SEQUENTIAL CAPACITY EXPANSION OPTIONS

15th Summer School in Stochastic Finance

ATHENS, GREECE

Alain Bensoussan^{1,2} **Benoît Chevalier-Roignant**³ July 10, 2018

¹University of Texas at Dallas, ²City University of Hong Kong, ³King's College London

- 1. Introduction
- 2. Model setup
- 3. Dynamic programming equation
- 4. Benchmark models
- 5. General case
- 6. Particular case
- 7. Concluding remarks

INTRODUCTION

We examine **sequential capacity expansion options** for which the firm decides on

- the investment times (stopping times)
- \cdot the size of the capacity increase

Contributions to the extant literature:

- Models of irreversible investment ("capital accumulation") ignore fixed costs; the impact of fixed costs on timing is known from real options analysis (e.g., McDonald and Siegel 1986)
- Introducing fixed costs explain observed "investment bursts," e.g., in real estate

Economic literature

	Option to expand	CAPITAL ACCUMULATION	OUR CONTRIBUTION
References	Trigeorgis 1996	Abel and Eberly 1994	Our paper
Criticisms	No investment lump (Hubbard 1994)	Incremental (Pindyck 1988)	n.a.
Applications	Microeconomics	Macroeconomics	Microeconomics

Mathematical characterization

	Option to expand	CAPITAL ACCUMULATION	OUR CONTRIBUTION
Cost	Fixed	Linear	Affine
Problem	Optimal stopping	Singular control	Impulse control
DP equation ¹	VI ²	Degenerate QVI ³	QVI ⁴

¹DP = Dynamic programming

²See Bensoussan and Lions 1982 on variational inequalities (VI)

³See, in the context of capacity investment, the formulations in Kobila 1993; Øksendal 2000; Riedel and Su 2011; Ferrari 2015 for the irreversible case and Merhi and Zervos 2007 for the reversible case.

⁴See Bensoussan and Lions 1984 on quasi-variational inequalities (QVI)

MODEL SETUP

TWO STATE EQUATIONS

1. The **commodity price** process follows a geometric Brownian motion (GBM)¹

 $dY_t = \mu Y_t dt + \sigma Y_t dW_t$, $Y_0 = y (> 0)$ a.s.

where *W* is a Brownian motion on $(\Omega, \mathcal{F}, \mathbb{P})$

 \mathscr{F}_{τ_n} -measurable

³Capacity scrapping or depreciation is not permitted here

¹It is not affected by the firm's decisions on output/capacity

²The τ_n are stopping times with respect to the filtration generated by W; $\xi_n > 0$ are

TWO STATE EQUATIONS

1. The **commodity price** process follows a geometric Brownian motion (GBM)¹

 $dY_t = \mu Y_t dt + \sigma Y_t dW_t$, $Y_0 = y (> 0)$ a.s.

where *W* is a Brownian motion on $(\Omega, \mathcal{F}, \mathbb{P})$

2. The firm influences the capacity stock development

$$X_t^{\nu} = \mathbf{X} + \sum_n \underbrace{\xi_n \mathbf{1}_{\{\tau_n \leq t\}}}_{\text{Capacity additions}} ,$$

via its choice of **impulse control** policy $\nu = \{\tau_n, \xi_n\}_n^{2,3}$

¹It is not affected by the firm's decisions on output/capacity

²The τ_n are stopping times with respect to the filtration generated by W; $\xi_n > 0$ are \mathscr{F}_{τ_n} -measurable

³Capacity scrapping or depreciation is not permitted here

- The production function $\delta(\cdot)$ is C^1 , monotone increasing and concave in capacity x^1
- The value function is

$$v(y,x) = \sup_{\nu} \mathbb{E}_{y,x} \left[\int_{0}^{\infty} \underbrace{Y_{t} \delta(X_{t}^{\nu})}_{\text{Firm profit}} e^{-rt} \, \mathrm{d}t - \sum_{n} \underbrace{(k+c\xi_{n})}_{\substack{\text{Affine cost}\\k,c>0}} e^{-r\tau_{n}} \right]$$

