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Objectives

A key focus in the theory of investment under uncertainy is on the
timing of decisions

We will consider today several cases whereby the payoff receives at
the exercise of the real options is nontrivial, which leads sometimes
to new insights and request the use of more advanced techniques
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Table of contents

In the first session, we will cover

1. Introduction to real options
2. Time and scale flexibility
3. Capacity expansion and performance-sensitive debt

We will then consider an extension of the model in “2.” to account for

4. Sequential capacity expansion options

and finally consider

5. Capacity and output choices in oligopoly
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Intro to real options
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What is value?

Consider

• a filtered probability space (Ω,F ,F,P)
• Brownian motion Z = (Zt; t ≥ 0)
• an “underlying source” of uncertainty: Xx : Ω× [0, T] 7→ X ⊂ R
follows a diffusion

X0 = x a.s., (1)
dXt = ν(Xt, t) dt + σ(Xt, t) dZt, t ∈ R+ (2)

• a payout/cashflow function f on X × [0, T]
• a “stochastic discount factor” (SDF) δ : Ω× T → (0, 1]

The present value is the discounted expected sum of the cashflows
given by

PV := EP
[ ∫ T

0
δt f (Xxt , t)dt

]
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What is value?

Critical steps in appraising this value are

1. characterize the cashflow stream f ◦ Xx , e.g., linear versus
nonlinear w.r.t. the state x ∈ X

2. determine the appropriate SDF δ
3. ensure consistency between the probability measure P, the
process Xx and the SDF δ

The NPV paradigm and ROA gives different interpretations
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NPV paradigm

Implicit assumptions in NPV:

1. the cashflow x 7→ f (·, t) is linear
2. the discount fact δt = e−

∫ t
0 µ(s)ds surmises risk-adjusted discount

rate µ(·) given by, e.g., CAPM. Discount rate often constant
3. physical probability measure P.

Present value specializes to

PV := EP
[ ∫ T

0
e−

∫ t
0 µ(s)dsf (Xxt , t)dt

]
=

∫ T

0
e−

∫ t
0 µ(s)dsf

(
EPXxt , t

)
dt

Drawbacks of NPV paradigm:

• Fails to capture managerial flexibility/nonlinearities
• Discount rate µ(·) may depend on states ω or firms’ decisions
α : Ω× [0, T] → A
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Real options analysis (ROA)

Assumptions borrowed from nonlinear derivative pricing:

1. firms have managerial flexibility: firm strategy α : Ω× [0, T] → A
impacts payout f (x, t, αt(ω)), which is nonlinear in x

2. use of riskfree rate r > 0 with (S)DF δt = e−rt

3. simplification on SDF allowed under “martingale equivalent
probability” measure Q

This leads to the present value expression

PV = sup
α

EQ
[ ∫ T

0
e−rt f (Xxt , t, αt)dt

]

Reference books are: Dixit and Pindyck (1994) and Trigeorgis (1996)
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Real options analysis (ROA)

Firm strategy α needs be specified:

Nonexhaustive list of real options
Type Optionality

Option to defer Delay start of project

Option to expand Raise capacity, possibly in stages

Option to contract Reduce capacity, possible in stages

Options to exit Leave the market

The option to defer is a canonical example we discuss next

8/54



Option to Defer

Brief model description:

• Investment cost K is not recoupable, i.e., investment is
irreversible

• infinite planning horizon (T = ∞)
• Management decides on the “exercise time” τ

Model features:

• Risk-neutral firm or risk-neutral pricing (if no arbitrage and
complete it holds). Riskfree rate r

• Analogy with the perpetual American call option (McDonald and
Siegel 1986)
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Option to defer

• Project value Xx evolves as a GBM, i.e., it solves the SDE

X0 = x a.s., (3)
dX = µX dt + σX dWt, t ∈ R+ (4)

• The value function,

F(x) = sup
τ

Ee−rτ
(
Xxτ − K

)
︸ ︷︷ ︸
“Obstacle”

,

relates to an optimal stopping problem
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variational inequality (VI)

Dynamic programming (DP) consists in simplifying dynamic
optimization problem into pointwise optimization problems

The DP equation for optimal stopping is a variational inequality (VI)
[Bensoussan and Lions 1982]

Here, the VI derives from the following heuristics:

• Given optionality, investing straight away is suboptimal:

F(x) ≥ x − K

• Deferring investment for sure is also suboptimal:

F(x) ≥ E
[
e−rtF(Xxt )

