
0/63

Random dynamical systems: A Bayesian approach

Random dynamical systems: A Bayesian
approach

Konstantinos Kaloudis
(joint work with Christos Merkatas, Spyridon J. Hatjispyros)

Department of Statistics & Actuarial-Financial Mathematics
University of the Aegean

15th Summer School in Stochastic Finance
Athens, 09-13/07/2018



0/63

Random dynamical systems: A Bayesian approach

Table of contents

1 Introduction
Random Dynamical Systems
Bayesian Nonparametric Modeling

2 RDS in Finance
The model
Results

3 Reconstruction - Prediction
The model
Simulations

4 Noise reduction
The model
Simulations

5 Conclusions
Summary
Future Work



0/63

Random dynamical systems: A Bayesian approach

Introduction

Outline

1 Introduction
Random Dynamical Systems
Bayesian Nonparametric Modeling

2 RDS in Finance
The model
Results

3 Reconstruction - Prediction
The model
Simulations

4 Noise reduction
The model
Simulations

5 Conclusions
Summary
Future Work



1/63

Random dynamical systems: A Bayesian approach

Introduction

Random Dynamical Systems

Dynamical systems

A deterministic mathematical prescription for evolving the state of
a system forward in time (discrete/continuous).
Examples: Solar system, meteorology, population evolution,
chemical reactions, ...

Discrete time evolution: Difference equations

State space X , map g :X →X , set of times T (e.g. T = N)

Initial condition x0, x1 = g(x0), . . .

At n-th time step: xn = gn(x0), with gn = g ◦ g ◦ . . . ◦ g
︸ ︷︷ ︸

n−times

Og = {gn(x0)}n∈N0
: Trajectory (orbit) of the initial condition x0

under g
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Random Dynamical Systems

Different types of noise

Systems evolve in the presence of noise.

Observational noise: Does not give rise to new dynamical
effects. Blurring evolution effect.

Dynamical noise: The noise affects the evolution equations
and can be additive, multiplicative or both.

State space models combine dynamical and observational
noise e.g. for i = 1, . . . , n

x i = f (x i−1) + ei

yi = g(x i) + εi
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Random Dynamical Systems

Description

Random Dynamical System: System subjected to the effects of
random dynamical noise.

Projection of the effects of many parameters:
High-dimensional noise.

Deterministic dynamics can be drastically modified.
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Random Dynamical Systems

Main Idea

The states of the system are modeled as random variables
parametrized with respect to time, over a probability space
(Ω,F ,P ).

X i(ω) = f (X i−1(ω)) + zi(ω)

Assumption: Noise distribution

zi
iid∼ N (· | 0,λ−1)⇒ x i | x i−1

ind∼ N (x i | f (x i−1),λ
−1)

Bayesian modeling: Knowledge regarding dynamics of the
deterministic counterpart is utilized in the form of a prior
distribution over the parameter space or (and) restrictions on the
dynamics of the process modeling the states of the system .
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Random Dynamical Systems

Problems in the RDS field

1 Reconstruction: Dynamical equations, known/unknown
functional form.

2 Prediction of unobserved observations of the specific noisy
realization of the system, finite horizon, forward/backward in
time.

3 Noise reduction: Reduce the level of incorporated noise, using
different methods for dynamic and observational noise.

4 Numerical approximation of dynamical quantities:
generalizations of Lyapunov exponents, dimensions etc
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Introduction

Bayesian Nonparametric Modeling

Motivation

The assumption of normal errors may cause problems
(outlying errors).

In nonparametric Bayesian modeling, no parametric form is
assumed for the probability distribution.

Prior beliefs of the noise process are assigned to the
probability distributions.

The priors are distributions over a suitable space of
probability measures

A Bayesian nonparametric model is a model with the prior defined
on an infinite dimensional parameter space.
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Bayesian Nonparametric Modeling

Dirichlet Distribution

D(p1, . . . , pk | α1, . . . ,αk)∝
k
∏

i=1

pαi−1
i 1{(p1, . . . , pk) ∈ Sk}

Sk is the k-dimensional probability simplex:

k
∑

i=1

pi = 1, pi > 0, i = 1, . . . , k

Conjugate prior of Multinomial distribution.

Multivariate analogue of Beta distribution.
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Bayesian Nonparametric Modeling

Dirichlet Process I

Draws from a Dirichlet Process are random probability
measures denoted by P∼ DP (· | c, P0)

Ferguson, 1973

For each finite partition {A1, . . . , Am} we have that

(P(A1), . . . ,P(Am))∼ D (cP0(A1), . . . , cP0(Am))

For appropriate sets A:

E{P(A)}= P0(A)

V{P(A)}∝ (c + 1)−1.