• We assume that $r > \mu$ and focus on *admissible* controls ν such that

$$\mathbb{E}_{y,x}\left[\sum_{n}(k+c\xi_{n})e^{-r\tau_{n}}\right]<\infty.$$

¹In addition, $\delta(0) = 0$, and $\delta'(0) = \infty$, $\delta'(\infty) = 0$

DYNAMIC PROGRAMMING EQUATION

We introduce

$$\mathcal{L}\varphi(y) := r\varphi(y) - y\mu\varphi'(y) - \frac{1}{2}y^2\sigma^2\varphi''(y) \qquad (\text{infinitesimal generator})$$
$$\mathcal{M}v(y, x) := \sup_{z \ge x} \{v(y, z) - c [z - x]\} - k \qquad (\text{intervention operator})$$
$$v_L(y, x) := \frac{y\delta(x)}{r - \mu} \qquad (\text{perpetuity value of capacity})$$

QUASI-VARIATIONAL INEQUALITY (QVI)

We are looking for a solution v of the \mathbf{QVI}^1

$$\min\left\{\mathcal{L}v(y,x) - y\delta(x); v(y,x) - \mathcal{M}v(y,x)\right\} = 0,$$
(1a)

$$v(0,x) = 0,$$
 (1b)

$$\liminf_{y\to\infty} \{v(y,x) - v_L(y,x)\} \ge 0, \tag{1c}$$

with the regularity

 $v \in C^1(\mathbb{R}^2_+)$ and $v_{yy}(\cdot, x)$ locally integrable

¹Equation (1a) to be interpreted as

$$\begin{split} \mathcal{L}v(y,x) &\geq y\delta(x), & \text{Waiting is a lower bound} \\ v(y,x) &\geq \mathcal{M}v(y,x) & \text{Investing is a lower bound} \\ [\mathcal{L}v(y,x) - y\delta(x)][v(x,y) - \mathcal{M}v(x,y)] &= 0, & \text{Either one is optimal} \end{split}$$

FREE-BOUNDARY PROBLEM

The continuation region $C = \{(y,x) \mid v(y,x) > Mv(y,x)\}$ is conjectured to be

$$\mathcal{C} = \{(y, x) \mid y < \overline{y}(x)\},\$$

where the threshold $\bar{y}(\cdot)$ is monotone increasing. We define $\bar{x} = \bar{y}^{-1}$ and denote by $S = \mathbb{R}^2_+ \setminus C$ the stopping region

¹Note that (i) value function, (ii) QVI's solution and (iii) FBP's solution do not necessarily coincide

FREE-BOUNDARY PROBLEM

The continuation region $C = \{(y,x) \mid v(y,x) > Mv(y,x)\}$ is conjectured to be

$$\mathcal{C} = \{(y, x) \mid y < \overline{y}(x)\},\$$

where the threshold $\bar{y}(\cdot)$ is monotone increasing. We define $\bar{x} = \bar{y}^{-1}$ and denote by $S = \mathbb{R}^2_+ \setminus C$ the stopping region

Given this conjecture, we look for a regular solution v of the **free-boundary problem** (FBP):¹

$$\begin{aligned} \mathcal{L}v(y,x) &= y\delta(x), & \text{a.e. } y < \bar{y}(x), \\ v(y,x) &= \mathcal{M}v(y,x), & y \ge \bar{y}(x), \\ v(0,x) &= 0, \\ \liminf_{y \to \infty} \{v(y,x) - v_L(y,x)\} \ge 0. \end{aligned}$$

¹Note that (i) value function, (ii) QVI's solution and (iii) FBP's solution do not necessarily coincide

In a nutshell, we are able in the general case to

- prove that the "minimum" QVI's solution coincides with the value function (provided regularity)
- express conditions on the (s, S) boundaries to ensure existence of a regular FBP's solution
- In a particular case,
 - 1. we construct (*s*, *S*) boundary *curves* corresponding to a regular FBP's solution
 - 2. we prove that the FBP's solution solves the QVI
 - 3. we establish that the QVI's solution coincides with the value function (verification problem)