]
=⇒ LF(x) ≥ 0 a.e.1

• Either one is optimal (“complementarity slackness”)

1Obtained from Dynkin formula as t ↓ 0, whereby L is a second-order differential
operator L := r − µx d

dx −
1
2σ

2x2 d2
dx .
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variational inequality (VI)

In summary

Variational inequality (see Bensoussan and Lions 1982)
If the value function F satisfies

F(·) ∈ C1(R+) ∩ C2(R+) a.e. (“regularity”)

then it solves1

min
{
F(x)− x + K,LF(x)

}
= 0

We set the boundary condition:

F(0) = 0

1General verification theorem to prove the reverse implication
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Free boundary problem (FBP)

• The continuation set C := {x ∈ R+ | F(x) > x − K} is conjectured
to be of the form (0, x̄) ⊂ R+

• If this holds, the regular VI solution F(·) then solves a FBP1

LF(x) = 0, x ∈ (0, x̄),
F(x) = x − K, x ∈ [x̄,∞) ,

F(0) = 0

• A solution to the FBP does not necessarily solves the VI

1F(·) is conjectured to be C1 ; hence, we determine the free boundary x̄ by smooth fit
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Free boundary problem

• ODE solution conjectured of the form x 7→ xγ , which is true if γ is
a root of

Q(γ) = r − µγ − 1
2
σ2γ(γ − 1)

• If r > µ, this quadratic function has two roots: γB < 0 < 1 < γA

• Because F(0) = 0, the ODE has solution of the firm F(x) = AxγA

• From smooth fit, the function

F(x) =
{

K
γA−1

( x
x̄
)γA

, x < x̄ := γA
γA−1K > K,

x − K, x ≥ x̄

solves the FBP
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Optimality

To prove optimality, it remains to verify the VI, i.e., prove1

- For any x < X̄,

f (x) := x − K
γA − 1

(x
x̄

)γA
≤ K,

which obtains because f ′(x) > 0 [recall that γA > 1] and f (x̄) = K .
- For any x ≥ x̄, that

L(x − K) ≥ 0,

which is immediate because γA
γA−γA

> r
r−µ

The optimal stopping time is τ̂x = inf {t ≥ 0 | Xxt ≥ x̄}

1See Bensoussan and Lions 1982; Øksendal 2000 for verification theorem
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Interpretation of the solution

Optimal investment rule:

• The optimal stopping rule invalidates the (binary) NPV
investment rule x̄ ≥ K

• Two effects are accounted for (“hysteresis”) in γA
γA−1 > 1

- Irreversibility: µ
r−µ

> 1
- Further delay because of uncertainty: γA

γA−1 >
µ

r−µ
for σ > 0

Further economic interpretations:

• NPV is a lower bound on value function: F(x) ≥ x − K
• (x/x̄)γA is the “state price” of receiving $ 1 at stochastic time τ̂x
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Time and scale flexibility
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Extension of “option to defer”

Joint work with Alain Bensoussan [Bensoussan and
Chevalier-Roignant 2013]

Next, the firm decides on the investment size at the time of
investment, e.g.,

- a retailer decides on the extent of the premises
- a market entrant devises a marketing strategy
- a refurbished luxury hotel commits to a number of rooms

18/54



States & profit

• States: commodity price x > 0 and the firm’s capital stock δ ≥ 01

• We assume firm profit π(x, δ) satisfying

πx > 0 profit increases with price [π(0, δ) ≡ 0]
πδ > 0 profit increasing with capacity [π(x, 0) ≡ 0]
πδδ0 diminishing marginal returns
πxδ > 0

• Firm strategy ν consisting of investment time τ and investment
lump ξ2 involves investment costs of K + cξ, K, c > 0

• State equations:
• Commodity price Xx follows a GBM
• Capacity at time t is

∆ν
t = δ1t<τ + (δ + ξ)1t≥τ

1Alternative interpretation as labor or capital more generally
2Assumed Fτ measurable
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Net present value

Perpetuity value of capacity1

V(x, δ) := E
[ ∫ ∞

0
e−rtπ (Xxt , δ)dt

]

Explicit expression for V

V(x, δ) = 2
(γA − γB)σ2

[
xγB

∫ x

0

π(η, δ)

ηγB+1
dη + xγA

∫ ∞

x

π(η, δ)

ηγA+1
dη

]