Whenever X1, . . . , Xn | P
iid∼ P (·) we have that the posterior

random measure P | X1, . . . , Xn is also Dirichlet
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Bayesian Nonparametric Modeling

Dirichlet Process II

Probability measures drawn from a DP are almost surely
discrete (Sethuraman, 1994)

Stick Breaking representation: Countable mixture of point
masses at random locations

Constructive definition of Dirichlet random measures:

P(A) =
∞
∑

j=1

w jδθ j
(A), A∈ F

w1 = v1, w j = v j

∏

i< j

(1− vi), j ≥ 2

v j
iid∼B(1, c), θ j

iid∼ P0

Cannot used for modeling continuous noise distributions.
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Bayesian Nonparametric Modeling

Dirichlet Process Mixture Models

DPM (Antoniak, 1974 and Lo, 1984): To overcome the discrete
nature of P we model the observations x i for i = 1, . . . , n as

x i | P
iid∼
∫

Θ

K(· | θ )P(dθ )

Hierarchically we obtain

x i | θi
ind∼ K(· | θi)

θi | P
iid∼ P(·)
P∼ DP (· | c, P0)

Mixture of kernels with mixing measure the a.s. discrete random
probability measure P. Then, given w= (w j) j≥1,θ = (θ j) j≥1

x i | w,θ ∼
∞
∑

j=1

w jK(· | θ j)



11/63

Random dynamical systems: A Bayesian approach

Introduction

Bayesian Nonparametric Modeling

Geometric Stick Breaking measures

Instead of considering Sethuraman’s stick breaking weights, we
consider their expectation (Fuéntes García et al. 2010)

φ j = E{v j

j−1
∏

l=1

(1− vl)}

Then we obtain the geometric weights

φ j = λ(1−λ) j−1, λ= (c + 1)−1.

Geometric weights prior

P=
∞
∑

j=1

φ jδθ j
,

with λ∼B(αλ,βλ) and θ j
iid∼ P0
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RDS in Finance

The model

Motivation

Financial data - complexity:

Market instability and chaos: Unpredictability

Noise and uncertainty: nonlinear stochastic models

“Noisy chaos” - RDS: interaction between different types of
traders

Memory effects, volatility clustering, and non-normality

Proper map - proper noise process
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RDS in Finance

The model

MG-(G)ARCH model

Mackey-Glass GARCH(1,1) (Kyrtsou C., Terraza M., 2003):

x t = α
x t−τ

1+ x c
t−τ
−δx t−1

︸ ︷︷ ︸

Mackey-Glass

+εt

ε|It ∼N (0, ht), ht = α0 +α1ε
2
t−1 + β1ht−1

c fixed, τ= 1

Delay-difference equation

Many applications: Physiology (Mackey, Glass 1977),
dynamical diseases (Glass 2015)
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The model

MG-(G)ARCH model
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Figure 1: Time series of deterministic & stochastic Mackey-Glass map, for
c = 10,τ= 1,α= 2.1,δ = 0.05, x0 = 1.2.
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RDS in Finance

Results

Data

The data used are the daily index series (CAC40) of the French
Stock Exchange, during the period 09/07/1987-05/28/1999,
giving 3,060 observations.

Figure 2: Paris Stock Exchange returns series
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RDS in Finance

Results

Results

Test findings: Short memory (not iid)

Lyapunov exponents, correlation dimension: Noisy chaotic or
pure stochastic

Statistically significant map parameters (capture nonlinearity
effects)

Volatility-clustering effects: significant α1 coefficient

MG-GARCH outperforms both chaotic and GARCH models
(prediction MSE)
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RDS in Finance

Results

Comments

RDS: efficient alternative modeling of financial time series

Applications: case of Korea, 1997 crisis, structural shifts in
causal relations (Karanasos, Kyrtsou 2005)

Rejection of the nonlinearity hypothesis would not necessarily
mean “linear structure in the mean equation”. In the presence
of high-dimensional dynamics, such tests cannot easily isolate
and analyze underlying complexity (Kyrtsou 2005)

Highly non-linear models can exhibit heteroskedasticity, when
no heteroskedastic structure is assumed by construction
(Kyrtsou 2008)
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Reconstruction - Prediction

Aims

1 Fully reconstruct dynamical equations and predict future
values: geometric stick breaking (GSB) mixture as prior for
the noise process.