BENCHMARK MODELS

The value function v is bounded below by the **perpetuity value of capacity**:

$$v(y,x) \ge v_L(x,x) := \frac{y\delta(x)}{r-\mu}$$

The value function *v* is bounded below by the **perpetuity value of capacity**:

$$v(y,x) \ge v_L(x,x) := \frac{y\delta(x)}{r-\mu}$$

In the (perfectly) reversible case, the firm should raise capacity if

$$(y,x) \in \mathcal{S}_{L} := \left\{ (y,x) \mid y \ge \mathbf{y}_{L}(\mathbf{x}) := \frac{\mathsf{c}[\mathbf{r}-\mu]}{\delta'(\mathbf{x})} \right\}$$

We have $\frac{\partial v_L}{\partial x}(\bar{y}_L(x), x) = c$ and define $\bar{x}_L := \bar{y}_L^{-1}$

The value function v is bounded above by the value function of the singular control problem (k = 0):

$$v(y,x) \leq v_U(y,x) := \sup_{\xi(\cdot)} \mathbb{E}_{y,x} \left[\int_0^\infty Y_t \delta(X_t) e^{-rt} \, \mathrm{d}t - c \int_0^\infty e^{-rt} \, \mathrm{d}\xi_t \right]$$

The value function v is bounded above by the value function of the singular control problem (k = 0):

$$v(y,x) \leq v_U(y,x) := \sup_{\xi(\cdot)} \mathbb{E}_{y,x} \left[\int_0^\infty Y_t \delta(X_t) e^{-rt} \, \mathrm{d}t - c \int_0^\infty e^{-rt} \, \mathrm{d}\xi_t \right]$$

The dynamic programming equation for v_U is a degenerate QVI

$$\min \left\{ \mathcal{L} v_U(y, x) - y \delta(x); c - \frac{\partial v_U}{\partial x}(y, x) \right\} = 0,$$
$$v_U(0, x) = 0,$$
$$\liminf_{y \to \infty} \{ v_U(y, x) - v_L(y, x) \} \ge 0$$

The singular control's QVI is easier to solve than the impulse control's QVI

It admits a regular solution given by

$$\begin{aligned} v_{U}(y,x) &= \begin{cases} v_{L}(y,x) + A_{U}(x)y^{\beta}, & y \leq \bar{y}_{U}(x), \\ v_{L}(y,\bar{x}_{U}(y)) - c[\bar{x}_{U}(y) - x] + A_{U}(\bar{x}_{U}(y))y^{\beta}, & y \geq \bar{y}_{U}(x), \end{cases} \\ S_{U} &:= \left\{ (y,x) \mid y \geq \mathbf{y}_{U}(x) := \frac{\beta}{\beta - 1} \frac{\mathbf{c}[r - \mu]}{\delta'(x)} = \bar{x}_{U}^{-1}(x) \right\}, \\ A_{U}(x) &:= \left(\frac{\beta c}{\beta - 1}\right)^{\beta - 1} \frac{1}{\beta} \left(\frac{1}{r - \mu}\right)^{\beta} \int_{x}^{\infty} \delta'(\xi)^{\beta} \, \mathrm{d}\xi \\ \beta &:= -\frac{\mu - \sigma^{2}/2}{\sigma^{2}} + \sqrt{\left(\frac{\mu - \sigma^{2}/2}{\sigma^{2}}\right)^{2} + \frac{2r}{\sigma^{2}}} \in (1, r/\mu) \end{aligned}$$

Reversible investment vs. singular control: $\bar{y}_U(\cdot)$ **vs.** $\bar{y}_L(\cdot)^1$

¹Graphs generated assuming $\delta(x)=\sqrt{x},\,r=$ 0.05, $\mu=$ 0.014, c= 10

REVERSIBLE INVESTMENT VS. SINGULAR CONTROL: $\bar{x}_{U}(\cdot)$ **VS.** $\bar{x}_{L}(\cdot)^{1}$