Perpetuity value V inherits curvature of π2

1V above is the probabilistic interpretation of LV = π
2Namely, perpetuity value increases with capacity (Vδ > 0), returns to scale diminish
(Vδδ < 0), and shadow price of capacity increases with price (Vxδ > 0)
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Value function with capacity expansion

The value function,

F(x, δ) = sup
ν

E
[ ∫ ∞

0
e−rtπ (Xxt , δνt )dt − (K + cξ)e−rτ

]

can be expressed as an optimal stopping problem

F(x, δ) = sup
τ

E
[ ∫ τ

0
e−rtπ(Xxt , δ)dt + e−rτ

{
Φ
(
Xxτ , δ

)
− K

}
︸ ︷︷ ︸

“Obstacle”

]

where
Φ(x, δ) = sup

ξ≥0

{
V(x, δ + ξ)− cξ

}
embeds the optimal choice of capacity
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Optimal capacity choice

The solution of the capacity optimization problem is δ ∨ z(x) where
z(·) is given by

a if Vδ(x, 0) 6≡ ∞, then there exists a unique x0 > 0 s.t.
Vδ(x0, 0) = c. and

z(x) =
{
0, x < x0,
{z > 0 | Vδ(x, z) = c}, x > x0

b if Vδ(x, 0) ≡ ∞, then
Vδ(x, z(x)) = c

Economic interpretation
When a firm invests, it does so up to the point where marginal
value equals marginal cost, c
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Optimal capacity choice

Define
φ(x, δ) := V

(
x, z(x)

)
− c

[
z(x)− δ

]
The obstacle,

Φ(x, δ) =
{
φ(x, δ), δ < z(x),
V(x, δ), δ ≥ z(x).

obtains to be regular

As z(·) is monotone, z−1(·) is well defined on [δ?,∞). Above the price
threshold z−1(δ), the marginal capacity unit δ’s value exceeds (linear)
cost c
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Optimal stopping: VI & FBP

Variational Inequality (VI) formulation
If the value function F is regular, then it satisfies the VI

min{F − Φ+ K,LF − π} = 0,
φ(0, x) = 0.

We conjecture a structure for the continuation set, with a threshold
x̄(δ) s.t.

LF(x, δ) = π(x, δ), x < x̄(δ)
F(x, δ) = Φ(x, δ)− K, x ≥ x̄(δ)
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Threshold solution

From smooth fit, x̄(δ) > z−1(δ) is conjectured the unique solution of
G(x, δ) = K in x, where

G(x, δ) := V(x, z(x))− V(x, δ)− x
γA

[
Vδ(x, z(x))− Vδ(x, δ)

]
− c [z(x)− δ]

We make two assumptions:

• Assumption 1: Function x 7→ Gx(x, δ) increases once positive
• Assumption 2: (a) given assumption 1, x̄(δ) solves G(x, δ) = K
uniquely on (z−1(δ),∞) and (b) the function

x 7→ 1
xγA−2

[
Vxx(x, z(x))− Vxx(x, δ)−

Vxδ(x, z(x))2

Vδδ(x, z(x))

]
decreases on

[
z−1(δ), x̄(δ)

]
.
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Value function

Value function
Under assumptions 1 and 2,

x 7→ F(x, δ) =

V(x, δ) +
[(
φ− V)(x̄(δ), δ)− K

] (
x

x̄(δ)

)γA
, x < x̄(δ),

φ(x, δ)− K, x ≥ x̄(δ),

solves the VI and coincides with the value function

Main economic insights

• Investment at time τ̂(x, δ) = inf
{
t ≥ 0 | Xxt ≥ x̄(δ) > z−1(δ)

}
• Hence, further delay due to hysteresis, contradicting the ”NPV
rule” for the marginal unit

• Hysteresis also arises if K = 0
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Examples of revenue functions

a. Linear revenues of the form

π(x, δ) = yk(δ), k′(·) > 0, k′′(·) < 0

b. Revenues involving Cobb-Douglas production function2

π(x, δ) = ψ xγ δα

c. Revenue function involving bounded production:

π(x, δ) = x(1− e−αδ), α > 0

2Denote labor cost by w, elasticity of capital by κ and elasticity of labor by 1− ε.
Management maximizes x∆(l, δ)− wl w.r.t. labor supply l. By setting α = κ/ε, γ = 1/ε
and ψ = (w/[1− ε])(ε−1)/ε ε, we obtain π [concave in δ if α ∈ (0, 1), convex in x if
ε > 0]
3In this case, k(∞) = 1 <∞.
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Linear revenues

The perpetuity value of capacity is

V(y, x) = y δ(x)
r − µ

.