2 Compare modeling via GSB - DP mixtures.
3 Obtain information for the long term behavior of the

underlying process: (quasi-invariant measure of the system).
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Reconstruction - Prediction

The model

The setting

We have observed the time series x (n) = (x1, . . . , xn) generated by
the stochastic process {X i}i≥0 as follows:

X i = Tϑ (X i−1, zi) = g(ϑ, X i−1) + zi ,

where ϑ = (θ1, . . . ,θd) ∈ Θ parameter space, g : Θ× X → X a
nonlinear and (for simplicity) continuous in X i−1 map.

The time series x (n) is fully determined by the parameters of the
deterministic part, the initial condition and the realization of the
stochastic part (the noise component).
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Reconstruction - Prediction

The model

Nonparametric noise component

zi
iid∼ f (·) : 0-mean nonparametric density with Gaussian Kernels

f (· |G) =
∫

R+
N (· | 0,τ−1)G(dτ) =

∞
∑

i=1

π jN (· | 0,τ−1
i )

G=
∑

j≥1π jδτ j
is the mixing measure

π= (πi)i≥1 and τ= (τi)i≥1 are infinite sequences of weights
and locations respectively.

Transition kernels

f (x i | x i−1,θ ,π,τ) =
∞
∑

i=1

π jN (x i | g(ϑ, x i−1),τ
−1
j )
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Reconstruction - Prediction

The model

Slice sets

Infinite mixtures: Need for finite-dimensional Gibbs samplers

Introduce clustering variables di and proper slice sets Ai such
that di|Ai attains a discrete uniform distribution over -a.s.
finite set of indices- Ai .

Then, given the sets Ai , the observations are coming from an
a.s. finite mixture of normal kernels

f (x i | Ai) =
1
|Ai|

∑

j∈Ai

N
�

x i | g(ϑ, x i−1),τ
−1
j

�

How to construct the slice sets?
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Reconstruction - Prediction

The model

Non-sequential Slice sets

Assign Ai = { j ∈ N : 0< ui < π j} to each observation x i

Ai depends on the weights π through the auxiliary random
variable ui such that fπ(di = j|ui)∝ π jU (ui|0,π j)

DP mixture based augmented random density

fw,λ(x i , ui , di = j) = w jU (ui|0, w j)× N (x i|0,λ−1
j )

with stick-breaking weights π= w, w1 = z1 and for j > 1

w j = z j

∏

s< j

(1− zs),

with the zi
iid∼B(1, c).
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Reconstruction - Prediction

The model

Sequential Slice sets

Introduce Ni
iid∼ fN a.s. finite discrete random variables of

mass fN (Fuéntes-García et al (2010)).

Given Ni we have f (di = j|Ni) = N−1
i 1{ j ≤ Ni}, 1≤ i ≤ n

GSB mixture based augmented random density

fλ(x i , Ni = l, di = j) = fN (l | p) l−1 ×1{ j ≤ l}N (x i|0,λ−1
j )

with geometric weights

π j =
∞
∑

l= j

l−1 fN (l | p) = p (1− p) j−11{ j ≥ 1}

if fN (l | p) =NB(l |2, p) = l p2(1− p)l−11{l ≥ 1}
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The model

Reconstruction models

DP mixture based model

For i = 1, . . . , n and j ≥ 1:

(x i | x i−1, di = j,θ ,λ) ind∼ N (g(θ , x i−1),λ
−1
j )

(ui | di = j, w) ind∼ U (0, w j)

P(di = j|w) = w j

w j = z j

∏

s< j
(1− zs), z j

iid∼Be(1, c)

λ j
iid∼ P0

GSB mixture based model

For i = 1, . . . , n and j ≥ 1:

(x i | x i−1, di = j,θ ,λ) ind∼ N (g(θ , x i−1),λ
−1
j )

(di |Ni = l) ind∼ U{1, . . . , l}

π j =NB( j|1, p), Ni
iid∼ NB(2, p)

λ j
iid∼ P0
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Reconstruction - Prediction

The model

Sampling algorithm

Non-standard full conditionals (FCs): Proper augmentation
schemes, following Damien et al (1999), Hatjispyros et al
(2009)

Fully stochastic version of DPR (rDPR), randomizing
concentration parameter c ∼ G (α,β)

“Synchronized” prior specifications for c and p = (1+ c)−1 for
comparison purposes:

f (p) = T G (p |α,β) =
βαeβ

Γ (α)
p−(α+1)e−β/p(1− p)α−1,

with p ∈ (0, 1)
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Reconstruction - Prediction