Commodity price y

¹Graphs generated assuming $\delta(x)=\sqrt{x},\,r=$ 0.05, $\mu=$ 0.014, c= 10

19/41

GENERAL CASE

Statement¹

The QVI has solutions in $[\underline{v}, \overline{v}] \subset [v_L, v_U]$. The sequence $\{v_n\}_n$ defined by $v_0 \equiv v_L$ and the recurrence relation

$$\min \left\{ \mathcal{L}v_{n+1}(y,x) - y\delta(x); v_{n+1}(y,x) - \mathcal{M}v_n(y,x) \right\} = 0$$
$$v_{n+1}(0,x) = 0$$
$$\liminf_{y \to \infty} [v_{n+1}(y,x) - v_L(y,x)] \ge 0$$

converges to the minimum solution v.2

¹To establish this "statement" would require to prove regularity. We assume v_n are regular. Regularity is proved in the particular case ² \overline{v} is the "maximum solution" (limit of a sequence starting at $v_U > v_L$) ³A QVI can be viewed as a fixed-point equation with an "implicit obstacle" $\mathcal{M}v$. The min term here is a VI (not a QVI) with an "explicit obstacle" $\mathcal{M}v_n$. Formally, this sequence is an approach to solve the fixed-point equation

Verification theorem

Assume

i) we can find a (s, S) policy:

- "s":
$$\bar{x} = \bar{y}^{-1}$$

- "S": $Z(y) = \bar{X}(y) + \arg \max_{\xi > 0} \{ v(y, \bar{X}(y) + \xi) c\xi \}$ [> $\bar{X}(y)$]
- ii) the impulse control $\hat{\nu}$ is admissible¹
- iii) the transversality condition $\mathbb{E}_{y,x}[v_U(Y_T, \hat{X}_T)e^{-rT}] \to 0$ is satisfied

iv) <u>v</u> is regular.

Then \underline{v} coincides with the value function v^2 .

¹We define $X_0 = x$, $X_{\hat{\tau}_1} = z(y \vee \overline{y}(x))$ and $X_{\hat{\tau}_n} = z(Y_{\hat{\tau}_n})$. $\hat{\nu}$ is defined by

 $\hat{\tau}_{1} = \inf\{t \mid Y_{t} = y \lor \bar{y}(x)\}, \, \hat{\tau}_{n+1} = \inf\{t > \hat{\tau}_{n} \mid Y_{t} = \bar{y}(X_{\hat{\tau}_{n}})\}, \, \hat{\xi}_{n} = X_{\hat{\tau}_{n}} - X_{\hat{\tau}_{n}}$

²Proof sketch: The function \underline{v} (i) is the smallest upper solution, (ii) majorizes v, and (iii) coincides with v (generalized Itô's lemma + assumption iii)

FBP's regular solution

If we can find (s, S) boundaries $\bar{x}(\cdot)$ and $z(\cdot)$ satisfying certain conditions (see Appendix A), then the function v given by

The boundaries $x(\cdot)$ and $z(\cdot)$ are defined *implicitly* as solutions of¹

$$\begin{aligned} v_L(y, z(y)) - v_L(y, \bar{x}(y)) &= \frac{\beta c}{\beta - 1} [z(y) - \bar{x}(y)] + \frac{\beta k}{\beta - 1} \\ \frac{\partial v_L}{\partial x} (y, z(y)) - c &= \left[\frac{\partial v_L}{\partial x} (\bar{y}(z(y)), z(y)) - c \right] \left(\frac{y}{\bar{y}(z(y))} \right)^{\beta} \end{aligned}$$

¹The first condition can be stated as

$$\underbrace{\int_{\bar{x}(y)}^{z(y)} \left[\frac{\partial v_L}{\partial x}(y,\xi) - \frac{\beta c}{\beta - 1} \right] d\xi}_{\text{Additional excess perpetuity}} = \underbrace{\frac{\beta}{\beta - 1} k}_{\text{Fixed opportunity cost}}$$