Investment intensity is given by

z(x) =

0, x < x0,
(k′)−1

(
c(r−µ)

x

)
, x > x0
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Linear revenues

Free boundary of FBP x̂(δ) solves

x̄(δ)k(z(x̄))− k(δ)
r − µ︸ ︷︷ ︸

Perpetuity value

=
γA

γA − 1︸ ︷︷ ︸
> 1

[K + c [z(x̄)− δ]]︸ ︷︷ ︸
Investment cost

.

Benchmark cases:

- “Canonical option to expand” by fixed size ξ (Trigeorgis, 1996):

x̄(δ)k(δ + ξ)− k(δ)
r − µ

=
γA

γA − 1
[K + cξ]

- Irreversible investment à la Abel and Eberly (singular control)

x̃(δ) k
′(δ)

r − µ
=

γA
γA − 1

c

In contrast,
x̄(δ) > x̃(δ) > z−1(δ), K ≥ 0.
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(Specialized) optimality conditions

For these three cases, we specialize assumption 1 as

a. g(y) := (γA − 1)k(y) + k′(x)2/k′′(y) increases with either
i. k(∞) < ∞ and k′(δ)2/k′′(δ) → 0 as δ → ∞ or

(ii) k(∞) = ∞ and g(∞) = ∞;
b. (1− α)γA ≥ 1;
c. ∅

and assumption 2 as

a. δ 7→ −k′(δ)2/k′′(δ) decreases.
b. γ ≥ 1;
c. ∅

Economic interpretations
In case b (“Cobb-Douglas”), the firm cannot perform too well in
production (large α)
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Conclusion

• Contributions:
- extend the real options approach to include a scale decision at
the time of investment;

- prove existence, unicity, and optimality of a trigger policy under
restrictive conditions.

• Managerial insights:
- capital-accumulation rule reminiscent of marginal Tobin’s q theory
- main insight from the option to defer carry over;
- restrictions may impose “mediocrity” on the firm.

• Possible extensions:
- allow both capital purchase and resale;
- allow repeated capital adjustments at a fixed cost.
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Capacity and output choices in
oligopoly
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Motivation

Joint work with Christoph Flath, Peter Kort and Lenos Trigeorgis

We study oligopoly firms’ capacity investment decisions given novel
assumptions of cost heterogeneity and output flexibility within
capacity constraints under demand uncertainty

Firms have a narrow “window of opportunity” to enter an emerging
technology market. At market inception, they choose capacity, facing
a tradeoff between

• the risk of carrying expensive idle capacity in case of low
demand

• the risk of unsatisfied demand in case of demand upsurge
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Research questions

What is the impact of

• capacity cost heterogeneity,
• output flexibility,
• capacity constraints,
• demand uncertainty

on capacity decisions?
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Key novel insights

• Firm invests in more capacity when uncertainty is larger (vs
depressing effect of uncertainty on investment)

• Lower-cost firm invests in more capacity while a less efficient
rival reduces capacity (strategic substituability).

• Larger capacity also helps a large firm attain market power (and
convexity). Uncertainty induces more upfront capacity
investment for the more cost-efficient firm

• In oligopoly, greater uncertainty leads to more dispersion of
equilibrium capacities and potentially a welfare loss
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Related literature

Related articles Key model features Differences

Pindyck 1988;
Abel and Eberly
1996

Monopoly, repeated capital
extensions (and reductions)

Output flexibility, more firms,
uncertainty increases invest-
ment (rather than decreases)

Gabszewicz and
Poddar 1997

Two stages, duopoly, output
flexibility

More firms, more stages, cost
heterogeneity, social optimum

Huisman and
Kort 2015

Duopoly, capacity timing, pre-
emption, entry deterrence vs.
accommodation

Output flexibility, more firms,
no capacity timing, cost het-
erogeneity
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Model setup

Firm i = 1, . . . , k decides on its capacity q̄i and subsequent output
strategy qi(·), subject to a capacity constraint:

0 ≤ qi(t) ≤ q̄i.

Qt is the aggregate output at time t, while Q̄ is the capacity vector.

We consider a stochastic intercept (Xt, t ≥ 0) that follows the
geometric Brownian motion in the linear inverse demand function:

p(Xt,Qt) = Xt − b Qt, b > 0.
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Firm payoff

Firm i maximizes its payoff

Ji
(
x0,Q(·), Q̄

)
= E

[∫ ∞

0
e−rtπi(Xt,Qt)dt

]
− Ci(q̄i).

where

πi(Xt;Qt) = p(Xt,Qt)qi(t)− cqi(t) {profit}
Ci(q̄i) = ci(χ) q̄i, {capital cost}

with ci(χ) ≤ cj(χ) if i > j and parameter χ drives the differential.