Simulations

A random cubic map

We will generate observations from a cubic random map with a
deterministic part given by

g̃(ϑ, x) = 0.05+ ϑx − 0.99x3

x i = g̃(ϑ, x i−1) + zi , for parameter value ϑ∗ = 2.55 and initial
condition x0 = 1

Coexistence of a repelling strange set and an attracting
strange set

We model the deterministic part of the map with a polynomial
in x of degree m= 5.
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Reconstruction - Prediction

Simulations

Noise Processes

1. The equally weighted normal 4-mixture

f1 =
3
∑

r=0

1
4
N
�

0, (5r + 1)σ2
�

, σ = 10−2 (1)

2. The normal 2-mixtures, which exhibit progressively heavier tails
for 1≤ l ≤ 4

f2,l =
5+ l
10
N (0,σ2) +

5− l
10
N
�

0, (200σ)2
�

, σ = 10−3 (2)

Measure of tail fatness of the density z ∼ f :

T F f = E|z|/
Æ

E|z|2

The closer T F f is to 1, the thinner the tails are. It can be verified
numerically that

T F f1 > T F f2,1
> · · ·> T F f2,4
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Figure 3: In figures 3(a)-(c) we display the deterministic orbit and f1 and
f2,3 data-realizations with initial condition x0 = 1. In figures 3(d)-(f) we
display the deterministic and the f1 and f2,3 quasi-invariant set
approximations respectively.
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Simulations

rDPR -GSBR Synnchronized Prior Specifications

c ∼ G (α,β), p ∼ T G (α,β), {λ j ∼ G (a, b) : j ≥ 1}

θ ∼U ((−M , M)k+1), x0 ∼U (−M0, M0),

where k is the degree of the modeling polynomial.

Noninformative reconstruction and prediction:

P S NRP : α= β ≥ 10−1, a = b ≥ 10−4, M � 1, M0� 1

Informative reconstruction and prediction:

P S IRP : α > β ≥ 10−1, a > b ≥ 10−4, M � 1, M0� 1.
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Reconstruction - Prediction

Simulations

How to choose prior set up?

Informative structure in data→ predictability
Forecastable component analysis Ω (ForeCA): Large Ω values
characterize more predictable time series.
Data sets {X n

f2,l
: 1≤ l ≤ 4} have the more informative

structure: Ω(X n
f2l
)> Ω(X n

f1
), n> 80, 1≤ l ≤ 4
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Figure 4: Here we display the Ω curves relating to the data sets X n
f1

and
{X n

f2,l
: 1≤ l ≤ 4} for n between 50 and 280.
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Reconstruction - Prediction

Simulations

Informative reconstruction-prediction under f1 noise

rDPR,GSBR Gibbs samplers for T = 20, data set X 200
f1

,
500,000 iterations with 10, 000 burn-in period
P S IRP: α= 3, β = 0.3, a = 1, b = 10−3 and M = M0 = 10
Bayesian estimators: Sample mean (SM)-Sample mode (MAP)

Model θ0 θ1 θ2 θ3 θ4 θ5 x0

Param. 1.98 0.37 0.03 0.58 0.00 0.04 xM : 3.87
rDPR 0.81 0.29 0.01 0.09 0.04 0.14 xM : 0.80
GSBR 0.19 0.27 0.05 0.04 0.02 0.18 xR : 0.60

Estim. x201 x202 x203 x204 x205 GSBR-Av Par-Av
SM 6.43 7.35 29.70 5.48 13.68 12.53 53.49
MAP 3.84 11.48 19.16 2.15 149.06 37.14 53.25

Table 1: (θ , x0) reconstruction PAREs (T = 0) under the informative prior
configuration.
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Results I
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Figure 5: In (a) we give superimposed the KDE’s based on the posterior marginal

predictive samples of the initial condition variable x0. In (b) we superimpose the

GSBR and the rDPR noise density estimations together with the true dynamical

error density.
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Results II
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Figure 6: In (a)-(j) we display superimposed the first five and the last five KDE’s of the out-of-sample posterior

marginal predictive based on data set X 200
f1

under P S IRP . Together we superimpose the KDE of the f1 quasi invariant

density (solid black line). Bullet points represent the corresponding true future value.
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Noninformative reconstruction-prediction under f2,l noise I

rDPR,GSBR Gibbs samplers for T = 20, data sets {X 200
f2,l
},

500,000 iterations with 10, 000 burn-in period

P S NRP: α= β = 0.3, a = b = 10−3, M = M0 = 10

Noise Model θ0 θ1 θ2 θ3 θ4 θ5 x0
f2,1 Param. 19.95 1.54 4.83 4.39 2.52 1.01 7.27

GSBR 0.51 0.01 0.06 0.02 0.02 0.00 xR : 0.03
f2,2 Param. 2.89 0.94 4.07 2.37 2.07 0.76 7.49