If we introduce

$$F(y,x) := (\beta - 1)v_L(y,x) - \beta cx,$$

$$G(y,x) := -\left[\frac{\partial v_L}{\partial x}(y,x) - c\right]y^{-\beta},$$

then the boundaries $\bar{x}(\cdot)$ and $z(\cdot)$ can be expressed as solutions of

$$F(y, z(y)) = F(y, \overline{x}(y)) + \beta k,$$

$$G(y, z(y)) = G(\overline{y}(z(y)), z(y)).$$

Technical challenge

Solving this system is nontrivial because the unknown $z(\cdot)$ is an argument of the unknown $\bar{y}(\cdot)$

We introduce the functions¹

- Y: Y(y,x) \in [$\overline{y}_L(x), \infty$) \ {y} is the unique solution of

$$G(y,x) = G(Y(y,x),x)$$

- X: $X(y,x) \in [0, \bar{x}_U(y)]$ is the unique solution of

$$F(y,X(x,y))=F(y,x)-\beta k$$

We thus look for functions $\bar{x}(\cdot)$ and $z(\cdot)$ expressed explicitly as^{2,3}

$$0 \le \bar{x}(y) \le X(y, \bar{x}_U(y)) \le \bar{x}_U(y) \le z(y) \le \min\{\bar{x}_L(y), x_1(y)\},\ z(y) = \bar{x}(Y(y, z(y))),\ \bar{x}(y) = X(y, z(y))$$

¹See details on the domains of definition in the working paper ²The singular control's boundary \bar{x}_{ij} corresponds to a degenerate case $[k = 0 \implies \bar{x} \equiv \bar{x}_{ij} \equiv z]$ ³ $z(\cdot)$ solves the fixed-point equation z(y) = X(Y(y, z(y)), z(Y(y, z(y))))

PARTICULAR CASE

To fully solve the problem, we consider a restrictive case, namely

Particular case

$$\delta(x) = \sqrt{x}$$
 and $3\sigma^2 = r - 3\mu > 0$.

Here, we are able to:

- 1. construct the (s, S) boundary curves
- 2. prove that the regular FBP's solution (expressed in closed form) solves the QVI
- 3. establish the verification problem and thus prove the optimality of the (s, S) policy

Functions X and Y in the particular case

If we consider the

Particular case

$$\delta(x) = \sqrt{x}$$
 and $3\sigma^2 = r - 3\mu > 0$,

then

• Y(y, x) is a root of a polynomial of power 3 (y is another root):

$$Y(y,x) = \frac{y}{2} \left[-1 + \sqrt{\frac{y + 6c(r-\mu)\sqrt{x}}{y - 2c(r-\mu)\sqrt{x}}} \right]$$

• X(y, x) also has an explicit expression, namely

$$X(y,x)^{1/2} = \frac{y - \sqrt{[3c(r-\mu)\sqrt{x} - y]^2 + 9kc(r-\mu)^2}}{3c(r-\mu)}$$

We introduce

$$\psi(y) := \sqrt{\frac{z(y)}{\overline{x}_U(y)}} - 1, \quad \varphi(y) := \frac{Y(y, z(y))}{y}, \quad \rho(y) := \frac{3(r-\mu)\sqrt{kc}}{y},$$

After a change of variables and re-arrangement, ψ obtains to be the **fixed point** of the map $\mathcal{T}: \theta(\cdot) \to \zeta(\cdot)$ where $\zeta(\cdot)$ is the solution of¹

$$\sqrt{\frac{1+2\zeta(y)/3}{1-2\zeta(y)} - 1 - \frac{2}{3}\zeta(y)} = \frac{2}{3}\sqrt{\rho^2(y) + \chi^2(y)\theta^2(y\chi(y))}$$
$$\chi(y) = -\frac{1}{2} + \frac{3}{2}\sqrt{\frac{1+2\zeta(y)/3}{1-2\zeta(y)}}$$

¹We here provide a sketch; more details, e.g., on bounds and monotonicity available in the working paper

To obtain ψ , we

- construct a monotone sequence $\{\zeta^k(\cdot)\}_k$ that converges to $\zeta(\cdot)$
- $\cdot\,$ show that the map ${\cal T}$ is monotone increasing
- prove that $\{\zeta_n(y)\}_n$ defined by $\zeta_1(y) = 0$ and $\zeta_{n+1}(y) = \mathcal{T}(\zeta_n)(y)$ increases and converges to the minimum solution $\psi(y)$

