(T). Symbolically,
Z‘#’”EZ??.E‘;’E/ Zzﬁi‘“ ~ CGR(k,p) o

where k = T'/2. Xekalaki er-al. [8] veferred-to the distribution in (19) as the correlated gamma
ratio (CGR) distribution, (A sample of tables of the pefeentage::points of this distribution and
of graphs depicting its probability: density function is given in Appendix A; Table AIIl and
Figure AS, respeetwely) Full tables of percentage points and: graphs for various values of &
and p ean be found in:[8].

As pointed out by Xekalaki et al, [8], B and R(B) could represent the sum: of the squared
standardized prediction errors from two regressnon models (not necessarily nested) but with a
common dependent variable. Thus, two regression models can be compared through testing a
null hypothesis of equivalence of the models in their predictability against the alternative that

(A
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64 S. DEGIANNAKIS AND E. XEKALAKI

model 4 produces ‘better’ predictions: Here, the notion of the equivalence of two models with
respect to their predictive ability is considered in Reference [8] sense to be defined implicitly
through their mean squared prediction errors. Following Xekalaki et al’s [8] rationale, the
closest description of the hypothesis to be-tested is

Hy: Models 4-and B have equal mean squared prediction errors
Versus :
Hi: Model 4 has lower mean squared prediction error than model B
using Z(TA’B) as a test statistic, i.e. using the ratio of the sum of the squared standardized one step
ahead prediction errors £y, of the two competing models. The null hypothesis is rejected if
Z4'> CGR(k, p, a), where CGR(k, p, a) is the 100(1 — a) percentile of the CGR distribution.
Since very few financial time series have a constant conditional mean of zero, in order to
estimate the conditional variance, the conditional mean should have been defined. Thus, both
the conditional mean and variance are estimated simultaneously. According to the SPEC model
selection algorithm, the models that are considered as having a ‘better’ ability to predict future
values of the dependent variable, are those with the lowest sum of squared standardized one step
ahead prediction errors. It becomes evident,. therefore; that-these models can potentially be
regarded as the most appropriate to use for volatility forecasts too.

5. EMPIRICAL RESULTS

The suggested model selection procedure is illustrated on data referring to the daily returns of
the Athens stock exchange (ASE) index. Let y; = In(P;/P;-;) denote the continuously
compound rate of return from time ¢ — 1 to ¢, where P, is the ASE closing price at time ¢.
The data set covers the period from August 30th, 1993 to November 4th, 1996, a total of 800
trading days. Table I presents the descriptive statistics. For an estimated kurtosis equal to 7.25
and an estimated skewness equal to 0.08, the distribution of returns is flat (platykurtic) and has
a long right tail relative to the normal distribution. The Jarque Bera (JB) statistic [36] is used to
test whether the series is -normally distributed. The test statistic measures the difference of the
skewness and kurtosis of the series from those of the normal distribution. The JB statistic is
computed as

JB = T(S? + (K = 3)*/4))/6 1)

where T is the number of observations, S is the skewness and K is the kurtosis. Under the nuil
hypothesis of a normal distribution, the JB statistic is y* distributed with two degrees of
freedom.

From Table I, the value of the JB statistic obtained is. 602.38 with a very low p-value
(practically zero). So, the null hypothesis of normality is rejected. In order to determine whether
{y:} is a stationary process, the Augmented Dickey Fuller test (ADF) [37] and the- non-
parametric Phillips Perron (PP) test {38, 39] are conducted.

The ADF test examines the null hypothesis, Ho:y = 0, versus the alternative, H;:y <0, in the
following regression:

K
Ay, =c+yye1+ Z QiAyi-i+ & (22)
i=1 : :
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Table I. Descriptive statistics of the daily returns of the ASE index (30th August 1993—4th November 1996
(800 observations)).