GSBR 0.54 0.05 0.06 0.12 0.03 0.03 xR : 0.03
f2,3 Param. 29.97 0.40 4.97 1.25 1.88 0.41 7.55

GSBR 0.20 0.04 0.04 0.13 0.02 0.04 xR : 0.03
f2,4 Param. 15.57 1.07 1.33 3.71 0.43 1.03 6.40

GSBR 0.10 0.01 0.05 0.03 0.01 0.00 xR : 0.03

Table 2: Simultaneous reconstruction-prediction under the
noninformative prior specification. The (θ , x0) PARE’s are based on the
data sets {X 200

f2,l
: 1≤ l ≤ 4} for T = 20.
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Noninformative reconstruction-prediction under f2,l noise II

Noise Estim. x201 x202 x203 x204 x205 GSBR-Av Par-Av
f2,1 SM 12.50 0.86 12.57 44.04 82.11 30.42 58.72

MAP 12.86 2.10 77.13 25.89 39.99 31.59 69.62
f2,2 SM 0.52 0.70 8.07 167.16 15.17 38.32 65.08

MAP 0.29 1.72 0.50 103.00 20.96 25.29 65.57
f2,3 SM 0.72 7.99 0.01 9.74 49.94 13.68 233.53

MAP 0.14 0.47 2.34 0.39 1.38 0.93 234.80
f2,4 SM 0.24 1.01 2.95 3.79 40.25 9.65 60.69

MAP 0.07 0.86 4.78 0.13 21.00 5.37 109.23

Table 3: Simultaneous reconstruction-prediction under the
noninformative prior specification. The out-of-sample PARE’s are based
on data sets {X 200

f2,l
: 1≤ l ≤ 4} for T = 20. The GSBR-Av and Par-Av

columns are the PARE means of the first five out-of-sample estimations
using the GSBR and the parametric Gibbs samplers respectively.
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Results

Parameter-initial condition-noise density estimation

Non-efficiency of simple MCMC samplers

Quasi invariant density approximation: Prediction barrier

GSBR: Same level performance with rDPR - Smaller execution
times

Data set X 200
f1

Prior spec. Algorithm T = 0 T = 20
P S IRP rDPR 5.44 11.76
P S IRP GSBR 2.24 8.65

Table 4: Mean execution times in seconds per 103 iterations.
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Introduction

We have in our disposal the time series x = (x1, . . . , xn) generated
by the stochastic process {x i}i≥0 as follows:

x i = Tϑ (x1:d , ei) = g(ϑ, x1:d) + ei (3)

where ϑ = (θ1, . . . ,θk) ∈ Θ parameter space, g : Θ× X d → X a
nonlinear and continuous in x1:d = (x i−1, . . . , x i−d) map. We
assume the noise variables ei independent of the states
x i−1, . . . , x i−d and independent to each other.

Orbits contaminated with dynamical noise are pseudoorbits of
the underlying dynamics g(·), |x i − g(ϑ, x1:d)|< α, i = 1, . . . , n

Invariant measure→ deformation into a quasi-invariant
measure
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Useful measures

Original orbit (x ) - Noise-reduced orbit (y)
1 Noise level η=

σnoise

σsignal
2 Measure of overall deviation of an orbit x from determinism is

Edyn (x ) =

√

√

√1
n

n
∑

i=1

(x i − g(ϑ, x1:d))
2

3 Measure of overall distance between orbits (average
correction)

E0 (y) =

√

√

√1
n

n
∑

i=1

(yi − x i)
2

4 Percentage of dynamical noise reduction

NR (y , x ) = 100

�

�

�

�

Edyn (y)− Edyn (x )

Edyn (x )

�

�

�

�

%
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Effects of dynamical noise

Hénon map:

x i = g(x i−1, x i−2) + ei = 1.38− x2
i−1 + 0.27x i−2 + ei , (4)

where ei
i.i.d.∼ 0.6N (0,σ2) + 0.4N (0, 100σ2), σ2 = 0.21× 10−4

−2 −1 0 1 2

−
2

−
1

0
1

2

xn+1

x
n

Figure 7: Noisy and deterministic
Hénon trajectories, 3% dynamical
noise level.

