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Fréchet risk
measures

Wasserstein
barycentric risk
measures

Risk Premia
Calculation
under
Uncertainty

Application in
Natural
Resources
Management

Conclusions

Risk Measures

Risk measures are the tools in risk management theory and practice for the
risk quantification of financial positions of portfolios.

Historically, variance is the first statistical index that has been used as a
tool for measuring risk. However, due to its inability to distinguish between
positive and negative deviance from the mean it can be applied successfully
only for the case of symmetric risk factors.

Value at Risk (VaR), is probably the most popular risk measure and is
widely used in practice. However, this risk measure is not subadditive in
general, with an exception the case of elliptically distributed risk factors. The
lack of this property, makes this risk measure rather unreliable in general.

Subadditivity:
Given two positions X1, X2 ∈ X and a risk measure ρ(·), this measure is
subadditive if it holds that

ρ(X1 +X2) ≤ ρ(X1) + ρ(X2).

Obviously, the lack of this property indicates that we cannot have an upper
bound for the risk value.
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An Example for the insufficiency of VaR

Consider the case that we have d = 100 independent defaultable corporate
bonds with equal default probability p = 0.02 and all bonds with initial value
equal to 100 euros.

Let Li denote the loss occurring from each bond, which can be represented as

Li := 100Yi − 5(1− Yi) = 105Yi − 5,

where Yi is the indicator of the default, and assuming that P (Li = 100) = 0.02
while P (Li = −5) = 0.98.

There are two different portfolios, A and B, both of total value equal to 10000
euros, where portfolio A consists of 100 bonds of type 1 and portfolio B is fully
diversified. The corresponding loss variables are defined as:

LA := 100L1, LB :=
100∑
i=1

Li.

One, would except the portfolio B to be more robust to risk since it is not
concentrated only to one bond type, like portfolio A.
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An Example for the insufficiency of VaR

However, according to VaR for q = 0.95 we have that:

• P (L1 ≤ −5) = 0.98 ≥ 0.95 and P (L1 ≤ `) = 0 < 0.95 for ` < −5,
therefore V aR0.95(L1) = −5. As a result

V aR0.95(LA) = 100V aR0.95(L1) = 100 · (−5) = −500

This means that portfolio A remains acceptable even if we remove 500
euros.

• Denoting M :=
∑100
i=1 Yi, we have that M ∼ Bin(100, 0.02), P (M ≤ 5) =

0.984 ≥ 0.95 and P (M ≤ 4) = 0.949 < 0.95, i.e. V aR0.95(M) = 5.
Therefore,

V aR0.95(LB) = 105V aR0.95(M)− 500 = 25

This means that the fully diversified portfolio needs to add a capital of
25 euro in order to become acceptable.

Obviously, such a behaviour from a risk measure is NOT acceptable, and on
particular for VaR this happens due to the lack of subadditivity property in
the general case. Therefore, there is the need to set some qualifications for
risk measures in order to avoid such strange behaviours.
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The Class of Convex Risk Measures

A more appropriate concept for risk quantification is the class of convex risk
measures. Let X : Ω→ R be the position of a firm, affected by the states of
the world ω ∈ Ω.

For the purposes of this work, we assume that the states of the world are
described by a vector of random factors Z = (Z1, ..., Zd)

′ i.e. we consider
Ω = Rd. As a result, the position of the firm depends on the state of Z
through a risk mapping Φ0 : Rd → R, i.e. −X = Φ0(Z).

Given that the distribution of random factors Z is known, let us denote it by
µ ∈ P(Rd), the risk of the position X is quantified by a mapping ρ : X → R
where X is an appropriate space for X.

Such a mapping is called a convex risk measure if it satisfies the properties
(axioms):

(i) For X,Y ∈ X such that X ≤ Y then ρ(X) ≥ ρ(Y ) (Monotonicity)

(ii) For X ∈ X and m ∈ R it holds that ρ(X +m) = ρ(X)−m (Translation
Invariance)

(iii) For X,Y ∈ X and for any λ ∈ (0, 1) it holds that ρ(λX + (1 − λY ) ≤
λρ(X) + (1− λ)ρ(Y ) (Convexity)
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Robust Representation Property

A very important property of the class of convex risk measures is their general
robust representation property according to which, any convex risk measure
admits the representation:

ρ(X) = sup
µ∈P(Ω)

{Eµ[−X]− α(µ)} (1)

where α : P(Ω)→ R ∪ {∞} is a penalty function.