Observations 800
Mean 5.72E-05
Median —0.00018
Standard deviation 0.012
Skewness 0.08
Kurtosis 7.25
Jarque Bera (JB) 602.38
probability <0.000001
Augmented Dickey Fuller (ADF) —-12.67
1% critical value —3.44
Phillips Perron (PP) —24.57
1% critical value —3.44

The skewness of a symmetric distribution, as the normal distribution, is zero. Positive skewness implies that the
distribution has a long right tail. Negative skewness implies a long left tail distribution. The kurtosis of the normal
distribution is 3. If the kurtosis exceeds 3, the distribution is peaked (leptokurtic) relative to the normal. If the kurtosis is
less than 3, the distribution is flat (platykurtic) relative to the normal. Under the null hypothesis of a normal distribution,
the JB statistic is y* distributed with two degrees of freedom. The reported probability is the probability that the JB
statistic exceeds, in absolute value, the observed value under the null hypothesis. ADF: The null hypothesis of non-
stationarity is rejected if the ADF value is less than the critical value (four lagged differences). PP: The null hypothesis of
non-stationarity is rejected if the PP value is less than the critical value (four truncation lags).

where A denotes the difference operator. According to the ADF test, the null hypothesis of non-
stationarity is rejected at the 1% level of significance for any lag order up to k = 12. The test
regression for the PP test is the AR(1) process:

Ay =c+ 7y +& (23)

While the ADF test corrects for higher order serial correlation by adding lagged differenced
terms on the right-hand side, the PP test makes a correction to the ¢ statistic of the y coefficient
from the AR(1) regression to account for the serial correlation in &. The correction is non-
parametric since an estimate of the spectrum of ¢ at frequency zero, that is robust to
heteroscedasticity and autocorrelation of unknown form, is used. According to the PP test, the
null hypothesis is also rejected. at the 1% level of significance.

The most commonly used test for examining the null hypothesis of homoscedasticity against
the alternative hypothesis of heteroscedasticity is Engle’s [1] Lagrange multiplier.(LM) test. The
ARCH LM test statistic is computed from an auxiliary test regression. To test the null
hypothesis of no ARCH effects up to order ¢ in the residuals, the regression model

g
d=B+ D e tu (24)
i=1

with ¢ =y, — ¢ is Tun. Engle’s test statistic is computed as the product of the numbet of
observations times the value of the coefficient of variation R? of the auxiliary test regression.
From Table II, the values of the LM test statistic for ¢ = 1,...,8 are highly significant at any
reasonable level.

As, according to the results of the above tests, the assumptions of stationarity and ARCH
effects seem to be plausible for the process {y;} of daily returns, several ARCH models are
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Table I1. Lagrange multiplier (LM) test.

& = Bo+ X0 Bl e

§E=yr—¢C
Q LM statistic p-value
1 108.203 0.00
2 113.315 0.00
3 127.947 0.00
4 128.577 0.00
5 130.691 0.00
6 133.467 0.00
7 131.573 0.00
8 129.496 0.00

The LM statistic is computed as the number of observations times the R? from the auxiliary test regression. It converges
in distribution to a Xfr Test the null hypothesis of no. ARCH effects in the residuals.up to order g

considered in the sequel. It is assumed, specifically, that the conditional mean is considered as a
xth-order autoregressive process as defined in (2) and the conditional variance ¢ is assumed to
be related to lagged values of ¢ and o, according to a GARCH(p,q) model, an EGARCH(p,q)
model or a TARCH(p,q) model as defined by (4), (6) and (7), respectively. Thus, the
AR(x)GARCH(p,q), AR(x)EGARCH(p,q) and AR(x)TARCH(p,q) models™ are-applied, for
k=0,...,4,p=0,1,2 and ¢ = 1,2, yielding a total of 90 cases. :

Since, in estimating non-linear models, no closed-form expressions are obtainable for the
parameter estimators, an iterative method has to be employed. The value of the parameter
vector 6 that maximizes /,(6), the log likelihood contribution for each observation ¢, is to ‘be
found. Iterative -optimization algorithms work by starting with an initial set of values for the
parameter vector 6, say 69 and obtaining a set of parameter values 6D, which corresponds to a
higher value of /,(6): This process is repeated until the objective function /() no longer improves
between iterations. In the sequel, the Marquardt algorithm [40] is used. This algorithm modifies
the Berndt, Hall, Hall and Hausman, or BHHH, algorithm {41] by adding a correction matrix to
the Hessian approximation (i.e. to'the sum of the outer product of the gradient vectors for each
observation’s contribution to the objectivé function). The Marquardt updating algorithm is
computed as

T i) AfD) Py )
; aly’ ol; al
G+ — g t t ¢
0 09 + (tZI 0 al) 1'5;1 F (25)

where [ is the identity matrix and a is a positive number chosen by the algorithm. The effect of
this modification is to push the parameteér estimates in the direction of the gradient vector. The

idea is that when we are far from the maximum, the local quadratic approximation to the
function may be a poor guide to its overall shape, so it may be better off to simply follow

¥ Glosten ez al. ’s [4] TARCH model is applied with & = 2.
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the gradient. The correction may provide a better performance at locations far from the optimum,
and allows for computation of the direction vector in cases where the Hessian is near singular.

