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Introduction

This presentation surveys the theory and empirical evidence on
GARCH option valuation models.
GARCH models are used extensively in all area of finance capturing
the heteroskedasticity of returns.

We focus on the implementation of this class of models for the
valuation of derivative contracts, in particular of options.

Our treatment includes:

Modeling issues including possible volatility dynamics and non-normal
innovations.
Different pricing kernels typically used.
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Introduction

Why GARCH models in option pricing?
There is extensive empirical evidence that time-varying volatility and
volatility clustering is important to model index and equity returns, and
thus index and equity options.
Discrete-time GARCH models are straightforward to implement
because:

In GARCH models the volatility is readily observable from the history of
asset returns. This is not true with continuous-time models in which it
is impossible to exactly filter it from discrete-time past observations.
This facilitates the estimation of the model (through maximum
likelihood) and it is particularly important when conducting
out-of-sample option valuation exercises.
For several GARCH models (which dominate the literature) a
closed-form option valuation formula exists. For others (less used) one
can apply a Monte Carlo simulation approach.

The survey will present, in chronological order, the most important
studies in the field focusing on their innovations, similarities and
differences.
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Duan (MF, 1995) I
The model

Duan (MF, 1995) is among the first papers that establish this field of
research.

For the reminder of this presentation define as rt = ln (St/St−1) the
one-period log-return of a financial asset and ht = VarPt−1 (rt ) its
conditional (on Ft−1) variance.
Duan assumes a simple GARCH(1,1) model under the physical
measure P:

rt = r + λ
√
ht −

1
2
ht + εt , εt |Ft−1 ∼ N (0, ht )

ht = w + bht−1 + aε2t−1

where r is the one-period continuously compounded risk-free rate and
λ is the price of risk.
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Duan (MF, 1995) II
The model

EPt−1 (rt ) ≡ mt = r + λ
√
ht − 1

2ht
VarPt−1 (rt ) = ht which is Ft−1-measurable.
CovPt−1 (rt , ht+1) = aE

P
t−1
(
ε3t
)
= 0, due to the normality assumption.

So, variance and returns are not correlated. This is not in line with
empirical evidences indicating that these two variables are negatively
correlated. When returns decrease, market volatility increases.

Also, to see why term − 12ht appear in the mean equation and why λ
is the price of risk write the conditional expected gross rate of return
as:

EPt−1

(
St
St−1

)
= EPt−1 (e

rt ) = er+λ
√
ht− 1

2 ht+
1
2 ht = er+λ

√
ht
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Duan (MF, 1995) I
Probability measure transformation

To valuation of derivative contracts lies on the transformation of the
physical probability measure to the risk-neutral one.

The physical measure P summarizes the actual probabilities of
occurrence of future events.
The risk-neutral measure summarizes the probabilities of occurrence of
future events as if investors were risk-neutral (i.e., they do not ask for a
reward to take on risk).
Derivative contracts are valued under the risk-neutral measure (mainly
for convenience). This generates a risk-neutral valuation
relationship (RNVR) which relates the value of the derivative to the
value of the underlying asset and other variables.

However, to move from the physical to the risk-neutral measure we
need either:

to specify the risk preferences of a representative investor.
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Duan (MF, 1995) II
Probability measure transformation

or to assume a class of Radon-Nikodym derivatives and specify an
equivalent martingale measure (EMM) in this class.

Duan followed the first approach assuming the existence of a
representative investor with a utility function of constant relative risk
aversion coeffi cient and the consumption growth ∆ct = ln(Ct/Ct−1)
is normally distributed with constant mean and variance.

Under this assumption the stochastic discount factor (or pricing
kernel) is given as:

M (Ct−1,Ct ) = e−ρ U ′ (Ct )
U ′ (Ct−1)

= e−ρe−γ∆ct

where ρ is the impatience factor and γ is the relative risk aversion
coeffi cient.
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Duan (MF, 1995) III
Probability measure transformation

The standard expected utility maximization argument leads to the
following equation:

St−1 = EPt−1 (M (Ct−1,Ct ) St )

for the risky financial asset and

e−r = EPt−1 (M (Ct−1,Ct ))

for the risk-free asset.
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Duan (MF, 1995) IV
Probability measure transformation

Based on this stochastic discount factor (SDF) define the
Radon-Nikodym derivative:

dQ
dP
|Ft = exp

(
rt +

t

∑
j=1
lnM (Cj−1,Cj )

)

so that:

EQt−1 (St ) = e
rEPt−1 (M (Ct−1,Ct ) St ) = e

rSt−1

indicating that under measure Q the (discounted) asset price follows
a martingale.