Practically, the penalty term α(·) is taken with respect to a known probability
measure µ0, in order to penalize certain extreme scenarios. One of the most
popular convex risk measures is the entropic risk measure

ρE(X) = sup
µ∈P(Ω)

{
Eµ[−X]− 1

γ
KL(µ‖µ0)

}
.

• The definition of the entropic risk measure reveals that the value of the risk
is computed with respect to a selected level of divergence (through the choice
of γ) from the prior model µ0 ∈ P(Ω).
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The Issue of Model Uncertainty

However, what happens if the case where the probability measure µ0 is NOT
known, and in fact, there are more than one plausible models that could serve
as priors ?

Therefore, what we consider here is a natural extention of the class of convex
risk measures under the framework of model uncertainty or in other words,
under the multi-prior setting.
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Robust Treatment of Prior Information

Assume that M = {µ1, ..., µn} is a set of prior models concerning the distri-
bution of the stochastic risk factors Z. The fact that multiple priors exist,
requires the formulation of a new class of risk measure capable of handling
multiple prior models of possibly varying validity.

First, we employ the concept of the Fréchet mean to define an aggregate prior
model using the barycentric sense, in order to :

(a) condense the multiple information, and

(b) robustly represent it by a single model through an appropriate definition
of the mean.

Since we are interested in measuring the distance of a probability measure µ
from M is defined in terms of the Fréchet function

∑n
i=1 wid

2(µ, µi), and the
element of mininal distance from M

µB := arg min
µ∈P(Ω)

n∑
i=1

wid
2(µ, µi)

will be called the Fréchet mean (or barycenter) ofM, where d is an appropriate
metric and w ∈ ∆n−1 denotes a weight vector.

This definition takes into account that the fact that the space of probability
measures P(Ω) is not a vector space and µB is the “average model” (aggregate
model) compatible with M.
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The class of Fréchet risk measures

Dispersion in the space of probability measures P(Ω) can be quantified using
Fréchet variance which is defined as

VM := min
µ∈P(Ω)

FM(µ) = min
µ∈P(Ω)

n∑
i=1

wid
2(µ, µi),

i.e., the Fréchet function value obtained by its minimizer, the Fréchet mean.

Fréchet function FM(µ) can be used to formulate an appropriate penalty func-
tion α(·) according to the robust representation of convex risk measures, in
order to penalize deviance from the prior set M.

In that sense, penalizing deviance fromM is somewhat equivalent to penaliz-
ing deviance from the Fréchet barycenter of M. Therefore, since the Fréchet
barycenter µB treats robustly the information provided byM we can use this
sense of variance in order to define an extension of the convex class of risk
measures to the multi-prior setting.
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Fréchet risk measures: Definition & Properties

Definition (Fréchet risk measure)

• α : R→ R+ ∪ {∞} an increasing function and α(0) = 0

• Φ0 : Rd → R+ a risk mapping w.r.t. the stochastic factors Z

The Fréchet risk measure is defined for any γ ∈ (0,∞) as

ρF (X) := sup
µ∈P(Rd)

{
Eµ[−X]− 1

2γ
α(FM(µ))

}
,

whereM is the set of priors for Z, −X = Φ0(Z) and FM the Fréchet function.

Proposition (Properties of Fréchet risk measures)

(a) Fréchet risk measures belong to the convex class.

(b) For any 0 ≤ γ1 ≤ γ2 it holds that ρF (X; γ1) ≤ ρF (X; γ2).

(c) limγ→0+ ρF (X; γ) = EµB [−X] ≤ ρF (X; γ) where µB is the Fréchet
barycenter of M.
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Wasserstein risk measures: Definition

A very natural choice for the metrization of P(Ω), is the class of the Wasser-
stein distances. The p-Wasserstein distance is defined as

Wp(µ1, µ2) :=

{
inf
ν

(∫
Ω×Ω

|x− y|pdν(x, y) : ν ∈ Π(µ1, µ2)

)} 1
p

where the set of transport plans Π(µ1, µ2) denotes all probability measures on
Ω × Ω with marginals µ1 and µ2. This distance is a true metric in the space
of probability measures therefore it is a very appropriate choice.

