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It’s all about robustness

Robust grass endures mighty winds;
loyal ministers emerge through ordeal.

Li Shimin, 568-649 A.D.
Tang Dynasty of China
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The model: Financial Market

Suppose that we have a financial market on the fixed time horizon [0,T ]
with T > 0 and two investment possibilities :

A risk free asset (bond or bank account) with unit price S0(t) at time
t and dynamics described by the ordinary differential equation

dS0(t) = rS0(t)dt, S0(0) = 1 (1)

A risky asset (stock or index) with unit price S1(t) at time t which
evolves according to the stochastic differential equation

dS1(t) = µS1(t)dt + σS1(t)dW (t), S1(0) > 0 (2)

Here, r > 0, µ (with µ > r) and σ > 0, are given constants.
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The model: Cash Flow

In collective risk theory, a sound mathematical model for describing
the surplus of a large portfolio of claims is the Cramer-Lundberg
model:

Y (t) = Y (0) + P(t) − L(t) (3)

In some situation, it is easier to work with its diffusion approximation.

Here, the cumulative claims process is modeled by

dL(t) = αdt − βdB(t) (4)

where α and β are positive constants.

The drift term can be interpreted as the mean claims up to time t.

The stochastic term can be interpreted as the fluctuations around the
mean claims.
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The setting

We consider a financial firm, who, at time t = 0, starts with some
initial wealth x0 > 0.

The risk manager of the firm decides the proportion π(t) of its wealth
X (t) to be invested in the risky asset (2).

The remaining proportion (1 − π(t))X (t) is invested in the risk-less
asset (1).

The firm is designed to offer some very specific services to its clients
(e.g., financial investments consultancy, pension fund management,
insurance, etc) by entering a contract.

In exchange for its services, the firm collects compensation
(continuously) at the constant rate c0α, where c0 > 1.
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The setting

However, such a contract also generates a stochastic cash flow of
liabilities (e.g., long term payments, operating costs, etc) that evolves
according to (4).

As a means of reducing this additional exposure, the risk manager of
the firm has the ability to transfer a proportion of its liabilities to
another party (e.g. external investor, financial fund, reinsurance firm,
e.t.c).

The risk manager decides the proportion q(t) of its claims process to
be covered, by entering a contract with the third party.

In exchange for this coverage, the third party collects an income
continuously at the constant rate c1αq(t), where c1 > c0.
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Stochastic Differential Equations of firm’s wealth

To sum up, the wealth process corresponding to the strategy
η1 = (π(t), q(t)), is denoted as Xη1(t) and is defined as the solution
of the following linear stochastic differential equation

dXη1(t) = π(t)Xη1(t)
dS1(t)

S1(t)
+ (1 − π(t))Xη1(t)

dS0(t)

S0t)
+ dR(t),

where
dR(t) = (c0 − c1)dt − dL(t) + q(t)dL(t)

= α(θ− η)q(t)dt + β(1 − q(t))dB(t).

Therefore, in view of (1-4)

dXη1(t) =
[
Xη1(t)(r + (µ− r)π(t)) + α(θ− ηq(t))

]
dt

+ β(1 − q(t))dB(t) + σπ(t)Xη1(t)dW (t),

with initial condition Xη1(0) = x0 > 0.
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The original problem

The risk manager aims to choose the control process so as to
maximize some certain goal, e.g., the expected utility from her
terminal wealth:

sup
π,q∈AF

E
[
U(Xη1(T ))

]
,

subject to the state process

dXη1(t) =
[
Xη1(t)(r + (µ− r)π(t)) + α(θ− ηq(t))

]
dt

+ β(1 − q(t))dB(t) + σπ(t)Xη1(t)dW (t).

A standard way to proceed is by employing the techniques of
stochastic optimal control.
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Model uncertainty aspects

Stochastic optimal control theory is an indispensable part of
mathematical economics and modern financial management.

Great importance and wide range of applicability !

Assumption
The decision maker has complete faith in her model !

L.P.Hansen (Nobel Prize in Economics, 2013) and T.Sargent (Nobel Prize
in Economics, 2011):

Questioning the validity of your model is the first step towards
realistic modeling: Model uncertainty aspects.

