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Abstract

We derive the distribution of the time-to-empty for an open tandem Jackson network
assuming that, while in equilibrium at time 0, the arrival stream is suddenly shut off. The
analysis is based on analogous results regarding the distribution of the time-to-empty for
the corresponding closed tandem Jackson network. The results obtained are used in the
analysis of a two-class tandem Jackson network with FIFO discipline where customers of
the second class have negligible service times.
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SHORT TITLE : TIME-TO-EMPTY FOR TANDEM NETWORKS

1 Introduction

We consider a open tandem Jackson network withM single server exponential stations with

service ratesµm, m = 1, 2, . . . ,M , and external Poisson arrivals with rateλ < minm=1,...,M µm.

Assuming the process to be in equilibrium, we are interested in the distribution of the time it

takes for the system to empty if at timet = 0 the arrival process is suddenly switched off.
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More formally consider the continuous time Markov chainX = {X(t); t ∈ R} with state

spaceS := {n := (n1, . . . , nM), nm ∈ N} and generator

q(n,n + em+1 − em) = µm1(nm > 0), m = 1, 2, . . . ,M − 1,

q(n,n− eM) = µM1(nM > 0),

q(n,n) = −
∑M

m=1 µm1(nm > 0),

q(n,n′) = 0, for any othern′.

(Hereem = (0, 0, . . . , 1, . . . , 0) is the unit vector in themth direction inRM and(0, 0, . . . , 0)

acts as an absorbing state.) The above process, together with the initial conditionP (X(0) =

n) =
∏M

m=1(1 − ρm)ρnm
m , describes the behavior of the open tandem Jackson network when

the arrival process is switched off at timet = 0.

Note that the time-to-empty is precisely the flow time through the network of a virtual

customer who arrives at timet = 0 and finds the system in equilibrium, and whose service

time is zero at all stations. Thus, the time-to-empty can be thought of as a generalization of

the workload (or virtual waiting time) for a tandem network. In section 4 we take advantage of

this remark to apply the results obtained to the analysis of a two-class FIFO tandem network

where customers of the second class have negligible service times.

Let τ = inf{t ≥ 0 : X(t) = (0, 0, . . . , 0)} be the time required for the system to empty.

In order to compute the Laplace transformR(s) := Ee−sτ we first condition on the number

of customers in the network at time 0. If we denote by

RN(s) := E[e−sτ |
∑M

m=1 Xm(0) = N ]

the Laplace transform ofτ conditional on havingN customers in the system initially, then

R(s) =
∞∑

N=0

RN(s)P (
∑M

m=1 Xm(0) = N). (1)

The total number of customers in the system in steady state for the original open Jackson

network, before the arrival process is switched off, can of course be obtained as the sum ofM
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independent geometric random variables and thus its probability generating function takes the

form
∞∑

N=0

zNP (
∑M

m=1 Xm(0) = N) =
M∏

m=1

1− ρm

1− ρmz
=

M∑
m=1

cm
1− ρm

1− ρmz
, (2)

where the constants

cm =
∏
l 6=m

1− ρl

1− ρl/ρm

, m = 1, 2, . . . ,M, (3)

are determined by a partial fractions expansion. The above expansion is of course valid only

if the service rates are different from each other i.e.µm 6= µl (and thusρm 6= ρl) for m 6= l,

an assumption which we will adopt for simplicity in the sequel. Thus we have

P (
∑M

m=1 Xm(0) = N) =
M∑

m=1

cm(1− ρm)ρN
m, N = 0, 1, 2, . . . . (4)

In order to evaluateRN(s) it suffices to realize that this is the same as the time to empti-

ness for the correspondingclosedJackson network in equilibrium if at time 0 we “break the

loop” and suppose that customers who finish service at stationM simply leave the system and

do not return to station1. In the next section we will see how this can be evaluated by turning

what is a question regarding the transient behavior of the network into a question regarding its

steady-state operation.