The Wasserstein barycentric risk measure ρW for a set of priors M, a
set of weights w = (w1, . . . , wn) ∈ ∆n−1, and a multiplier γ > 0, is defined as

ρW (X) := sup
µ∈P(Ω)

{
Eµ[−X]− 1

2γ
FM(µ)

}
,

where

FM(µ) :=

n∑
i=1

wiW
2
2 (µ, µi)− VM

and

VM := inf
µ∈P(Ω)

n∑
i=1

wiW
2
2 (µ, µi).
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The case of a single risk factor

Proposition (1-d case)
Assume that there is only one stochastic factor Z that affects the position X. Denote
by µB the Wasserstein barycenter, represented by the quantile function gB(s) :=∑n
i=1 wigi(s) where gi(s) is the quantile function of each measure µi ∈ M. Then,

given that Φ0 is a sufficiently smooth risk mapping

ρW (X) =

∫ 1

0

(
Φ0(g̃(s))−

1

2γ
(g̃(s)− gB(s))2

)
ds

where g̃(s) a quantile function (increasing & monotone mapping) obtained through
the solution of the equation: Λ(g) := g(s)− γΦ′0(g(s))− gB(s) = 0.

For some special cases, for κ = bγ and λ = 1− cγ we get:

(a) Φ(z) = a+ bz (affine risk mapping): ρW (X) = EµB [−X] +
γb2

2

(b) Φ(z) = a+ bz + cz2 (quadratic risk mapping):

ρW (X) =

∫ 1

0

[
Φ0

(
gB(s) + κ

λ

)
−

1

2γ

(
gB(s) + κ

λ
− gB(s)

)2
]
ds

• On the limit γ → 0+ it holds that ρW (X)→ EµB [−X].
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The case of elliptically distributed risk factors

Consider that d > 1 random factors affect the position X through the risk
mapping −X = Φ0(Z).

Assume that the risk factors Z = (Z1, ..., Zd)
′ follow a location-scatter family,

i.e. Z = m+ SZ0 where:

• m ∈ Rd (location vector)

• S ∈ P(d) (dispersion matrix)

• Z0 a central random variable on Rd following some spherical distribution
ν ∈ P(Rd).

In that case, the random behaviour of the random variable Z is characterized
by the probability measure µ = LS(m,S).

Consider the case where each µi ∈ M for i = 1, ..., n can be identified with
some LS(mi, Si). In that case, the (Fréchet) Wasserstein function can be
decomposed in two parts as

FM(m,S) := FM(m) + F̃M(S)

where
FM(m) :=

∑n
i=1 wi‖m−mi‖2 and

F̃M(S) :=
∑n
i=1 wiTr(S + Si − 2(S

1/2
i SS

1/2
i )1/2.
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The case of elliptically distributed risk factors

Proposition (L-S family)

Denote by Φ(m,S) :=
∫
Rd Φ0(m+ Sz)dν(z). Assuming that Φ0 is sufficiently

smooth, the Wasserstein risk measure takes the form:

ρW (X) = Φ(m,S)− 1

2γ
(FM(m) + F̃M(S))

where m,S are the solution of the matrix system:

γDmΦ(m,S)− (m−
n∑
i=1

wimi) = 0

2γS1/2DSΦ(m,S)S1/2 − (S −
n∑
i=1

wi(S
1/2SiS

1/2)1/2) = 0

(2)

which can be solved numerically.

• For the special case where γ → 0+ the solution to the above problem con-
verges to the Wasserstein barycenter, i.e. µB = LS(mB , SB) where mB =∑n
i=1 wimi and SB satisfying the equation SB =

∑n
i=1 wi(S

1/2
B SiS

1/2
B )1/2.
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Explicit formulae for the elliptical case

• Linear risk mappings Φ0(Z) = (β, Z), β ∈ Rd. In that case, the risk
measure is computed as

ρW (X) = (β,mB) +
γ

2
‖β‖22.

• Portfolios Given a total position of the form X :=
∑K
k=1 θkXk for pro-

portions θ = (θ1, ..., θK)′ for the risk mapping Φ0(Z) = (
∑K
k=1 θkβk, Z),

the occurring risk measure value is

ρW (X) =

K∑
k=1

θk(βk,mB) +
γ

2
‖
K∑
k=1

θkβk‖22.

• Quadratic risk mappings Φ0(Z) = qTZ + ZTQZ where q ∈ Rd and
Q ∈ Rd×d and symmetric. The occurring risk measure value is obtained
as

ρW (X) = (q,mB) +mT
BQmB + Tr(SBQSB) + γC

where C is an appropriate constant which can be computed numerically
applying Proposition for L-S family.
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Risk Premia Estimation under Model Uncertainty

A standard problem in insurance is the estimation of the total claim amount
that an insurance firm is obliged to cover at a specific time horizon T > 0.