Solution: Robust control theory!
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Stochastic Control vs Robust Control

Figure: Stochastic Optimal Control Theory
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Stochastic Control vs Robust Control

Figure: Robust Optimal Control Theory
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Introduction to Robust Control Theory

Robust control theory is a mixture of two things:

Stochastic control theory.

Model selection techniques.

Main Philosophy:

Solve an optimal control problem under the worst possible scenario.
=⇒ Using the model that may provide the worst case for the problem at

hand.

In Mathematical terms:

Model∼ Probability Measure
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Model uncertainty aspects

We assume that the risk manager is uncertain as to the true nature of
the stochastic processes W and B in the sense that the exact law of
W and B is not known.

There exists a ”true” probability measure related to the true law of
the processes W and B, the risk manager is unaware of, and a
probability measure Q, which is her idea of what the exact law of W
and B looks like.

The manager in uncertain about the validity of Q:

inf
Q∈Q

EQ

[
U(Xη1(T ))

]
,

As a result, the manager faces the robust control problem

sup
π,q∈AF

inf
Q∈Q

EQ

[
U(Xη1(T ))

]
,
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The class of measures Q

Definition (The set Q)

The set of acceptable probability measures Q for the agent is a set
enjoying the following two properties:

(i) Considering the stochastic process W under the reference probability
measure P and under the probability measure Q results to a change of
drift to the Brownian motion W .

(ii) There is a maximum allowed deviation of the managers measure Q

from the reference measure P. In other words, the manager is not
allowed to freely choose between various probability models as every
departure will be penalized by an appropriately defined penalty
function, a special case of which is the Kullback-Leibler relative
entropy H(P|Q).
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Change of measure - Girsanov

Theorem

Assume that y1, y2 ∈ Y ⊂ R2 satisfy the condition

E

[
exp

(
1

2

∫T
0
y21 (s) + y22ds

)]
<∞.

Then, the stochastic processes W̃ and B̃ with decomposition given by

W̃ (t) = W (t) −

∫ t
0
y1(s)ds,

and

B̃(t) = B(t) −

∫ t
0
y2(s)ds,

are (F,Q) Brownian motions.
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The robust control problem

sup
π,q∈AF

inf
Q∈Q

J(t, x)

= sup
π,q∈AF

inf
y1,y2∈Y

EQ

[
U(X̃η1,η2(T )) +

1

2λ

∫T
t
y21 (s) + y22 (s)ds

]
,

(5)

subject to the state dynamics

dX̃η1,η2(s) =
[
r X̃η1,η2(s) + (µ− r)π(s)X̃η1,η2(s) + α(θ− ηq(s))

+ σπ(s)y1(s)X̃
η1,η2(s) + β(1 − q(s))y2(s)

]
ds

+ σπ(s)X̃η1,η2(s)dW̃ (s) + β(1 − q(s))dB̃(s),

(6)

with initial condition X̃η1,η2(s) = x0 > 0.
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Solution Procedure

1. Derive the Hamilton-Jacobi-Bellman-Isaacs equation(HJBI) for the
problem at hand. This is a partial differential equation (PDE) for an
unknown function, e.g. V.

2. Fix an arbitrary point in time-space and solve the resulting static
optimization problems (minimization → maximization).

3. From s2 we get a candidate for the optimal control laws.

4. This yields to a second order (for the problem at hand) PDE.

5. Solve the PDE of s4.

6. Verification theorem: The solution of the HJBI equation (V) is the
value function of the problem at hand and the control choices we
found earlier are indeed the optimal ones.
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On the solvability of the HJBI

Is it possible to find a (smooth) solution to the HJBI ?

NOT IN GENERAL !!

There are three ways to proceed:

1. Guess a solution and pray !

2. Numerical Approximation.

3. Weak solutions (viscosity, mild, etc)
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Robust Control Problem = Stochastic Differential Game

Figure: World Chess Championship 2016
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Stochastic Differential Games

The evolution of the underlying system is described by a Stochastic
differential equation.

The system is controlled by two (or more) players with conflicting
goals.

The controllers decide their control process so as to drive the system
to a desired state.

A robust control problem is written as a SDG:

Player I. Decision maker: Chooses the control process.