2 A recursive relationship for the time-to-empty in tandem
closed networks

Consider the same tandem network as before which we now assume operating as a closed

Jackson network withN customers. In fact we will consider a whole family of closed network

processes, each described by a continuous time Markov Chain,XN = {XN(t); t ∈ R} with

state spaceS := {n := (n1, . . . , nM), nm ∈ N,
∑M

m=1 nm = N} defined on a probability

space(Ω, F, P ), whereXN(t) = (XN
1 (t), . . . , XN

M(t)) denotes the number of customers in

each station at timet. We assume that the Markov ChainXN is stationary underP and we
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denote by{DN
n } the point process of departures from nodeM . We use the standard numbering

convention thatDN
0 ≤ 0 < DN

1 P -a.s. (i.e. callDN
1 the first point strictly to the right of the

time origin) and denote bydN
n := DN

n+1 − DN
n , n ∈ Z, the interdeparture times. We will also

denote byP 0
N the Palm transformation of the probability measureP under the point process

{DN
n } and byE0

N expectation with respect toP 0
N .

If we were to assume that at time 0 “the loop is broken” between stationM and station 1

so that customers who finish service at stationM simply leave the system without returning

then, since at time 0 the system is a closed network in equilibrium, the time for the system to

empty is preciselyDN
N , the time till theN th departure in a closed network withN customers

in equilibrium. This of course is true since all stations have single servers so that it is not

possible for one customer to overtake another. Thus

RN(s) = Ee−sDN
N .

We are now ready to establish the following

Theorem 1. The time-to-empty starting from equilibrium for a closed tandem Jackson network

with N customers is given by the expression

RN(s) = (−1)N−1λNλN−1 · · ·λ2

(N − 1)!

dN−1

dsN−1
R1(s) (5)

whereλk is the throughput in such a network withk customers andR1(s) is the time to

emptiness from equilibrium in the network with a single customer given by

R1(s) = λ1
1− E0

1 [e
−sD1

1 ]

s
, (6)

where

E0
1 [e

−sD1
1 ] =

M∏
m=1

µm

µm + s
. (7)
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Proof: We will use the approach in [10] (see also [12]) as follows. LetXN+1 be the same

closed Jackson networkwith N + 1 customersand suppose that it is stationary underP . If

we denote by{DN+1
n } the departure process for this system and ifP 0

N+1 denotes the Palm

probability transformation ofP under{DN+1
n } then, as a consequence of the arrival theorem

(see [6], [8], [3], [9], [7]), we have

RN(s) = E0
N+1e

−sDN+1
N .

However, by the shift invariance properties ofP 0
N+1, and sinceP 0

N+1(D
N+1
0 = 0) = 1, we

also have

RN(s) = E0
N+1e

−s(DN+1
N −DN+1

0 ) = E0
N+1e

−s(DN+1
N−1−DN+1

−1 ) = · · · = E0
N+1e

−s(DN+1
1 −DN+1

−N+1).

Using the above equations in conjunction with the arrival theorem we conclude that

RN(s) = E0
N+1e

−s(DN+1
N−k−DN+1

−k ) = Ee−s(DN
N−k−DN

−k+1), k = 1, 2, . . . , N − 1. (8)

(In the above argument note thatRN(s) is originally expressed as a stationary expectation, then

the arrival theorem is used to express it as a Palm expectation in a network with one additional

customer, then a shift is performed along the points of the departure process, and finally the

arrival theorem is used once more to return to a stationary expectation in the original network

with N customers.) Using the Palm inversion formula (see [1]) we obtain the relationship

Ee−s(DN
N−k−DN

−k+1) = λNE0
N

∫ DN
1

0

e−s(DN
N−k−DN

−k+1)dt = λNE0
N [dN

0 e−s(DN
N−k−DN

−k+1)]

= λNE0
N [dN

k−1e
−s(DN

N−1−DN
0 )], k = 1, 2, . . . , N − 1, (9)

where, in the last equation we have again used the shift invariance ofP 0
N . From (8) and (9),

adding term by term, we obtain

(N − 1)RN(s) =
N−2∑
k=0

λNE0
N [dN

k e−s(DN
N−1−DN

0 )] = λNE0[DN
N−1e

−sDN
N−1 ], (10)

where, in the above equation we have taken into account thatP 0
N–a.s.DN

0 = 0 andDN
N−1 =

dN
0 + dN

1 + · · ·+ dN
N−2. However we have

E0[DN
N−1e

−sDN
N−1 ] = − d

ds
E0

N [e−sDN
N−1 ] = − d

ds
E[e−sDN−1

N−1 ] = − d

ds
RN−1(s)
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(where we have used the arrival theorem again!) and hence equation (10) can be written as