A Standard Model:

• N : # of claim events within [0, T ], N ∼ Poi(λN )

• Cj : claim size of the j-th claim event (j = 1, 2, ..., N), where {Cj}j are
assumed to be independent and identically distributed according to a
probability distribution F

• The total claim amount up to time T is represented by the compound
mixed Poisson process

−X :=
N∑
j=1

Cj

Uncertainty on λN and F :

• Let Z(1) = (Z
(1)
1 , ..., Z

(1)
d1

)′ the set of stochastic factors that affect the

value of λN through the risk mapping Φ
(1)
0 : Rd1 → R.

• Z(2) = (Z
(2)
1 , ..., Z

(2)
d2

)′ the set of stochastic factors that affect the value

of Cj through the risk mapping Φ
(2)
0 : Rd2 → R.

• We consider different sets of stochastic factors in order to keep N and Cj
independent.
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Risk Premia Estimation under Model Uncertainty

Given the independence between N and Cj we get that

E[−X] = E

 N∑
j=1

Cj

 = E[λN ]E[Cj ] = E[Φ
(1)
0 (Z(1))]E[Φ

(2)
0 (Z(2))].

The latter expression allows for the construction of a risk mapping depending on all
the stochastic factors Z := (Z(1), Z(2))′.

Consider the set of priors M = M1 ∪M2, where M1 = {µ(1)
1 , ..., µ

(1)
n } and M2 =

{µ(2)
1 , ..., µ

(2)
n } are prior sets for the stochastic factors Z(1) and Z(2) respectively.

Assume that each set consists of members of the location-scatter family, i.e. for each
i = 1, 2, ..., n we have that

µ
(1)
i = LS(m

(1)
i , S

(1)
i ) and µ

(2)
i = LS(m

(2)
i , S

(2)
i ).

Letting Z
(1)
0 ∼ ν(1) and Z

(2)
0 ∼ ν(2) be some central and spherical distributed random

variables. Then, we obtain the mapping

Φ(m(1), S(1),m(2), S(2)) = Φ1(m(1), S(1))Φ2(m(2), S(2))

where

Φj(m
(j), S(j)) =

∫
Rdj

Φ
(j)
0 (m(j) + S(j)z)dν(j)(z) for j = 1, 2.
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Risk Premia Estimation under Model Uncertainty

In that case, the risk premium can be estimated according to the Wasserstein risk
measure as

ρW (X) = max
(m(1),S(1),m(2),S(2))

{
Φ(m(1), S(1),m(2), S(2))

−
1

2γ
(FM1 (m(1), S(1)) + FM2

(m(2), S(2)))

}
where FM1 (·, ·) and FM2 (·, ·) are the Fréchet functions with respect toM1 andM2.
Applying Proposition for L-S family we obtain a matrix system of equations which
can be solved numerically.

For the sake of example, consider the case where d1 = d2 = 1, assuming linear risk

mappings of the form Φ
(j)
0 (Z(j)) = α(j)Z(j). Then, the risk can be obtained as above

for the parameters:

m1 =

(
1 + γ2a2

1a
2
2

1− γ2a2
1a

2
2

)
m1,B +

(
γa1a2

1− γ2a2
1a

2
2

)
m2,B ,

m2 =
1

1− γ2a2
1a

2
2

m2,B +

(
γa1a2

1− γ2a2
1a

2
2

)
m1,B

σj =

(
n∑
i=1

wiσ
1/2
j,i

)2

, j = 1, 2,

where mj,B =
∑n
i=1 wimj,i, j = 1, 2.
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A Numerical Case Study: Gaussian Noise

Consider the case where λN := Z(1) ∼ N(m1, s1) and Cj := Z(2) ∼ N(m2, s2).

The true values of the parameters are not known to the decision maker, however, he
is provided with a prior set by n experts with their estimations which are assumed
to be contaminated with noise as:

m
(j)
1 = m1 + u, u ∼ N(0, ζ)

m
(j)
2 = m2 + v, v ∼ N(0, ξ)

s
(j)
1 = s1 + w, w ∼ N(0, θ)

s
(j)
2 = s2 + z, z ∼ N(0, τ)

for j = 1, 2, ..., n and Θ = (ζ, ξ, θ, τ)′ the vector with the noises’ scaling factors.