We look for Markov perfect equilibrium such that
q̄1 ≤ · · · ≤ q̄m ≤ · · · ≤ q̄k.
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Cournot output

Firm i’s Cournot output is adjusted for capacity constraints:

qCi (x, Q̄) =


0, x ∈ (0, c) {idle/flat}
x−Σ(x,Q̄)
b[1+K(x,Q̄)] , x ∈ [c, x̄i) {unconstrained/linear}

q̄i, x ∈ [x̄i,∞) {constrained/flat},

where

x̄i := c + b[
∑

j=0,...,i−1

q̄j + (k− i+ 2) q̄i], {Demand thresholds}

Σ
(
x, Q̄

)
:= c + b

∑
m=0,...,k

q̄m1{x≥x̄m}, {cost of competing}

K
(
x, Q̄

)
:=

k∑
m=0

1{x≤x̄m}, {# of unconstrained firms}
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Cournot profit

It readily obtains firm i’s Cournot profit as:

πCi
(
x, Q̄

)
=


0 if x ∈ (0, c) {idle/nil}
1
b

[
x−Σ(x,Q̄)
1+K(x,Q̄)

]2
if Xt ∈ [c, x̄i) {unconstrained/convex}

q̄i
[
x−Σ(x,Q̄)
1+K(x,Q̄)

]
if x ∈ [x̄i,∞) {constrained/linear}.

At each threshold x̄m, a new capacity constraint gets binding or
relaxed. This generates kinks in the profit functions.
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Firm value in constrained oligopoly (I)

Firm value Vi has a closed-form expression:1

Vi
(
x, Q̄

)
= vi

(
x, Q̄

)︸ ︷︷ ︸
Perpetuity value

+ Ai
(
x, Q̄

)
xγA︸ ︷︷ ︸

Output expansion benefits

+ Bi
(
x, Q̄

)
xγB︸ ︷︷ ︸

Loss-reduction benefits

, (5)

where vi, Ai and Bi reflect changes in the industry structure with
some firms constrained, while other exert market power.

Function Vi is

• convex increasing in x because demand increases lead to price
inflation and output expansion (if unconstrained)

• concave increasing in q̄i because raising capacity helps relax the
constraint but large demand states become less likely (ceteris
paribus)

1γA/B are the roots of the “fundamental quadratic.”
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Firm value in constrained oligopoly (II)

The perpetuity value is given by

vi
(
x, Q̄

)
:=


0, x ∈ (0, c),

1
b
[
1+K(x,Q̄)

]2 [ x2
r−2µ−σ2 −

2xΣ(x,Q̄)
r−µ + Σ(x,Q̄)2

r

]
, x ∈ [c, x̄i),

q̄i
1+K(x,Q̄)

[
x

r−µ − Σ(x,Q̄)
r

]
, x ∈ [x̄i,∞)

while the “truncated perpetuity values” are

ν
A/B
i

(
x, Q̄

)
:=


0, x ∈ (0, c),

1
b[1+K0]2

{
2−γB/A
γA−γB

x2
r−2µ−σ2 −

1−γB/A
γA−γB

2xΣ(X,Q̄)
r−µ − γB/A

γA−γB

Σ(X,Q̄)2
r

}
, x ∈ [c, x̄i),

q̄i
1+K(X,Q̄)

{
1−γB/A
γA−γB

x
r−µ +

γB/A
γA−γB

Σ(X,Q̄)
r

}
, x ∈ [x̄i,∞),
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Firm value in constrained oligopoly (III)

The upside adjustment is given by

Ai(x, Q̄) xγA :=
k∑

m=0
1{x≤x̄m}

(
νAi (x̄m+, Q̄)− νAi (x̄m−, Q̄)

)
︸ ︷︷ ︸
Rival constraints become binding

(
x
x̄m

)γA

,

while the downside adjustment is

Bi(x, Q̄) xγB :=
k∑

m=0
1{x≥x̄m}

(
νBi (x̄m+, Q̄)− νBi (x̄m−, Q̄)

)
︸ ︷︷ ︸

Constraints get relaxed

(
x
x̄m

)γB
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Upfront capacity choice in monopoly (I)