The new measure Q is known as the risk-neutral or equivalent
martingale measure.
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Duan (MF, 1995) I
The model under the risk-neutral measure

The next step is to examine the dynamics of the return and variance
processes under Q.

To do so we consider the conditional moment generating function
(MGF) of rt under Q:

EQt−1 (e
urt )

= erEPt−1 (e
urtM (Ct−1,Ct ))

= erEPt−1
(
eurt−ρ−γ ln(Ct/Ct−1)

)
= er e−ρEPt−1

(
eurt−γ ln(Ct/Ct−1)

)
= er e−ρ exp

(
umt +

u2

2
ht − γµc +

γ2

2
σ2c − uγCovt−1 (rt ,∆ct )

)
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Duan (MF, 1995) II
The model under the risk-neutral measure

= exp
(
r − ρ− γµc +

γ2

2
σ2c

)
︸ ︷︷ ︸

=1

exp
(
u (mt − γCovt−1 (rt ,∆ct )) +

u2

2
ht

)
= exp

(
u (mt − γCovt−1 (rt ,∆ct )) +

u2

2
ht

)
.

Set u = 1, then,

er = EQt−1 (e
rt ) = exp

(
mt − γCovt−1 (rt ,∆ct ) +

1
2
ht

)
so that,

exp
(
r − 1

2
ht

)
= exp (mt − γCovt−1 (rt ,∆ct ))
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Duan (MF, 1995) III
The model under the risk-neutral measure

Substituting in the last formula yields:

EQt−1 (e
urt ) = exp

(
u
(
r − 1

2
ht

)
+
u2

2
ht

)
.

This result indicate that rt is (conditional) normally distributed under
Q with mean r − 1

2ht and variance ht .

So we can write the return process as:

rt = r −
1
2
ht +

(
εt + λ

√
ht
)
= r − 1

2
ht + ε∗t , ε∗t |Ft−1 ∼ N (0, ht )

and

ht = w + bht−1 + a
(

ε∗t−1 − λ
√
ht
)2

Implications:
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Duan (MF, 1995) IV
The model under the risk-neutral measure

The conditional variance remains the same under both measures.
The unconditional mean of the variance is now equal to

EQ (ht ) = w/
(
1−

(
1+ λ2

)
a− b

)
. Compared to the unconditional

mean under P, EQ (ht ) = w/ (1− a− b), it is now larger.
The preference parameter λ does not disappear completely under risk
neutralization. It appears in the variance process albeit not in the mean
equation. Duan call that local risk neutralization.
CovQt−1 (rt , ht+1) = −2aλh3/2

t so that if λ > 0,

CovQt−1 (rt , ht+1) < 0.

X (Athens University of Economics and Business)GARCH option pricing: A review 07/18 13 / 58



Duan (MF, 1995) I
Option pricing

Unfortunately, this model does not generate an analytic option pricing
formula.

This is due to the fact that the conditional distribution of returns over
more than one period cannot be analytically derived.

In that case, a Monte Carlo simulation approach is used.

X (Athens University of Economics and Business)GARCH option pricing: A review 07/18 14 / 58



Duan (MF, 1995) I
Alternative characterization of the transformation

Christoffersen, Jacobs and Ornthanalai (2012) indicate that one could
get the same results by defining the Radon-Nikodym derivative as:

dQ
dP
|Ft = exp

(
−

t

∑
j=1

(
εj√
hj

λ+
1
2

λ2

))

This corresponds to the second approach in which we do not specify a
particular economic environment but a suitable transformation that
makes the (discounted) asset price to be a martingale.
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Duan (MF, 1995) II
Alternative characterization of the transformation

Measure Q is an EMM since:

EQt−1

(
St
St−1

)
= EQt−1 (e

rt ) = EPt−1

(
ert exp

(
−
(

εt√
ht

λ+
1
2

λ2
)))

= EPt−1

(
exp

(
r + λ

√
ht −

1
2
ht + εt −

(
εt√
ht

λ+
1
2

λ2
)))

= exp
(
r + λ

√
ht −

1
2
ht −

1
2

λ2
)
EPt−1

(
exp

(
1− λ√

ht

)
εt

)
= exp

(
r + λ

√
ht −

1
2
ht −

1
2

λ2
)
exp

((
1− λ√

ht

)2 ht
2

)
= er
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Duan (MF, 1995) III
Alternative characterization of the transformation

Examining once more the MGF of rt under Q we can uncover its
distribution:

EQt−1 (e
urt )

= EPt−1

(
eurt exp

(
−
(

εt√
ht

λ+
1
2

λ2
)))

= exp
(
u
(
r + λ

√
ht −

1
2
ht

)
− 1
2

λ2
)
EPt−1

(
exp

(
u − λ√

ht

)
εt

)
= exp

(
u
(
r + λ

√
ht −

1
2
ht

)
− 1
2

λ2
)
exp

((
u − λ√

ht

)2 ht
2

)

= exp
(
u
(
r − 1

2
ht

)
+
u2

2
ht

)
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Duan (MF, 1995) IV
Alternative characterization of the transformation

which indicates once more that rt |Ft−1 ∼ N
(
r − 1

2ht , ht
)
under Q,

thus reaching exactly the same results to Duan.
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Heston and Nandi (RFS, 2000) I
The model

Heston and Nandi (RFS, 2000) pointed out two deficiencies of Duan
model: (1) Zero correlation between returns and variance under the
physical measure, (2) No closed-form option pricing formula.

They propose a GARCH model which accounts for these two issues:

rt = r + λht +
√
htzt︸ ︷︷ ︸
=εt

, zt |Ft−1 ∼ N (0, 1)

ht = w + bht−1 + a
(
zt−1 − γ

√
ht−1

)2
where r is the one-period continuously compounded risk-free rate and
λ is the price of risk.

EPt−1 (rt ) ≡ mt = r + λht .
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Heston and Nandi (RFS, 2000) II
The model

VarPt−1 (rt ) = ht which is Ft−1-measurable. The unconditional
variance is EP (ht ) = (w + a) /

(
1− b− aγ2

)
.

CovPt−1 (rt , ht+1) = −2aγht . If γ > 0 then CovPt−1 (rt , ht+1) < 0, so,
variance and returns are now negatively correlated. This result implies
that the distribution of multi-period ahead returns deviate from
normality. In fact, the non-zero covariance between returns and
variance generates skewness for the multi-period ahead returns.

The model has a continuous-time limit. As the time interval goes to
zero it converges weakly to Heston (1993) stochastic volatility model.
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Heston and Nandi (RFS, 2000) I
Probability measure transformation

In transforming the model from the physical to the risk-neutral
measure, Heston and Nandi followed Duan (1995), though they did
not model explicitly the economic environment. All they assumed is
that innovation process preserves normality under the risk-neutral
measure.

Christoffersen, Jacobs and Ornthanalai (2012) indicate that their
approach is equivalent to assuming the Radon-Nikodym derivative:

dQ
dP
|Ft = exp

(
−

t

∑
j=1

(
λ+

1
2

)
εj +

1
2

(
λ+

1
2

)2
hj

)
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Heston and Nandi (RFS, 2000) II
Probability measure transformation

Measure Q is an equivalent martingale measure since:

EQt−1

(
St
St−1

)
= EQt−1 (e

rt ) = EPt−1

(
ert exp

(
−
((

λ+
1
2

)
εt +

1
2

(
λ+

1
2

)2
ht

)))

= EPt−1

(
exp

(
r + λht + εt −

((
λ+

1
2

)
εt +

1
2

(
λ+

1
2

)2
ht

)))

= exp

(
r + λht −

1
2

(
λ+

1
2

)2
ht

)
EPt−1

(
exp

(
1− λ− 1

2

)
εt

)