Hyperbolic case - shadowing

Nonhyperbolic case -
dynamical noise

Homoclinic tangencies (HT)
and noise amplification

Noise-induced prolongations
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Aim

Estimate a denoised orbit y = {yi}ni=1, fulfilling approximately the
same estimated dynamics and evolving in a neighborhood of the
observed noisy orbit, under lower level of incorporated dynamical
noise.

High NR (y , x ) & Edyn (y)< Edyn (x ) (high noise reduction)

E0 (y)' η (small average correction)

Assumption: Zero-mean, symmetric noise process
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Generic probability model

x i = g(θ , x i:d) + ei , ei
i.i.d.∼ f ( · ) (5)

f ( · ) =
∞
∑

k=1

wkN ( · |0,λ−1
k ), 1≤ i ≤ n

yi = g(θ , yi:d) + ζi , ζi
i.i.d.∼ N ( · |0,δ)

y1:d = x1:d , P− a.s. and |x i − yi|< γi , γi
i.i.d.∼ h( · )

Reasonable prior over δ - Posterior concentrated near zero

Proximity restriction: yi ’s γi-close to x i

Minimization of the overall deviation of yi-orbit from
determinism
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Full posterior distribution

π(p,λ∞, dn, N n,θ , x1:d ,τ, y (n)| x (n),ρ,R ,P ,M )∝ π(p,λ∞,τ,θ , x1:d)

×
n
∏

i=1
di : di≤Ni

p2(1− p)Ni−1λ
1/2
di

exp

�

−
λdi

2
(x i − g(θ , x i:d))

2

�

× 1 {y1:d = x1:d} τn/2 exp







−
1
2

n
∑

i=1



τ (yi − g(θ , yi:d))
2

︸ ︷︷ ︸

indeterminism

+ρ (yi − x i)
2

︸ ︷︷ ︸

prox imit y











.
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Full conditional distributions of the denoised variables yi

π(y j | · · · )∝ e−C(y j |··· )/2

Letting hθ (y j , y j:d ) := (y j − g(θ , y j:d ))2, the function C(y j | · · · ), for j = 1, . . . , d is given by

C(y j | · · · ) = τ
d
∑

k=0

hθ (y j+k , y j+k:d )×1
�

y0 = x0, . . . , y−d+ j = x−d+ j
	

+ρ(y j − x j)
2,

for j = d + 1, . . . , n− d is given by

C(y j | · · · ) = τ
d
∑

k=0

hθ (y j+k , y j+k:d ) +ρ(y j − x j)
2,

and, for j = n− d + 1, . . . , n, by

C(y j | · · · ) = τ
j−n
∑

k=0

hθ (y j+k , y j+k:d ) +ρ(y j − x j)
2.
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DNRR model: Algorithm (I)

We first specify initial values for the variables x1:n, θ , τ, and we iterate for t = 1, . . . , K the
following sampling scheme:

1 For i = 1, . . . , n, generate the state space range variable N (t)i ∼ π(Ni | · · · ), of the

allocation variable d(t)i .

2 For i = 1, . . . , n, generate the infinite mixture allocation variable d(t)i ∼ π(di | · · · ).

3 For i = 1, . . . , N∗, with N∗ =max1≤k≤n Nk , sample λ(t)i ∼ π(λi | · · · ).

4 Generate the initial condition vector (x1:n)(t) ∼ π(x1:n| · · · )
5 Generate θ (t) ∼ π(θ | · · · ).
6 Sample the geometric probability p(t) ∼ π(p| · · · ).
7 Having updated p(t) and λ(t) up to N∗, sample from the noise process f̂xn

z(t)n+1 ∼
N∗
∑

j=1

p(t)(1− p(t)) j−1N
�

zn+1 |0, 1/λ(t)j

�

.
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DNRR model: Algorithm (II)

8 Initialize the vector of initial conditions (y1:n)(t) of the noise reduced trajectory to

the previously sampled initial condition (x1:n)(t) of the xn, and iterate for

j = 1, . . . , n the following Metropolis-within-Gibbs sampling scheme:
1 Generate proposal

y∗j ∼ y(t−1)
j + νN (0,1). (6)

2 Calculate the acceptance probability α(y(t−1)
j , y∗j ) given by

min
§

1, exp
§

−
1
2

�

C(y∗j | · · · )− C
�

y(t−1)
j | · · ·

��

ªª

.