Player II. Imaginary player (Nature): Chooses the model (the
measure)

Ioannis Baltas (FME) Robust Portfolio Decisions July 9, 2018 20 / 35



Theorem (Main Result)

Suppose that the risk manager has preference for robustness as described by the non-negative
constant λ. The optimal robust strategy is to invest in the risky asset proportion of the firm’s
wealth equal to

π∗(t, x) = −
µ− r

σ2x

Vx

Vxx − λV 2
x

,

and purchase proportional coverage for the firm’s claims, equal to

q∗(t, x) = 1 +
αη

β2

Vx

Vxx − λV 2
x

.

On the other hand, Nature chooses the worst-case scenario defined by

y∗1 (t, x) =
µ− r

σ

λV 2
x

Vxx − λV 2
x

and y∗2 (t, x) =
αη

β

λV 2
x

Vxx − λV 2
x

.

In this case, the optimal robust value function is a smooth solution of the following non-linear
partial differential equation

Vt + [rx + α(θ− η)]Vx −
1

2

[(µ− r

σ

)2
+
(αη
β

)2] V 2
x

Vxx − λV 2
x

= 0,

with boundary condition V (T , x) = U(x).
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Theorem (Exponential Utility)

Assume Exponential preferences (u(x) = − δ
γe

−γx). The optimal robust value function
admits the form:

V (t, x) = −
δ

γ
exp

[
− γxer(T−t) + g(t)

]
, (7)

where

g(t) = αγ(θ− η)
1 − er(T−t)

r
−

γ

2(λ+ γ)

[(µ− r

σ

)2
+
(αη
β

)2]
(T − t). (8)

In this case, the optimal robust strategy for the risk manager is to invest in the risky asset the
constant amount

π∗(t, x) =
µ− r

σ2x

e−r(T−t)

λ+ γ
, (9)

and purchase proportional coverage for the firm’s claims, equal to

q∗(t, x) = 1 −
αη

β2

e−r(T−t)

λ+ γ
. (10)

On the other hand, Nature chooses the worst-case scenario defined by

y∗1 (t, x) = −
µ− r

σ

λ

λ+ γ
and y∗2 (t, x) = −

αη

β

λ

λ+ γ
. (11)
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Numerical study of the optimal investment strategy

Euler-Maruyama schemey
Monte-Carlo approach

E-M: For a time step of size ∆t = T/N with N = 211 points, we define the step
size in the Euler-Maruyama scheme as δt = ∆t.

M-C: Simulate a large number M of of paths of π∗ and q∗ in the time interval
[0,T ] and at each time point we plot the average of M different values. We also
use for each path N = 2α number of points (here N = 211 and M = 6000 paths).

We let M = 6000, T = 10 months, X (0) = 1.5, γ = 0.5 and λ = 0.2. The
parameters of the financial market are chosen as µ = 12%, r = 6%, σ = 40%.
The parameters for the insurance market are chosen as α = 1, β = 0.2 and
c1 = 1.1.
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Figure: Average of 6000 optimal investment strategy paths for various levels of
the preference for robustness parameter, in the case of the exponential utility
function.
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Figure: Average of 6000 optimal investment strategy paths for various levels of
the initial wealth, in the case of the exponential utility function.
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Figure: Average of 6000 optimal proportional coverage strategy paths for various
levels of the preference for robustness parameter, in the case of the exponential
utility function.
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Limiting behavior: Cases λ→ 0 and λ→∞
It is well known (see e.g. Anderson, Hansen and Sargent) that as
λ→ 0 the decision maker fully trusts her model and exhibits no
preference for robustness.

As λ→ +∞, the decision maker has no faith in the model she is
offered and is willing to consider alternative models with larger
relative entropy.

The vast majority of the available works examines the limiting
behavior of the optimal robust strategies, after the problem has been
solved.