The quasi-maximum likelihood estimator (QMLE) is used, as according to Bollerslev and
Wooldridge [42], it is generally consistent, has a limiting normal distribution and provides
asymptotic standard etrors that are valid under non-normality.

In order to. compute the sum of squared standardized one step ahead prediction errors, a
rolling sample of constant size equal to 500 is used, or 7= 500, so 300 one step ahead daily
forecasts ate estimated. The out-of-sample data set is split into five subperiods and the SPEC
model selection algorithm is applied in each subperiod separately. Thus; the model selection is
revised every 60 trading days and the information set includes daily continuously compound
returns of the two most recently years, or 500 trading days. The choice of a 60-day length
for each subperiod is arbitrary. The sum of the squared one step ahead prediction errors,
Sl (B_y), is estimated for each model and presented in Table Al in Appendix A. The
models selected for each subpetiod and their sums of the squared standardized one step ahead
prediction errors are:

Subperiod : Model Selected min (2{;;“ (éﬁ,_l))
1. 25 August 199516 November 1995 AR(2) EGARCH(0,1) 21.961
2. 17 November 1995-13 February 1996 AR(0) EGARCH(0,1) 76.315
3. 14 February 1996-14 May 1996 AR(0) EGARCH(0,1) 42.176
4. 15 May 1996-8 August 1996 AR(3) EGARCH(0,1). 27.308
5.9 August 1996-4 November 1996 - - AR(1) EGARCH(0,1) 43.920

According to the SPEC selection method, the exponential GARCH(0,1) model describes best
the conditional variance for the total examined period of 300 trading days. It is selected by the
SPEC selection method in each subperiod. Figure 1 shows the daily value of the ASE index and
the one step ahead conditional standard deviation of its returns, .-

Despite the fact that an asymmetric model is selected by the SPEC algorlthm there are no
asymmetries in the ASE index volatility. According to Figure 1, the major episodes of high
volatility are not associated with market changes of the same sign. Figure 2 presents the values
of the parameters a; and y, of the 300 estimated EGARCH(0,1) models, while Figure 3 depicts
the relevant standard errors for the parameters @, and y;. Obviously, the y; parameter, which
allows for the asymmetric effect, is positive but statistically insignificant.  Therefore, the
asymmetric relation between returns and changes in volatility does not characterize the
examined period.

An interesting point is that the higher order of the conditional mean autoregressive process is
chosen as adequate to produce more accurate predictions for the first and the fourth subperiods.
As concerns the first subperiod, the AR(2)EGARCH(0,1) model

Ye=coF 1Yl + Yot &

26
il (52) e
~1 /1 Or-1)

g
In(0?) = ap+ a1 -—
B -
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Figure 1. The ASE index and the one step ahead conditional standard deviation of its returns estimated by
the EGARCH(0,1) models.
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Figure 2. The parameters of the estimated EGARCH(0,1) models.

is the one with the lowest value of Y sy (£3,_1) equal to 21.961. The hypothesis:

Ho: The model AR(2)JEGARCH(0,1) has equivalent predictive ability to model X is tested
Versus.

H;: The model AR(2)JEGARCH(0,1) produces ‘better’ predictions than model X, with X
denoting any one of the remainder models.

Note that the correlation between the standardized one step ahead prediction errors is greater
than 0.9 in each case. If Zg FOARHODY = (21 96)~1 32754 207 > CGR(k = 30, p > 0.9,4),
the null hypothesis of equivalent predictive ability of the models is rejected at 100a% level of
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Figure 3. The standard error for the parameters of the estimated EGARCH(0,1) models.

significance and the AR(2)EGARCH(0,1) model. is. regarded as ‘better’ than model X.
Table AIlL in Appendix A, summarizes the results of the hypothesis tests, for each subperiod.