3 Accept y(t)j = y∗j with probability α(y(t−1)
j , y∗j ).

9 Generate τ(t) ∼ π(τ| · · · ).
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Hénon map

We consider a time series realization xn of size n= 1,000, coming
from the random Hénon map:

x i = 1.38− x2
i−1 + 0.27x i−2 + ei ,

with ei
i.i.d.∼ f2,1, variance σ2 = 0.21× 10−4 and initial condition

x0 = x−1 = 0.5 for noise level at approximately 3%.
We model the deterministic part g, with the complete quadratic
polynomial in the two variables, namely

g(θ , x i−1, x i−2) = θ0+θ1 x i−1+θ2 x i−2+θ3 x i−1 x i−2+θ4 x2
i−1+θ5 x2

i−2

The rms in this illustration is η= 0.03
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Prior specifications

The prior distributions assigned were:

p ∼B(0.5,0.5)

λ j ∼ G (10−3, 10−3)

π(θ )∝ 1 and π(x1:d)∝ 1

τ∼ G (104, 10−2), δ = τ−1

Proposal variance calibration

We ran the Gibbs sampler for 250, 000 iterations with a burn-in
period of 50, 000 iterations.
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Results I

After the implementation of the proposed DNRR model we:

Reconstructed the dynamic equations that generated the data

Estimated the density of the dynamical noise

Estimated a noise-reduced orbit close to the original one

The average noise reduction achieved by the DNRR sampler is larger
than two orders of magnitude, with Rdyn(yn, xn; ĝxn) = 0.902,
Edyn(yn; ĝxn) = 0.00286 and E0(xn, yn) = 0.0428.

Validation

In order to further validate the results of the DNRR model, we perform
reconstruction on the estimated noise-reduced orbit y = {y1, . . . , yn},
using the GSBR model.
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Figure 8: In figure (a), we present superimposed delay plots of the noisy,
the noise reduced and the deterministic trajectories of the Heńon map, of
length n= 1, 000. The associated log10−determinism plot is given in
figure (b).



50/63

Random dynamical systems: A Bayesian approach

Noise reduction

Simulations

Noise density estimation
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Figure 9: The true noise density f = f2,1, for σ2 = 0.21× 10−4, is the red
continuous curve. Along, we superimpose the xn-estimated noise density
f̂xn as a black continuous curve, and the yn-estimated ‘weaker’ interactive
noise density f̂ yn as a black dashed curve.
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Changing the proximity restriction

Table 5: Relative dynamical noise reductions, average indeterminisms
and average distances, for two different values of ρ.

ρ Edyn(xn, ĝxn ) Edyn(yn, ĝxn ) Rdyn E0

102 0.02932 0.00286 0.9023 0.0428
5× 105 0.02932 0.00710 0.7577 0.0223

Table 6: PAREs for the estimated coefficients of the deterministic part of
the perturbed Hénon map in (4), based on the noisy and the
corresponding noise reduced trajectories, for two different values of ρ.

Time series ρ θ0 θ1 θ2 θ3 θ4 θ5 θ̄

xn 102 0.089 0.096 0.046 0.044 0.011 0.070 0.059
yn 0.063 0.043 0.022 0.028 0.020 0.038 0.036
xn 5× 105 0.079 0.071 0.041 0.031 0.002 0.059 0.047
yn 0.177 0.155 0.015 0.023 0.005 0.157 0.089
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The average distance E0 as a function of ρ
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Figure 10: The average distance E0(yn, xn) and the average dynamic
error Edyn(yn, ĝxn) as functions of the parameter ρ.
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Effect of (primary) homoclinic tangencies

−1

0

1

−1 0 1

xn+1

x
n

(a) multimodality regions

−1

0

1

−1 0 1

0.002

0.004

0.006

(c) Regions of increased indeterminism

−1

0

1

−1 0 1

xn+1

x
n

(b) increased Omega regions

−1

0

1

−1 0 1

xn+1

x
n

(d) Homoclinic Tangencies

Figure 11: In Figure (a) we present a delay plot of the points in the set MHT of the point estimators of the
Yi -posterior marginals, passing Hartigan’s test for unimodality. In Figure (b) we depict the delay plot of the points in the
set ˙HT that are above the 99th percentile of the histogram of ˙. Regions of high Edyn are depicted in Figure (c), and in
Figure (d) we present the primary homoclinic tangencies of the corresponding deterministic attractor.
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Fixed noise levels imply fixed relative noise reduction

Simulations using the f2,l noise formulation:

f2,l =
5+ l
10
N (0,σ2) +

5− l
10
N
�

0,100σ2
�

We used dynamically noisy corrupted orbits of length 1, 000 with
the same control parameters, initial conditions and prior
specifications as above, using the DNRR model.