We simulate three scenarios for different choices of the scale vector:

(hh) high homogeneity scenario small perturbations around the true parameters

(mh) medium homogeneity scenario medium perturbations around the true pa-
rameters

(lh) low homogeneity scenario large perturbations around the true parameters

Then, in order to check the performance of the proposed risk measures we simulate
B = 1000 cases in each scenario, and evaluate the deviance from the true risk values by
averaging appropriate statistical indices for different number of experts, n = 5, 10, 30.
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(hh) High Homogeneity Case

γ E[ργ(X)] E
(
|ργ (X)−ρ0(X)|

ρ0(X)

)
V ar1/2

(
|ργ (X)−ρ0(X)|

ρ0(X)

)
Average Wasserstein Average Wasserstein Average Wasserstein

i. n=5

0.10 5659.20 5679.70 0.132 0.136 0.016 0.014

0.05 5658.90 5257.20 0.132 0.051 0.016 0.013

0.01 5660.10 5126.90 0.132 0.025 0.016 0.012

0.00 5660.30 5001.80 0.132 0.010 0.016 0.007

ii. n=10

0.10 5659.20 5682.10 0.124 0.136 0.013 0.010

0.05 5619.90 5259.00 0.123 0.052 0.012 0.009

0.01 5615.20 5127.40 0.123 0.025 0.013 0.009

0.00 5617.10 5001.10 0.123 0.007 0.013 0.005

iii. n=30

0.10 5560.10 5681.30 0.112 0.136 0.009 0.006

0.05 5558.20 5257.80 0.112 0.052 0.009 0.005

0.01 5559.50 5126.10 0.112 0.025 0.009 0.005

0.00 5557.70 5001.50 0.112 0.004 0.009 0.003
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(mh) Medium Homogeneity Case

γ E[ργ(X)] E
(
|ργ (X)−ρ0(X)|

ρ0(X)

)
V ar1/2

(
|ργ (X)−ρ0(X)|

ρ0(X)

)
Average Wasserstein Average Wasserstein Average Wasserstein

i. n=5

0.10 5559.90 5684.60 0.1120 0.1369 0.0315 0.0286

0.05 5554.10 5259.70 0.1108 0.0523 0.0317 0.0253

0.01 5557.80 5132.10 0.1116 0.0299 0.0317 0.0208

0.00 5547.50 5004.60 0.1095 0.0192 0.0307 0.0148

ii. n=10

0.10 5476.70 5682.20 0.0953 0.1363 0.0095 0.1364

0.05 5478.40 5258.80 0.0957 0.0516 0.0092 0.0518

0.01 5476.10 5126.50 0.0952 0.0252 0.0091 0.0267

0.00 5471.50 5001.90 0.0943 0.0042 0.0092 0.0144

iii. n=30

0.10 5388.40 5678.90 0.0777 0.1358 0.0156 0.0117

0.05 5388.00 5256.30 0.0776 0.0513 0.0152 0.0108

0.01 5388.90 5126.60 0.0778 0.0254 0.0149 0.0101

0.00 5386.80 5001.30 0.0774 0.0086 0.0153 0.0063
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(lh) Low Homogeneity Case

γ E[ργ(X)] E
(
|ργ (X)−ρ0(X)|

ρ0(X)

)
V ar1/2

(
|ργ (X)−ρ0(X)|

ρ0(X)

)
Average Wasserstein Average Wasserstein Average Wasserstein

i. n=5

0.10 5392.30 5675.40 0.084 0.136 0.056 0.064

0.05 5394.90 5263.30 0.086 0.065 0.055 0.048

0.01 5389.20 5120.50 0.084 0.050 0.051 0.037

0.00 5390.00 4998.00 0.084 0.046 0.055 0.034

ii. n=10

0.10 5285.40 5676.40 0.061 0.135 0.039 0.045

0.05 5278.50 5245.40 0.060 0.054 0.039 0.036

0.01 5292.60 5126.00 0.062 0.039 0.039 0.029

0.00 5302.00 5009.30 0.063 0.032 0.039 0.024

iii. n=30

0.10 5195.20 5682.40 0.040 0.136 0.023 0.026

0.05 5193.00 5260.50 0.040 0.052 0.023 0.024

0.01 5185.40 5124.70 0.038 0.028 0.023 0.019

0.00 5189.70 4998.00 0.039 0.018 0.023 0.013
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Application: Optimal harvesting under model uncertainty

A firm needs to optimally harvest a physical capital (e.g. water resources, fishery,
etc.) which evolves according to the dynamics:

∂u

∂t
(t, x) = Lu(t, x) +Au(t, x)−Bc(t, x), u(0, x) = u0 (3)

where

I u(t, x) : the physical capital density at (t, x) (state variable)

I c(t, x) : the harvest rate at (t, x) (control variable)

I L : the Laplacian operator

I A,B : diagonal operators

The area of interest Ω for harvesting purposes is divided into K smaller domains Ωi.