= exp

(
r + λht −

1
2

(
λ+

1
2

)2
ht

)
exp

((
1
2
− λ

)2 ht
2

)
= er
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Heston and Nandi (RFS, 2000) I
The model under the risk-neutral measure

Examining once more the MGF of rt under Q we can uncover its
distribution:

EQt−1 (e
urt )

= EPt−1

(
eurt exp

(
−
((

λ+
1
2

)
εt +

1
2

(
λ+

1
2

)2
ht

)))

= exp

(
u (r + λht )−

1
2

(
λ+

1
2

)2
ht

)
EPt−1

(
exp

(
u − λ− 1

2

)
εt

)

= exp

(
u (r + λht )−

1
2

(
λ+

1
2

)2
ht

)
exp

((
u − λ− 1

2

)2 ht
2

)

= exp
(
u
(
r − 1

2
ht

)
+
u2

2
ht

)
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Heston and Nandi (RFS, 2000) II
The model under the risk-neutral measure

This result indicate that rt is (conditional) normally distributed under
Q with mean r − 1

2ht and variance ht .

So we can write the return process as:

rt = r −
1
2
ht +

(
εt +

(
λ+

1
2

)
ht

)
︸ ︷︷ ︸

=ε∗t

, ε∗t |Ft−1 ∼ N (0, ht )

and z∗t = ε∗t /
√
ht =

(
εt +

(
λ+ 1

2

)
ht
)

/
√
ht = zt +

(
λ+ 1

2

)√
ht so

that:

ht = w + bht−1 + a
(
z∗t−1 −

(
λ+

1
2

)√
ht−1 − γ

√
ht−1

)2
= w + bht−1 + a

(
z∗t−1 − γ∗

√
ht−1

)2
with γ∗ = γ+ λ+ 1

2 . As λ > 0 this implies that γ∗ > γ.
X (Athens University of Economics and Business)GARCH option pricing: A review 07/18 24 / 58



Heston and Nandi (RFS, 2000) III
The model under the risk-neutral measure

Implications:

The conditional variance remains the same under both measures.
The unconditional mean of the variance is now equal to

EQ (ht ) = (w + a) /
(
1− b− a (γ∗)2

)
. Compared to the

unconditional mean under P, it is now larger.
Since γ∗ > γ the covariance between returns and variance is stronger
under the risk-neutral measure.

Heston and Nandi pointed out that in this environment the
Black-Scholes model may give misleading indications to investors.

As the unconditional mean of ht is higher under the risk-neutral
measure than under the physical one, this means that the implied
volatility will be typically higher than the expected future variance.
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Heston and Nandi (RFS, 2000) IV
The model under the risk-neutral measure

In this case an investor using the Black-Scholes formula will
incorrectly perceive an investment opportunity from selling and
delta-hedging volatility sensitive option positions (e.g., long-term
at-the-money straddles).

However, in the event of a sharp market downturn, the variance would
rise significantly (due to the negative correlation) causing the short
option position to lose considerable value.
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Heston and Nandi (RFS, 2000) I
Option pricing

In contrast to Duan’s model this model has a closed-form option
pricing formula.
This valuation formula is based on the MGF of the logarithm of asset
price xT = ln ST over more than one period ahead.
Consider a European call option with strike price K and maturity
period T . Standard no-arbitrage arguments imply that the current
price of the option is given as:

Ct (K ,T )

= e−r (T−t)EQt (max (ST −K , 0))

= e−r (T−t)
∞∫

lnK

(exT −K ) f Qt (xT ) dxT

= e−r (T−t)
∞∫

lnK

exT f Qt (xT ) dxT − e−r (T−t)K
∞∫

lnK

f Qt (xT ) dxT
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Heston and Nandi (RFS, 2000) II
Option pricing

Define gQt (xT ) = e
xT f Qt (xT ) /EQt (exT ) so that we can write the

first integral as:

Ct (K ,T ) = e−r (T−t)EQt (e
xT )

∞∫
lnK

gQt (xT )dxT −

−e−r (T−t)K
∞∫

lnK

f Qt (xT ) dxT
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Heston and Nandi (RFS, 2000) III
Option pricing

Define the (conditional) MGF of f Qt (xT ) under Q as
ϕ(u) ≡ ϕ(t,T ; u) = EQt (e

uxT ), then the MGF of gQt (xT ) is given as:

ϕ∗(u) =
∫
euxT gQt (xT )dxT =

1
ϕ(1)

∫
e(u+1)xT f Qt (xT ) dxT

=
ϕ(u + 1)

ϕ(1)

Kendall and Stuart (1977) shows that we can calculate probabilities
by inverting the characteristic function:

∞∫
lnK

f Qt (xT ) dxT =
1
2
+
1
π

∞∫
0

Re
[
e−iu lnK ϕ(iu)

iu

]
du
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Heston and Nandi (RFS, 2000) IV
Option pricing

so that we can write the option pricing formula as:

Ct (K ,T )

= e−r (T−t)ϕ(1)

1
2
+
1
π

∞∫
0

Re
[
e−iu lnK ϕ(iu + 1)

iuϕ(1)

]
du

−
−e−r (T−t)K

1
2
+
1
π

∞∫
0

Re
[
e−iu lnK ϕ(iu)

iu

]
du


The last formula is very general and can be applied to any model for
which we have a closed-form solution of the MGF of the log asset
price at expiration.

The major contribution of Heston and Nandi is that their model has
this property and thus option valuation is straightforward.
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Heston and Nandi (RFS, 2000) I
The MGF of the log asset price at expiration

First note that the MGF of one period ahead log asset price is:

ϕ(t, t + 1; u) = EQt (e
uxt+1) = exp

(
u
(
xt + r −

1
2
ht+1

)
+
u2

2
ht+1

)
so it is exponential affi ne on the state variables xt and ht+1.

We can also show (after tedious calculations) that the MGF of two
periods ahead log asset price xt+2 also exponential affi ne on xt and
ht+1.

Based on that we guess that the MGF of xT is also exponential affi ne
on xt and ht+1 and takes the form:

ϕ(t,T ; u) = EQt (e
uxT ) = exp (uxt + A(t,T ; u) + B(t,T ; u)ht+1)

The problem now is to solve for the coeffi cients A and B.
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Heston and Nandi (RFS, 2000) II
The MGF of the log asset price at expiration

For t = T we have that A(T ,T ; u) = B(T ,T ; u) = 0.
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Heston and Nandi (RFS, 2000) III
The MGF of the log asset price at expiration

Applying the law of iterated expectations to ϕ(t,T ; u) we get:

ϕ(t,T ; u)

= EQt
(
EQt+1 (e

uxT )
)
= EQt (ϕ(t + 1,T ; u))

= EQt (exp (uxt+1 + A(t + 1,T ; u) + B(t + 1,T ; u)ht+2))

= EQt

(
exp

(
u
(
xt + r −

ht+1
2
+
√
ht+1z∗t+1

)
+ A(t + 1,T ; u)

+B(t + 1,T ; u)
(
w + bht+1 + a

(
z∗t+1 − γ∗

√
ht+1

)2))
= exp

(
u
(
xt + r −

ht+1
2

)
+ A(t + 1,T ; u)

+ B(t + 1,T ; u) (w + bht+1))

EQt

(
exp

(
u
√
ht+1z∗t+1 + B(t + 1,T ; u)a

(
z∗t+1 − γ∗

√
ht+1

)2))
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Heston and Nandi (RFS, 2000) IV
The MGF of the log asset price at expiration

= exp
(
u
(
xt + r −

ht+1
2

)
+ A(t + 1,T ; u)

+ B(t + 1,T ; u) (w + bht+1))

exp

(
u2 − 4uaγ∗B(t + 1,T ; u) + 2a (γ∗)2 B(t + 1,T ; u)

2(1− 2B(t + 1,T ; u)a) ht+1

−1
2
ln (1− 2aB(t + 1,T ; u))

)
= exp (uxt + ur + A(t + 1,T ; u) + B(t + 1,T ; u)w

−1
2
ln (1− 2aB(t + 1,T ; u))

+
(
−u
2
+ B(t + 1,T ; u)b

+
u2 − 4uaγ∗B(t + 1,T ; u) + 2a (γ∗)2 B(t + 1,T ; u)

2(1− 2B(t + 1,T ; u)a)