RN(s) = − λN

N − 1

d

ds
RN−1(s). (11)

Applying the above recursively we obtain readily (5). It remains to establish (6) which how-

ever follows immediately by applying the Palm inversion formula once more. (This should be

intuitively obvious:R1(s) = E[e−sD1
1 ] is simply the forward recurrence time of the departure

process{D1
n} in the closed network witha single customerin equilibrium.) Finally, (7) clearly

holds sinceD1
1 underP 0

1 is the typical cycle time in a closed tandem network with a single

customer.

From the above theorem it is clear that the explicit computation ofRN(s) is not difficult.

In the next section we carry out this computation and we return to the problem of the open

network.

3 Closed form expressions for the time-to-empty in closed
and open Jackson networks

Here we will assume for simplicity that the service rates in different nodes of the network are

different (µm 6= µl whenµ 6= l). Under this assumption it has been shown in [10] that

λk =

∑M
m=1 αmµ−k+1

m∑M
m=1 αmµ−k

m

(12)

where

αm =
∏
l 6=m

µl

µl − µm

, m = 1, 2, . . . ,M. (13)

The constantsαm arise from the partial fractions expansion

M∏
m=1

µm

µm + s
=

M∑
m=1

αm
µm

µm + s
. (14)
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If we setC :=
∏M

m=1(1 − ρm) then it is easy to see that these constants are connected to the

constants (3) via the relationship

cm =
C

1− ρm

αm. (15)

From (5), (6), (7), (12), and (14), after some elementary manipulations, we obtain the

following closed form expression for the time-to-empty for a closed tandem Jackson network

initially in equilibrium with N customers:

RN(s) =

∑M
m=1 αm(µm + s)−N∑M

m=1 αmµ−N
m

. (16)

It is interesting to compare the above formula with the expression for the Laplace transform

of the cycle time of a customer in this network withN customers, which we will denote by

ΦN(s), as given in [10]

ΦN(s) =

∑M
m=1 αmµm(µm + s)−N∑M

m=1 αmµ−N+1
m

. (17)

We are now in a position to compute the Laplace transform of the time to empty for the

open tandem Jackson network in steady state. From (1), (4), (15), and (16) we obtain

R(s) = C
∞∑

N=0

M∑
m=1

αmρN
m

∑M
m=1 αm(µm + s)−N∑M

m=1 αmµ−N
m

=
M∏

m=1

(1− ρm) +
M∑

m=1

ρm

(∏
l 6=m

1− ρl

1− ρl/ρm

)
µm − λ

µm − λ + s
. (18)

Again, the comparison with the corresponding flow time, namely the time it takes from the

moment a customer arrives to the first station till the time it leaves the last station in steady

state is interesting. If this flow time is denoted byΦ(s), then it is well known (e.g. see [9],

[7]) that

Φ(s) =
M∏

m=1

µm − λ

µm − λ + s
=

M∑
m=1

(∏
l 6=m

1− ρl

1− ρl/ρm

)
µm − λ

µm − λ + s
, (19)

the second expression above following by a partial fractions expansion of the first.
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Finally we compute the Laplace transform of the time-to-empty for the same system as-

suming that at time 0 it is in steady state and conditioning on the eventthat there areN or

more customers in the system. Elementary manipulations similar to the ones described above

give

E[e−sτ |
∑M

m=1 Xm(0) ≥ N ] =

∑M
m=1 cmρN

m

(
µm

µm+s

)N (
1− ρm + ρm

µm−λ
µm−λ+s

)
∑M

m=1 cmρN
m

, (20)

where the constantscm are given in (3). Note the similarity of the above expression with the

corresponding result for the M/M/1 queue. Suppose that an M/M/1 system with arrival rateλ

and service rateµ > λ is in equilibrium at timet = 0, and at that time the arrival process is

switched off. Then the Laplace transform of the time required for the system to empty can be

easily computed via a conditioning argument and is equal to(
µ

µ + s

)N (
1− ρ + ρ

µ− λ

µ− λ + s

)
(21)

whereρ = λ/µ. It is worth noting that the corresponding result for the tandem network given

in (20) is simply a weighted average of the corresponding M/M/1 factors for each station.