Figure Al, in Appendix A, depicts the one step ahead 95% prediction intervals for the models
with the lowest "7 | (£2,)) in each subperiod. The prediction intervals are constructed as the
expected rate of return plus\minus 1.96 times the conditional:standard deviation, both
measurable to ¢ — 1 information set: fi .1 + 1.9664._1. So, each time next day’s prediction
interval is plotted, only information available at current day is used. Remark that around
November 1995, a volatile period, the prediction interval in Figure Al tracked the movement of
the returns quite closely (seven outliers, or 2.33%, were observed).

6. AN ALTERNATIVE APPROACH

In this section an in-sample analysis is performed in order to select the appropriate models
describing the data. Then, the selected models are used to estimate the one step ahead forecasts.
Having assumed that the conditional mean of the returns follows a kth order autoregressive
process, as in (2), Richardson and Smith [43] developed a test for autocorrelation. It is a robust
version of the standard Box Pierce [44] procedure. For p; denoting the estimated autocorrelation
between the returnsat time ¢ and ¢ — i, the test is formulated as

RSH=T3 1”'
i=1

2
+ ¢ @n
where T is the sample size and ¢; is the adjustment factor for heteroscedasticity, which is
calculated as

C -2, 52
= Cov0; ,v,z..) 28)
Var(y,)
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where j, =3y — T~! E,Txl v Under the null hypothesis-of no autocorrelation, the statistic is
asymptotically distributed as x> with r degrees of freedom..If the null hypothesis of no
autocorrelation cannot “be- rejected, then the returns’ process is ‘equal to a constant plus the
residuals, ¢;. In other words; {y,} follows the AR(0) process. If the null of no autocorrelation is
rejected, then {y;} follows the AR(1) process. In order to test for the existence of a higher order
autocorrelation, the test is applied on the estimated residuals from the AR(1) model. In this
case, the statistic, under the null hypothesis, -is asymptotically" distributed ‘as y* with r — 1
degrees of freedom. The test is calculated on seven autocorrelations (r = 7) for 800 observations
yielding a value equal to RS(7) = 14,86 > 13, os. As thenull hypothesis of o autocorrelation is
rejected the test is run on the estimated residuals from the AR(1) model that gives RS(6) =
12,33 < Xeoos Thus, a first-order autocorrelation is detected for the returns’ process. Note that
the AR(1) form allows for the autocorrelation imposed by discontinuous trading.

Having defined the conditional mean equation, the next step is the estimation of the
conditional variance function. The AIC and the SBC criteria are used to select the appropriate
conditional variance equation. Note that the AIC mainly chooses as best the less parsimonious
model. Also, under certain regularity conditions, the SBC is consistent, in the sense that for
large samples it leads to the correct model choice, assiming the ‘true’ model does belong to the
set of models examined. Thus, the SBC may be preferable to use. As concerns the specific data
set, both the AIC and SBC select the GARCH(1,1) model as the most appropriate function to
describe the conditional variance. So, performing an ir-sample analysis the AR(1)GARCH(1,1)
model is regarded as the most suitable; which is the model applied in most researches. Figure
A2; in Appendix A, presents the-in-sample 95% confidence interval for the AR(I)GARCH(I 1)
model. There are 14 observations, or 4.66%; outside the confidence interval.

In order to.compare the model selection: methods, the-choice of :the models should be
conducted at the same time. points. Thus, the Richardson -Smith-test for autocorrelation
detection and the information criteria for model selection are used: in each subperiod separately
The models selected for in each subperiod are:

Subperiod Richardson Smith SBC AIC
model selection model selection model selection
L. AR@3) GARCH(1,1) EGARCH(1,2)
2. AR(2) GARCH(2,1) GARCH(2,1)
3. AR(0) GARCH(1,1) ) GARCH(1,1)
4. AR(0) GARCH(1,1) GARCH(l1,1)
5.

AR(0) - GARCH(L,1) TARCH(1,1)

Based on Table All, the hypothesis that. the model selected by the in-sample analysis is equi-
valent to the model with minimum value of Z,ﬂ T41 @ 7ii—1) 18 rejected in the majority of the cases.