Here, we are concerned with the structural behavior of the robust
control problem itself in these limiting cases (well-posedness?)
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Theorem (Limiting behavior as λ→ 0)

The optimal robust strategy for the risk manager is to invest in the risky asset
proportion of the firm’s wealth equal to

π∗(t, x) = −
µ− r

σ2x

Vx

Vxx
, (12)

and also, to purchase proportional coverage for the firm’s liabilities, equal to

q∗(t, x) = 1 −
α(1 − c1)

β2

Vx

Vxx
. (13)

On the other hand, Nature chooses the myopic worst-case scenario defined by

y∗1 (t, x) = y∗1 (t, x) = 0. (14)

In this case, the optimal robust value function is a smooth solution of the following
non-linear partial differential equation

Vt + [rx + α(θ− η)]Vx −
1

2

[
(µ− r)2

σ2
+
α2(1 − c1)

2

β2

]
V 2
x

Vxx
= 0, (15)

with boundary condition V (T , x) = U(x), assuming that such a solution exists.
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Limiting behavior I: Case λ→ 0

We have some interesting findings

The risk manager has complete faith in the model described by
Equations (2) and (4).

Operates under the probability measure P.

The controls (12), (13) and the PDE (15), are the optimal Markovian
control laws and PDE associated with the stochastic optimal control
problem:

sup
π,q∈AF

EP

[
U(Xη1(T ))

]
,

subject to the original state dynamics.

Robust Control Problem → Optimal Control Problem.
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Theorem (Limiting behavior as λ→ +∞)

Assume that Y is the rectangle
[
y1, y1

]
×
[
y2, y2

]
.The optimal robust strategy for the

risk manager is to invest in the risky asset proportion of the firm’s wealth equal to

π∗(t, x) = −
(µ− r

σ
+ y1

) Vx

σxVxx
, (16)

and to purchase proportional coverage for the firm’s liabilities, equal to

q∗(t, x) = 1 +

(
α(c1 − 1)

β
+ y2

)
Vx

βVxx
. (17)

On the other hand, Nature chooses the myopic worst-case scenario defined by

y∗1 (t, x) = y1, and y∗2 (t, x) = y2. (18)

In this case, the optimal robust value function is a smooth solution of the following
non-linear partial differential equation

Vt + [rx + α(c0 − c1)]Vx −
1

2

[(
µ− r

σ
+ y1

)2

+

(
α(c1 − 1)

β
+ y2

)2
]
V 2
x

Vxx
= 0, (19)

with boundary condition V (T , x) = U(x), assuming that such a solution exists.
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Solution break-down

We construct a case where loss of convexity leads to break-down of
the solution of the HJBI equation.

For simplicity we assume that c0 = c1.

The HJBI equation is restated as

Vt + rxVx − A
(
y1, y2

) V 2
x

Vxx
= 0, (20)

where

A
(
y1, y2

)
:=

1

2

[(
µ− r

σ
+ y1

)2

+

(
α(c1 − 1)

β
+ y2

)2
]
> 0.

We assume that the risk manager operates under quadratic
preferences, that is a utility function of the form

U(x) = κ
xρ

ρ
, (21)

for some κ > 0 and 0 < ρ < 1.
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Solution break-down

1. Assume that the PDE (20) admits a classical solution V ∈ C1,2(S).
2. We look for a solution using the guess

V (t, x) = e−δtṼ (x),

where Ṽ ∈ C1,2(S). Differentiating the above expression with respect
to (t, x), yields

Vt = −δe−δtṼ (x)

Vx = e−δtṼx

Vxx = e−δtṼxx .
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Solution break-down

4. Substituting these expressions back in the partial differential equation
(20), results to the elliptic partial differential equation

δṼ − rxṼx + A
(
y1, y2

) Ṽ 2
x

Ṽxx

= 0. (22)

5. We propose a solution to the partial differential equation of the form

Ṽ (x) = κ
xρ

ρ
.

Inserting this trial solution in (22), yields to the following condition
for the discounting factor

δ = rρ− A
(
y1, y2

) ρ

ρ− 1
,

or equivalently

A
(
y1, y2

)
=

1 − ρ

ρ
(δ− rρ).
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Solution break-down

We distinguish the following four cases:

(i). If A
(
y1, y2

)
= 0 and δ = rρ, a solution exists.

(ii). If A
(
y1, y2

)
> 0 and δ = rρ, the solution breaks down.

(iii). If A
(
y1, y2

)
= 0 and δ > rρ, the solution breaks down.

(iv). If A
(
y1, y2

)
> 0 and δ− rρ > 0, as y1 and y2 increase in absolute

value, the solution breaks down.
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Thank you for your attention !
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