This allows us to obtain the boundaries $z(\cdot)$ and $\bar{x}(\cdot)$ explicitly from

$$\psi(y) = \sqrt{\frac{z(y)}{\bar{x}_U(y)}} - 1$$
 and $\sqrt{\frac{\bar{x}(y)}{\bar{x}_U(y)}} = 1 - \sqrt{\psi^2(y) + \rho^2(y)}$

We also obtain that $\bar{x}(\cdot)$ and $z(\cdot)$ are monotone increasing and asymptotically equivalent to $\bar{x}_U(\cdot)^1$

¹Formally, the fixed cost *k* becomes negligible when $y \to \infty$

PARTICULAR CASE – (S, S) BOUNDARIES

Hysteresis (white region) because of:

- Effect of irreversibility $(\mathcal{C}_U \cap \mathcal{S}_L \neq \emptyset)$
- Effect of fixed cost k > 0 ($C \cap S_U \neq \emptyset$)

PARTICULAR CASE – (S, S) BOUNDARIES

"If there is a stock fixed cost ...the optimal policy will allow the capital stock to jump in discrete steps at isolated moments" (Dixit and Pindyck 1994)

CONCLUDING REMARKS

Contributions

- we consider staged capacity investments under uncertainty (optimal timing & optimal capacity choices)
- \cdot we derive and solve a QVI with two states
- we compare with benchmarks in micro- and macroeconomics and investigate another source of hysteresis

Contributions

- we consider staged capacity investments under uncertainty (optimal timing & optimal capacity choices)
- \cdot we derive and solve a QVI with two states
- we compare with benchmarks in micro- and macroeconomics and investigate another source of hysteresis

Research outlook:

- Larger classes of profit functions ($y\sqrt{x}$ is somewhat restrictive)
- Impact of output $\delta(x)$ on market-clearing price y
- Broader class of Lévy processes
- Depreciation and resale of capacity
- Strategic interactions between investing firms

QUESTIONS?

REFERENCES I

- Abel, A. B., and J. C. Eberly. 1994. "A Unified Model of Investment Under Uncertainty". American Economic Review 84 (5): 1369–1384.
- Bensoussan, A., and J.-L. Lions. 1982. *Applications of Variational Inequalities in Stochastic Control*. Vol. 13. Studies in Mathematics and Its Applications. New York, NY: North-Holland.
- . 1984. Impulse Control and Quasi-Variational Inequalities. Paris, France: Gauthiers-Villars.
- Dixit, A. K., and Pindyck. 1994. *Investment under Uncertainty*. Princeton, NJ: Princeton University Press.
- Ferrari, G. 2015. "On an integral equation for the free-boundary of stochastic, irreversible investment problems". Annals of Applied Probability 25 (1): 150–176.

REFERENCES II

- Hubbard, R. G. 1994. "Investment Under Uncertainty: Keeping One's Options Open". *Journal of Economic Literature* 32 (4): 1816–1831.
- Kobila, T. 1993. "A class of solvable stochastic investment problems involving singular controls". *Stochastics and Stochastic Reports* 43 (1-2): 29–63.
 - McDonald, R., and D. Siegel. 1986. "The Value of Waiting to Invest" [inlangEnglish]. *Quarterly Journal of Economics* 101 (4): 707–728.
 - Merhi, A., and M. Zervos. 2007. "A Model for Reversible Investment Capacity Expansion". *SIAM Journal of Control and Optimization* 46 (3): 839–876.
- Øksendal, A. 2000. "Irreversible investment problems". *Finance and Stochastics* 4 (2): 223–250.

- Pindyck. 1988. "Irreversible Investment, Capacity Choice, and the Value of the Firm". *American Economic Review* 78 (5): 969–985.
- Riedel, F., and X. Su. 2011. "On irreversible investment". Finance and Stochastics 15 (4): 607–633.
- Trigeorgis, L. 1996. Real options: Managerial flexibility and strategy in resource allocation. MIT press.