We consider the evolution of the average density over each region Ωi, i.e., ui(t) =
1
|Ωi|

∫
Ωi
u(t, x)dx for i = 1, 2, ...,K and the corresponding average harvest rate ci(t) =

1
|Ωi|

∫
Ωi
c(t, x)dx which leads to a discretized version of (3) with L replaced by an

appropriate graph Laplacian matrix.



Optimal
Transport and

Risk
Management:

G. I.
Papayiannis &

A. N.
Yannacopoulos

Introduction -
Basic Concepts

The class of
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The Optimal Control Problem

The optimal control problem for a utility function of the total harvest of the

form U(c) = c1−β

1−β for β > 0, a discount factor r > 0 and coefficients Di, Ei for
i = 1, ...,K is expressed as

V (u0) = sup
c1(·),...,cK(·)

∫ T

0

e−rt
(
∑K
i=1 Dici(t))

1−β

1− β dt+ e−rT
(
∑K
i=1 Eiui(T ))1−β

1− β

subject to

∂ui
∂t

(t) = (Lu)i(t) +Aiui(t)−Bici(t), ui(0) = u0,i, i = 1, 2, ...,K.

Given the initial condition u0 = (u0,1, ..., u0,K)′ ∈ RK and for a specified time
horizon T > 0 (large enough) we get the optimal controls (harvest rates):

ci = −Φ0,i(u0) := Gi〈α, u0〉

where Gi := C(α,Bi, Di) a constant depending on the eigenvector correspond-
ing to the lowest eigenvalue of (L+A).

The optimal turnout of the firm will be

X := −Φ0(u0) := −
K∑
i=1

Φ0,i(u0) = G〈α, u0〉 =
K∑
i=1

ci,

where G :=
∑K
i=1 Gi.
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Uncertainty on initial states of biomass density

In practice u0 is NOT known precisely and maybe subject to stochastic fluctu-
ations, leading to stochastic fluctuations of the turnout X, and in this respect
Φ0 can be considered as the related risk mapping, which is linear.

In the above formulation, the role of risk factor Z is played by the initial
state u0 which is assumed to be uncertain and distributed according to a
location-scatter family u0 ∼ µ = LS(m,S), with ambiguity on m,S, which
is expressed in terms of a prior set of probability modelsM = {µ1, ..., µN} for
the true distribution of u0.

Ambiguity follows from the inability of exact modeling or measurement of
the various exogenous factors (e.g. environmental conditions) affecting the
distribution of u0.

The decision maker would like to evaluate possible losses from such fluctua-
tions taking into account the model uncertainty and the proposed class of risk
measures can offer such an evaluation.
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Risk allocation in optimal harvesting

According to the Euler’s principle for the risk allocation, one could in this
case quantify not only the risk of the total position of the firm, but also the
amount that each different domain contributes to the total risk.

In particular, if X =
∑n
j=1 Xk = −

∑
j Φ0,j(u0) is the total position of the

firm then the total risk ρ(X) can be computed by using an appropriate risk
measure ρ(·). Then, the individual risk contribution of the j-th component
can be calculated according to Euler allocation principle as

ρ(Xj |X) =
dρ

dh
(X + hXj)|h=0.

Applying the general results for the computation of the risk, we obtain:

• The total harvest risk is quantified by the Wasserstein risk measure as

ρW (X) = G〈α,mB〉+
γ

2
G2‖α‖22 , and

• the harvest risk allocation to the j-th component is estimated as

ρW (Xj |X) = Gj〈α,mB〉+ γGGj‖α‖22 .
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Concluding Remarks

• We proposed a class of risk measures which extents the framework of the
convex class to the case of model uncertainty.

• We employed the Wasserstein barycenter in order to define an appropriate
concept of mean in the space of probability measures and at the same time,
to counter robustly uncertainty.

• In the case of elliptical family of distributions, the Wasserstein risk mea-
sure admits analytic or semi-analytic formulae.

• This more general concept of risk measures can be employed successfully
as a decision making tool in a great variety of applications (actuarial,
financial, optimal harvesting issues, energy management, etc.).
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