)
ht+1

)
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Heston and Nandi (RFS, 2000) V
The MGF of the log asset price at expiration

The last formula implies that:

A(t,T ; u) = ur + A(t + 1,T ; u) + B(t + 1,T ; u)w

−1
2
ln (1− 2aB(t + 1,T ; u))

B(t,T ; u) = −u
2
+ B(t + 1,T ; u)b

+
u2 − 4uaγ∗B(t + 1,T ; u) + 2a (γ∗)2 B(t + 1,T ; u)

2(1− 2B(t + 1,T ; u)a)

This system of difference equations can be solved backwards using the
terminal conditions A(T ,T ; u) = B(T ,T ; u) = 0.
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Heston and Nandi (RFS, 2000) VI
The MGF of the log asset price at expiration

Note here that the original expressions of Heston and Nandi (2000)
contain some typos. Please refer to Christoffersen, Jacobs and
Ornthanalai (2012) for a revised version.

Why Duan’s model does not generate a closed-form option pricing
formula? Because it is a non-affi ne model.

A simple way to see that is to write the conditional variance of ht+2.
Under the GARCH(1,1) model this is equal to VarPt (ht+2) = 2a

2h2t+1
which is quadratic (not linear) on ht+1.

In contrast for the Heston-Nandi model it is given as
VarPt (ht+2) = 2a

2(1+ 2γ2ht+1) which is linear on ht+1.

X (Athens University of Economics and Business)GARCH option pricing: A review 07/18 36 / 58



Generalization of risk-neutralization I

Christoffersen, Elkamhi, Feunou and Jacobs (RFS, 2010) specify a
class of Radon-Nikodym derivatives and derive restrictions that ensure
the existence of an EMM.

They assume the following model under the physical measure P:

rt = µt −
1
2
ht + εt , εt |Ft−1 ∼ N (0, ht )

where µt and ht are Ft−1-measurable. The mean correction factor
− 12ht ensures that that the conditional expected gross rate of return
is equal to:

EPt−1

(
St
St−1

)
= eµt

Note here that we do not specify a particular variance process so that
this framework of analysis can fit in both models.
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Generalization of risk-neutralization II

Define the Radon-Nikodym derivative as:

dQ
dP
|Ft = exp

(
−

t

∑
j=1

µj − r
hj

εj +
1
2

(
µj − r
hj

)2
hj

)
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Generalization of risk-neutralization III

Measure Q is an EMM since:

EQt−1

(
St
St−1

)
= EQt−1 (e

rt ) = EPt−1

(
ert exp

(
−
(

µt − r
ht

εt +
1
2

(
µt − r
ht

)2
ht

)))

= EPt−1

(
exp

(
µt −

1
2
ht + εt −

(
µt − r
ht

εt +
1
2

(
µt − r
ht

)2
ht

)))

= exp

(
µt −

1
2
ht −

1
2

(
µt − r
ht

)2
ht

)
EPt−1

(
exp

(
1− µt − r

ht

)
εt

)

= exp

(
µt −

1
2
ht −

1
2

(
µt − r
ht

)2
ht

)
exp

((
1− µt − r

ht

)2 ht
2

)
= er
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Generalization of risk-neutralization IV

We can write the return process as:

rt = r −
1
2
ht + (εt + µt − r)︸ ︷︷ ︸

=ε∗t

, ε∗t |Ft−1 ∼ N (0, ht )

Both models are special cases of this general framework:

In Duan’s model µt = r + λ
√
ht so that

µt−r
ht

= λ/
√
ht .

In Heston and Nandi’s model µt = r + λht + 1
2ht so that

µt−r
ht

= λ+ 1
2 .
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Extensions I

The previous two models set the ground for this field of research.
Various extensions of these models were proposed in the following
years accounting for:

Non-normal innovations
Extending the pricing kernel accounting for other sources of risk
(volatility-dependent)
Adding extra components to provide a richer structure for the
conditional variance
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Non-normal innovations I
The model

Christoffersen, Heston and Jacobs (JoE, 2006) introduce a GARCH
model with inverse Gaussian innovations:

rt = r +
(
ζ + η−1

)
ht + εt

where εt = ηyt− η−1ht and yt ∼ IG
(
ht/η2

)
.