Proceeding as in the previous section, the one step ahead prediction intervals, for the models
selected in each subperiod, are created. As in Section 5, next day’s prediction is based only on
information available at current day. Figures A3 and A4 in Appendix A, present the one step
ahead 95% prediction intervals for the models selected by the SBC and AIC, respectively. There
are 13 observations, or 4.33%, outside the prediction interval for the models selected by the
SBC, whereas there are 14 outliers, or 4.66%, for the models selected by the AIC. Therefore, the
importance of selecting a conditional variance model based on its ability to forecast and not on
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fitting the data gains a lead over. Of course, the construction of the prediction intervals is a naive
way to.examine the accuracy of our method’s predictability.

7. DISCUSSION

An alternative model selection approach, based on the CGR distribution, was introduced.
Instead of being based on evaluating: the ability of the models to describe the data (Akaike
information and Schwarz Bayesian criteria), the proposed approach is based on evaluating the
ability of the models to predict the conditional variance. The method was applied to 800 daily
returns of the ASE index, a data set covers thé period from August 30th,. 1993 to November 4th,
1996. The first T observations were used to estimate the one step ahead prediction ‘of the
conditional mean and variance at 7'+ 1. For T = 500, a total of 300 one step ahead predictions
of the conditional mean and variance were obtainied. The out-of-sample data set was split into
subsets, one for each of five subperiods and the SPEC model selection algorithm was applied in
each subperiod separately. Thus, the model selection was revised every 60 trading days.

The idea of ‘jumping’ from one model to another, as stock market behaviour alters, is
introduced. The transition from one model to-another is‘done according to the SPEC model
selection algorithm. Each time the model selection method is applied, the model is used to
predict the conditional variance is revised. Of course, the idéa of switching from one regime to
another has been already applied to the class of switch regime ARCH models introduced by Cai
[15] and Hamilton and Susmel [16] and extended by several authors such as Dueker [45] and
Hansen [46]. However, these models allow the parameters of a specific ARCH model to come
from one of several different regimes, with transitions between regimes governed by an
unobserved Markov chain,

Using an alternative approach, based on evaluatmg the ability of fitting the data, the
conditional mean is first modelled and subsequently, an appropriate form for the conditional
variance is chosen. Applying the SPEC model selection algorithm, the:null hypothesis, that the
model selected by the m-sample analysis is equivalent to the model with minimum value of
Z,_T 41 (2,‘, D, is rejected in the plurality of the cases at less than 5% level of significance. The
in-sample model selection methods and the predictability-based method do not coincide in the
sifting of the appropriate conditional variance model. Moreover, 2.33 and 4.33% of the data
were outside the fy_ + 1.966,-1 prédiCtion interval constructed based on the SPEC and the
SBC model selection methods, respectively.

The predictive ability of the SPEC model selection algorithm has to be further investigated,
Among the financial applications where this method could have a potential use are in the fields
of portfolio analysis, risk management and trading option derivatives.

APPENDIX A

The sum of the squared one step ahead prediction errors, Y712 w1 (&3,_), is estimated for each
model and presented in Table AL

Table AII summarizes the results of the hypothesis tests, for each subperiod.

The percentage points of the CGR distribution is presented in Table AIIL
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Table AIIL. Percentageé points of the CGR distribution for a=0.05.

PO ] e TR
we)= [y @i () o] ermiea

k 0.00 0.05. 0.10 0.15. - 020 0.25 0.30 0.35 0.40 0.45

1 19202 19.158 - 19.02° 18.808  18.50 18.109  17.62 17.06 16.40 15.663
2 6.388 6.377° 6342 6.283 6.202 6.097 5.968 5.816 5.64 5.441
3 4.284 4271 4.257 4.224 4.177 4.117 4.043 3.956 3.855 3.74

4 3438 3.433 3.419 3.396 3.362 332 3.267 3.205 3.133 3.051
5 2.978 2.975 2.963 2.945 2.919 2.885 2.844 2.795 2739 -2.674
6
7
8