We solve the monopoly firm’s capacity choice problem explicitly:1

q̄C1 (x0) = q̂(x0)1{x0≥x̄?}.

where

x̄? =


(

2C′1 (0)
c(γA−2)κA

)1/γA
c, 0 ≤ f (0)

{x | x
r−µ − c

r − (2− γB)
c1−γB

2 κBxγB = C′1(0)}, 0 > f (0)

q̂(x) =
{{

q̄1 | κA
2 (γA − 2)xγA(c + 2bq̄1)1−γA = C′1(q̄1)

}
, f

( x−c
2b

)
≥ 0,

{q̄1 | x
r−µ − c+2bq̄1

r + κB
2 (γB − 2)xγB(c + 2bq̄1)1−γB = C′1(q̄1)}, f

( x−c
2b

)
< 0.

f (q̄1) :=
κA
2
(γA − 2)(c + 2bq̄1)− C′1(q̄1)

κA/B :=
1

γA − γB

[ 2− γB/A

r − 2µ− σ2
− 2

1− γB/A

r − µ
−
γB/A

r

]
1Assuming ϕ(r, µ, σ) := 2

r−µ
1

(2−γB)γBκB
> 1
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Upfront capacity choice in monopoly (II)

a) Marginal capacity value and cost (x0=10)

∂V1/∂q1 (σ=0.05)
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(b) Optimal capacity level
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Figure 1: Marginal value (∂V1/∂q̄1) and optimal capacity choice q̄C1 (x0) at
varying volatility levels (σ = 0.05 or 0.20) in monopoly
(b = 1, c = 1, µ = 0.02, r = 0.05, C1(q̄1) = 100× q̄1)
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Cost leader’s capacity choice in oligopoly
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Figure 2: Effect of cost heterogeneity χ and demand volatility σ on firm k’s
capacity choice for different industry structures.
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Industry concentration (HHI)

a) χ=25
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Figure 3: HHI in triopoly for different cost heterogeneity χ and demand
volatility levels σ

Demand uncertainty exacerbates capacity heterogeneity because (i)
low-cost firms invest more to benefit from larger value convexity and
(ii) capacities are strategic substitutes.
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Producer and consumer surplus

The social surplus,
W := PS + CS,

consists of the producer and consumer surpluses:

PS (x,Q(·)) = E
[∫ ∞

0
e−rt [p (Xt,Q(t))− c]Q(t) dt

]
,

CS(x,Q(·)) = E

[∫ ∞

0
e−rt

{∫ Xt

Xt−bQt
D(Xt,Qt)dp

}
dt
]
.

For a given capacity vector Q̄, we derive in closed form

• the social surplus in constrained Cournot oligopoly;
• the social optimum.

We can compare the capacity choices and social surplus in
constrained Cournot oligopoly with the socially optimum.
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Capacity choices in Cournot vs. social optimum
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Figure 4: Effect of heterogeneity χ, volatility σ and industry structures k on
total industry capacity (x0 = x = 10,b = 1, c = 1, µ = 0.02, r = 0.05)
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Social surplus in Cournot vs. social optimum

(a) Industry structure (σ=0.20)

χ=0

χ=25

χ=50

1 2 3 4 5 6 7
k0.70

0.75

0.80

0.85

0.90

0.95

1.00

Share of net

social optimum (value)

A

B

C

(b) Cost heterogeneity
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Figure 5: Effects of industry structure k and cost heterogeneity χ on net
welfare (x0 = x = 10,b = 1, c = 1, µ = 0.02, r = 0.05)
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Conclusions

• Optimal output policy is demand-contingent. Cournot profits is
convex when a firm wields market power and linear if the
capacity constraint binds

• The value of a larger firm is more convex because it can wield
market power, while smaller rivals are constrained. Demand
volatility increases convexity even more

• A cost-advantaged firm invests more to benefit from convexity,
especially when demand volatility is large. By contrast, less
efficient rivals invest less. Hence, the industry gets more
concentrated

• Demand volatility leads to gross welfare loss under cost
asymmetry. Encouraging more competition reduces net welfare
when firms face highly heterogeneous costs in uncertain
environments
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Opportunities for future research

• Sequential (Stackelberg) game: greater dispersion of production
capacities

• Broader notion of cost heterogeneity (e.g., marginal production
costs, economies of scale, learning experience or network
effects)

• Staged capacity investments/depreciation
• Costs incurred to adjust output (e.g., hiring and firing costs)
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