Note that E (yt ) = ht/η2, Var (yt ) = ht/η2, Skew(yt ) = 3η/
√
ht

and Exc.Kurt(yt ) = 15η2/ht .
These properties imply that:

EPt−1 (rt ) = r+
(
ζ + η−1

)
ht

VarPt−1(rt ) = ht
SkewPt−1(rt ) = 3η/

√
ht

Exc.KurtPt−1(rt ) = 15η2/ht
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Non-normal innovations II
The model

Parameter η controls for the sign of the skewness. If η < 0 then the
conditional skewness of the return process is negative.

The major difference between this model and that of Heston and
Nandi (2000) is that it assumes non-normality for the one period
ahead log-return distribution. Note, however here, that both models
generate non-normality for multi-period ahead log-return distributions.

Thus, the GARCH model with inverse Gaussian innovations captures
skewness in the short-term which is particularly important for valuing
short-term options.

The conditional variance process is defined as:

ht = w + bht + cyt + ah2t /yt

The model also implies a non-zero covariance between returns and
variance as CovPt−1 (rt , ht+1) = (c/η − η3a)ht . Thus a negative
covariance requires that c/η − η3a < 0.
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Non-normal innovations I
Probability measure transformation

Christoffersen, Heston and Jacobs (JoE, 2006) originally assume that
the pricing kernel is an exponential function of log-returns motivated
by the power utility function.

Later on, Christoffersen, Elkamhi, Feunou and Jacobs (RFS, 2010)
specify a class of Radon-Nikodym derivatives and derive restrictions
that ensure the existence of an EMM even when innovations are
non-normal.

They assume the following model under the physical measure P:

rt = µt − γt + εt , εt |Ft−1 ∼ D (0, ht )
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Non-normal innovations II
Probability measure transformation

where µt and ht are Ft−1-measurable and D is an (unspecified)
distribution. The mean correction factor exp(γt ) = E

P
t−1 (e

εt ) ensures
that that the conditional expected gross rate of return is equal to:

EPt−1

(
St
St−1

)
= eµt

The candidate Radon-Nikodym derivative takes the form:

dQ
dP
|Ft = exp

(
−

t

∑
j=1
(vj εj +Ψj (vj ))

)

where exp (Ψt (u)) = EPt−1 (e
−uεt ), so that Ψt (u) is defined as the

logarithm of the MGF.

Now γt = Ψt (−1).
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Non-normal innovations III
Probability measure transformation

They proved that measure Q defined by the previous Radon-Nikodym
derivative is an EMM if and only if:

Ψt (vt − 1)−Ψt (vt )−Ψt (−1) + µt − r = 0

This result implies that we can construct an EMM by the choosing
the process vt to make the previous condition to hold.

In the case of the inverse Gaussian innovations we have that:

Ψt (u) =
(
u +

1−√1+ 2uη

η

)
ht
η

and the EMM condition is now solved for the constant:

v = vt =
1
2η

(
(2+ ζη3)2

4ζ2η2
− 1
)
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Non-normal innovations I
The model under the risk-neutral measure

Again we can specify the return distribution by examining the MGF
under measure Q. We have:

EQt−1 (e
urt )

= EPt−1 (e
urt exp (−(v εt +Ψt (v))))

= EPt−1
(
exp

(
ur + u

(
ζ + η−1

)
ht + uεt − v εt −Ψt (v)

))
= exp

(
ur + u

(
ζ + η−1

)
ht −Ψt (v)

)
EPt−1

(
e(u−v )εt

)
= exp

(
ur + u

(
ζ + η−1

)
ht −Ψt (v)

)
exp (Ψt (v − u))

= exp
(
ur + u

(
ζ + η−1

)
ht −Ψt (v) +Ψt (v − u)

)
= exp

(
ur + uζht +

ht
η2
√
1+ 2vη

(
1−

√
1− 2uη

1+ 2vη

))
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Non-normal innovations II
The model under the risk-neutral measure