2.687 2.684 2.674 2:659 2.637 2.609 2.575 2.535 2.487 2434

2.484 2.481 2473 2.46 2.441 2417 2.388 2.353 2.312 2.265

2.333 2.331 2.324 2312 2.296 2.275 2.249 2.218 2.182 2.141

9 - 2217 2215 2.209 2.198 2.184 2.164 2.141 2:113 2.081 2.044
10 2.124 2.122 2.117 2.107 2.093 2.076 2.055 2.029 2 1.966
11 2.048 2.046 2.041 2,032 2.019 2.003 1.984 1.96 1.933 1.902
12 1.984 1.982 1.977 1.969 1.957 1.943 - 1.924 - 1902 1.877 1.848
13 1.929 1.928 1.923 1.915 1.905 1.891 1.874 1.853 1.829 1.802
14 1.882 1.881 1.876 1.869 1.859 1.846 1.83 1.81 1.788 1.762
15 1.841 1.84 1.835 1.829 1.819 1.807 1.791 1773 1.752 1727
16 1.804 1.803 1.799 1.793 1.784 1.772 1.757 174 1.72 1.697
17 1.772 1.771 1.767 1.761 1.752 1.741 1.727 1711 1.691 1.669
18 1.743 1.742 1.738 1.732 1.724 1.713 1.7 1.684 1.666 1.644
19 1.717 1.716 1.712 1.706 1.698 1.688 1.675 1.66 1.643 1.622
20 1.693 1.692 1.688 1.683 1.675 1.665 1.653 1.638 1.621 1.602
21 1.671 1.67 1.667 1.661 1.654 1.644 1.633 1.619 1.602 1.583

22 1.651 1.65 1.647 1.642 1.635 1.625 1.614' 1.6 1.584 1.566
23 1.632 1.631 1.629 1.624 1.617 1.608 1.597 1.584 1.568 1.55
24 1L.615 1.614 1.612 1.607 1.6 1.591 1.581 1.568 1.553 1.536

25 1.599 1.599 1.596 1.591 1.585 1.576 1.566 1.553 1.539 1.522
26 1.585 1.584 1.581 1.577 1.57 1.562 1.552  1.54 1.526 1.51

27 1571 - 157 1.567 1.563 1.557 1.549 1.539 1,527 - 1.514 1.498
28 1.558 1.557 1.555 1.55 1.544 1.536 1.527 1.515 1.502 1.487
29 1.546 1.545 1.542 1.538 1.532 1.525 1.516 1.504 1.491 1.476
30 1.534 1.534 1.531 1.527 1.521 1.514 1.505 1.494 1.481 1.466
35 1.486 1.485 1.483 1479 . 1474 1.467 1.459 1.449 1.438 1.425
40 1.448 1.447 1.445 1.442 1.437 1.431 1.424 1.415 1.404 1.392
45 1.417 1.416 1.415 1.412 1.407 1.402 1.395 1.386 1.377 1.366
50 1.392 1.391 1.389 1.387 1.383 1.377 1.371 1.363 1.354 1.344
55 1.37 1.37 1.368 1.365 1.362 1.357 1.351 1.343 1.335 1.325
60 1.352 1.351 1.35 1.347 1.344 1.339 1.333 1.327 1.319 1.309

k 0.50 0.55." 060 . +0.65 070 »0.75 " 080~ - 085 090 - 095

14835  13.92 1291 11.83 10.65 9.392 8.041 6.596 5.049 3.368
5.217 4.969 4.696 4.397 4.072 3.719 3.336 2.919 2.456 1.923
3.611 3.467 3.309 3.135 2.944 2.736 2.507 2.255 1.971 1.633
2.959 2.856 2.742 2.616 2478 2.327 2.159 1.973 1.76 . 1503
2:601 2,52 2429 233 2.22 2.098 1.964 1.813 1.64 1.428
2373 2.305 2.229 2.145 2.053 1.951 1.837 1.709 1.56 1.377
22137 2154 2.088 2.016 1935 1.846 1.747 1.634 1.503 1.34
2.094 2.042 1984 1919 1.847 1.768 1.679 1.578 1.46 1.312

[ . O N
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° 'Table AIlL. Continued.