The variances of the noise processes, and each realization has been
chosen, such that, η is fixed at about 3%.

We ran the chains for 250, 000 iterations with a burn-in period of
length 50, 000. PAREs and measures of noise reduction efficiency
are presented in Table 7.
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Fixed noise levels imply fixed relative noise reduction

Table 7: Measures of reconstruction and noise reduction efficiency for the
f2,l noise processes. The variances of the noise processes, and each
realization has been chosen, such that, η is fixed at about 3%, where
Edyn = Edyn(yn, ĝxn).

Noise σ2 × 104 E0 Edyn Rdyn θ̄xn θ̄yn

f2,1 0.21 0.0428 0.00286 0.902 0.059 0.036
f2,2 0.29 0.0514 0.00371 0.871 0.115 0.062
f2,3 0.40 0.0490 0.00392 0.871 0.072 0.098
f2,4 0.77 0.0627 0.00323 0.892 0.054 0.059



56/63

Random dynamical systems: A Bayesian approach

Noise reduction

Simulations

Random cubic map

Here, we consider the cubic map

x i = g(ϑ, x i−1) = 0.05+ ϑx i−1 − 0.99x3
i−1

For ϑ ∈ Θbi = [1.27, 2.54] the map is bistable.

We let ϑ = ϑ∗ = 2.55 and we consider the dynamically perturbed

map x i = g(ϑ∗, x i−1) + ei with ei
i.i.d.∼ f2,1, σ2 = 0.55× 10−4, and

ρ = 102 (neutral proximity restriction)

Noise-induced jumps

Shadowing

Modeling polynomial: g(θ , x i−1) =
∑5

k=0 θ j x
k
i−1
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Figure 12: In (a), we give superimposed, the deterministic, the noisy (xn) and the
estimated (yn) trajectories. In (b) we present the log10 indeterminism plot. The trace of the
individual distances between the original and the noise reduced trajectory is given in (c).
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Figure 13: Kernel density estimations based on the predictive samples of
f̂xn (continuous black curve), the predictive samples of f̂ yn (dashed black
curve) along with the true dynamical noise density (continuous red
curve).



59/63

Random dynamical systems: A Bayesian approach

Noise reduction

Simulations

Results III

Table 8: Measures of reconstruction and noise reduction efficiency for the
cubic map, for various σ2’s for the f2,1 noise processes, where
Edyn = Edyn(yn, ĝxn).

σ2 × 104 η % E0 Edyn Rdyn θ̄xn θ̄yn

0.33 3.5 0.0395 0.00749 0.812 0.281 0.425
0.55 4.5 0.0413 0.00695 0.842 0.605 0.804
0.59 5.5 0.0631 0.00952 0.826 0.438 0.262
0.67 6.5 0.0453 0.00847 0.848 0.872 0.958
1.00 7.5 0.0630 0.00819 0.867 0.856 0.987
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Flexibility in modeling: RDS & BNP

When dynamical noise departs from normality, simple MCMC
methods are inefficient.

Bayesian nonparametric framework allows us to drop the
normality assumption, assign a nonparametric prior
(DP/GSB) over the noise process.

In terms of reconstruction and prediction, the proposed
rDPR-GSBR models give satisfying results, with the GSBR
model being faster and easier to implement.

Even for short time series, the quasi-invariant density can be
estimated and appears as natural prediction barrier.
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We can use a similar framework with the DNRR model, in
order to perform noise reduction.

The denoised orbits obtained by the DNRR come from the
same system as the data under “weaker” noise process and
lower indeterminacy, while staying close to the original orbits.

The proposed methods are robust under different noise tail
fatness, formulated by the f2,l -type noise processes. In fact,
infinite mixtures of zero mean Gaussians, can mimic the effect
of any heavy tailed symmetric noise processes, of finite or
infinite kurtosis to an arbitrary level of accuracy.
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Future Work I

Natural direction of future research include:
1 Perform reconstruction-prediction-noise reduction in cases

where missing data are available.
2 Perform noise reduction in cases of asymmetric noise

(α-stable processes) and state space models (Sequential
Monte Carlo methods).

3 Drop the assumption of known functional form (Neural
Networks/Gaussian Processes) and use the proposed models
on real data.
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Future Work

Future Work II

4 Perform prediction on complex financial data using GSBR
model - comparison.

5 Perform noise reduction on financial data using DNRR -
interpretation (e.g. seasonal effects).

6 Extend MG-GARCH using Bayesian nonparametric modelling.
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