Set
η∗ =

η

1+ 2vη

h∗t
(η∗)2

=
ht
η2
√
1+ 2vη ⇒ h∗t =

ht
(1+ 2vη)3/2

and

ζ∗ = ζ
ht
h∗t
= ζ(1+ 2vη)3/2
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Non-normal innovations III
The model under the risk-neutral measure

so that

EQt−1 (e
urt )

= exp
(
ur + uζ∗h∗t +

h∗t
(η∗)2

(
1−

√
1− 2uη∗

))

= exp

ur + u (ζ∗ + (η∗)−1) h∗t +
(
−u + 1−

√
1− 2uη∗

η∗

)
h∗t
η∗︸ ︷︷ ︸

(∗)


where

(∗) = EQt−1
(
euε∗t

)
, ε∗t = η∗y ∗t − (η∗)−1h∗t and y ∗t ∼ IG

(
h∗t /(η∗)2

)
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Non-normal innovations IV
The model under the risk-neutral measure

indicating that under the EMM measure the return follows an inverse
Gaussian distribution and the risk-neutral process can be written as:

rt = r +
(
ζ∗ + (η∗)−1

)
h∗t + ε∗t

thus taking the same form as the physical process.

Note here that in contrast to the two previous models (with normal
innovations) the conditional variance under the risk-neutral measure
h∗t is different to the variance ht under the physical measure. In fact
if 1/(1+ 2vη)3/2 = (η∗/η)3/2 > 1 then h∗t > ht as often observed
empirically.
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Non-normal innovations I
Option pricing

The model has a closed-form option pricing formula.

To derive it we follow the Heston and Nandi (2000) approach
specifying the MGF of the log asset price at expiration. This is
exponential affi ne to the state variables.

This MGF includes two coeffi cients which again are solved backwards.
For more details please refer to Christoffersen, Heston and Jacobs
(JoE, 2006).
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Further extensions I
Volatility-dependent pricing kernel

Christoffersen, Heston and Jacobs (RFS, 2013) adopted a
volatility-dependent pricing kernel which is equivalent to the following
Radon-Nikodym derivative:

dQ
dP
|Ft = exp

(
−

t

∑
j=1

(
v1εi + v2ε2i + g (v1, v2, hi )

))

This is a more general case of a quadratic rather than linear EMM.

The new parameter v2 accounts for the market price of volatility risk
(investors demand an extra reward for assets exposed to volatility).

Christoffersen, Heston and Jacobs (RFS, 2013) combined this new
pricing kernel with Heston and Nandi model.
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Further extensions I
Two-volatility component models

Christoffersen, Jacobs, Ornthanalai and Wang (JFE, 2008) propose a
GARCH option valuation model with two volatility components.

It has more structure than the previous models since volatility evolves
around a stochastic long-run mean.

In Heston-Nandi the unconditional variance is
EP (ht ) ≡ σ2 = (w + a) /

(
1− b− aγ2

)
. Using that to substitute

out w from the variance process we obtain:

ht = σ2 + b
(
ht−1 − σ2

)
+ a

((
zt−1 − γ

√
ht−1

)2
−
(
1+ γ2σ2

))
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Further extensions II
Two-volatility component models

A natural extension is to specify σ2 as time-varying. Denoting this
new time-varying component as qt the model is now written as:

ht = qt +b (ht−1 − qt−1)+ a
((
zt−1 − γ1

√
ht−1

)2
−
(
1+ γ21qt−1

))
where

qt = w + ρqt−1 + ϕ
((
z2t−1 − 1

)
− 2γ2

√
ht−1zt−1

)
This model aims to improve the shortcomings of previous models to
capture the path of conditional variance and the variance term
structure.

It has been observed that the variance autocorrelations are too high
at longer lags to be explained by Heston and Nandi model, unless the
process is extremely persistent.
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Further extensions III
Two-volatility component models

However, this extreme persistence may impact negatively on other
aspects of option valuation, such as the valuation of short-maturity
options.
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Empirical evidence I

A number of papers examined the performance of the previous models
to fit option data both in- and out-of-sample.

Non-normal innovation models, volatility-dependent pricing kernel and
two-volatility component models outperform the Heston and Nandi
model.

All these model features lead to significant model improvements with
the volatility-dependent pricing kernel being the most important.

However, the results indicate that these three features are
complements rather than substitutes.
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