P

9 2.002 1.954 1.902 1.843.. 1779 1.706 1.625 1.533 1.425 1.29
10 1.927 1.884 1.836 1.783 1723 1.657 1.582 1.497 1.397 1.272
11 1.866 1.826 1.782 1.732, 1.677 1.616 1.546 1.467 1.374 1.256
12 1.815 © 1.778 1.736 1.69 1.638 © "1.581° ° 1.516 1442 1354 1.243
13 L7711 1.736 1.697 1.654: . 1.605 1.551 1.49 142 . 1.337 1.232

14 1.733 1.7 1.663 1.622 1.577 - '1.525 1467~ 1.401 1.322 1.222
15 1.7 1.669. 1.634 1.595 - 1.551 1.502 1.447 1.384 1.309 1.213
16 1.67 1.641 1.607 1.57". 1.529 - 1.482 143 1.369 1.297 1.205
17 1.644 1616 1.584 1.548. - .1.509 1.464 1.414 1.356 1.287.  1.198
18 1.62 1.593 1.563 1.529 1.491 1.448. - 1.399- -~ 1.344 1.277 1.192
19 1.599 1573+ 1.544. - 1511 1474 1,433 - 1.386. - -1.333 1.269 1.186
20 1.58 1.554 1.526 1.495 - 1.459 1.42. 1.375 1.323 1.261 1.181
21 1.562° - 1.538 1.51- 1.48 1.446 1.407 1.364 1.313 1.253 1.176

22 1.545 1,522 1.496 1.466: 1.433 1.396 1.354. 1.305 1.247 1.171
23 1.53 1.508 1.482 1.454 1421 1.385 1.344. 1.297 1.24 1.167
24 1.516 1.494 1.47 1.442 1.411 1.376 1.336 1.29 1.234 1.163
25 1.503 1.482 1.458 1431 1.401 1.367 1.328 1.283 1.229 1.159
26 1.491 1.47 1.447 1.421 1.391 -  1.358 132, 1276 1.224 1.156
27 1.48 1.46 1.437 1.411 1.382.  1.35 1.313, 1.27 1.219 1.153
28 1.469 1.449 1.427 1.402 1.374 1.343 1.307 1.265. 1.215 L15
29 1459 | 144 1.418. 1.394 - 1.366 1.336 1.3 1.26 1211 - 1147
30 1.45 1.431 1.41 1.386 1.359 1.329 1.294 1.255 1207 - 1144
35 1.41 1.393 1.374 1.352 1328 1.301 1.269 1.233 1.189 1.132
40 1.378 1.363 1.345 1.326.- - 1.303 1.278 1.25 1.216 1.176 1.123
45 1.353 1.339 1322 1.304 1.283 1.26 1.233- - 1202 1.165 1.116
50 1.332 1.318 1.303 1.286. 1.267 1245 .- 122 1191 1.156 1.109
55 1.314 1.301 1.287 - 1.271 1.253 1.232 1.209 1.181 1.148 1.104
60 1.299 1.287 1.273 1.258 - 1.241 1.221  1.199 1.173 1.141 1.099

Figure A1 depicts the one step ahead 95% predactlon mtervals for the models w1th the lowest

R (£3,_,) in each subperiod.

% - —
08/95 09785 10/95 “ISS 12/95 01/96. nzm 03/96 04/96 05/96 06/96 07/96 08196 09/96 10/96

Figure Al. One step ahead 95% forecasted interval for the models with the lowest sum of the squared
standardized one step ahead prediction errors.
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Figure A2 presents the in-sample 95% confidence interval for the AR(1)GARCH(1,1) model.

Figures A3 and A4 present the one step ahead 95% prediction intervals for the models
selected by the SBC and AIC, respectively.

The probability density function of the CGR distribution is presented in Figure AS.

% i

\
- Adh J I\TKM B N A 4
¥ agoA. ,’.\'-N\’ R e A A v St
e 0 0af 2490 3 o g, S% P
*

o 36 ° o

[ ooks  10:5 1795 1295 o6 0296 . 0396 04198 05196 06196 27 08196 09796 1096

Figure A2. In-sample 95% confidence interval for the AR(1) GARCH(1,1) model.
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Figure A3. One step ahead 95% forecasted intervals for the models selected by the SBC.
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Figure A4. One step ahead 95% forecasted intervals for the models selected by the AIC.
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i(2)

W 0.000
I 0.518
- 0.309
BEE 1.100
1.391
1,682
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. 2264
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25846
I above
k=30
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3.00 T
250 —
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200+ ; .

1.50
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z
e =01 = ==p=05 ——p=07 ----- p=0.9
Figure AS5. The probability density function of the CGR distribution.
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