From (20) we can readily obtain the mean time for the network to empty given that there

are at leastN customers in the system

E[τ |
∑M

m=1 Xm(0) ≥ N ] = N

∑M
m=1 cmρN

mµ−1
m∑M

m=1 cmρN
m

+

∑M
m=1 cmρN+1

m (µm − λ)−1∑M
m=1 cmρN

m

.

4 Application: A two-class tandem network with probe cus-
tomers

Consider now an open, tandem Jackson network withtwo classes of customers. Customers

belonging to the first class arrive to the system according to a Poisson process with rateλ

and their service rates at theM stations areµ1, µ2, . . . , µM , as before. Customers belonging

to the second class, arrive according to an independent Poisson process with rateν and the
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service discipline is FIFO for all customers and stations. We will assume that the service

times of class-2 customers at the various stations are so small compared with the time scale

of the system that we can entirely ignore them. Thus these customers, which we will call

probe customers, flow through the system without delay except for the fact that they have to

wait in front of class-1 customers. There are many cases both in communications systems

and in manufacturing where such a model is applicable. Then one can easily see that the flow

time of the typical probe customer is precisely the time-to-empty for the Jackson network in

equilibrium with only one class of customers. Thus (18) gives also the flow time for probe

customers. Let us now denote byΠ(z) the probability generating function (p.g.f.) of the

stationary number of probe customers in the system. Then we can use the distributional law

of Little (see [4], [5]) to obtain

Π(z) = R(ν(1− z)) =
M∏

m=1

(1− ρm) +
M∑

m=1

ρm

(∏
l 6=m

1− ρl

1− ρl/ρm

)
µm − λ

µm − λ + ν − νz
.

Thus the stationary distribution of probe customers is expressed as a combination of geometric

factors.

One might be tempted to derive directlyΠ(z) by noting that the number of probe cus-

tomers who arrive between two consecutive class-1 customers is geometrically distributed

with p.g.f. given by λ
λ+ν−νz

and then composing this p.g.f. with the p.g.f. of the total number

of class-1 customers in the system, as given in (2). Such reasoning, however, will not lead to

the correct result since the number of class-1 customers in the system at any given time and

the interarrival intervals corresponding to these customers are, of course,not independent.

Clearly, as long as the process of class-1 customers is in steady state, the flow time of

probe customers will be given by (18), regardless of the statistics of their arrival process, pro-

vided of course that this arrival process be independent of the arrivals and service requirements

of class-1 customers. What may become more complicated is the determination of the statis-

tics of the total number of probe customers in the network. However, when probe customers
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arrive according to a renewal process with interarrival distributionG, independent of the ar-

rivals and service times of class-1 customers, then, as we will see, the stationary number of

probe customers in the system can be easily determined. This is done using the distributional

version of Little’s law for renewal arrivals in the form given in [11] (see also [2]).

In the framework adopted there, one starts with a marked point process{(Tn, Wn); n ∈

Z}, which is assumed to be stationary under the probability measureP . The marksWn are

assumed to be non-negative w.p. 1. Corresponding to this marked point process one defines

the arrival counting measureA(B) :=
∑

n∈Z 1(Tn ∈ B), whereB is any Borel set inR, and

the system size processY (t) :=
∑

n∈Z 1(Tn ≤ t < Tn + Wn). Tn is to be interpreted as the

arrival epoch of thenth customer,Wn as his sojourn time through the system, andY (t) as the

total number of customers in the system at timet. In our situation,{Tn} is the renewal arrival

process of probe customers,{Wn} their corresponding sojourn times through the network,

andY (t) the total number of probe customers in the network at timet. We will also denote by

P ∗ the Palm transformation ofP with respect to the point process{Tn}. Let Π(z) := EzY (0)

denote the p.g.f. of the stationary number of probe customers in the system. In [11] it is shown

that

Π(z) = 1− ν(1− z)

∫ ∞

0

P ∗(W0 > u)E∗[zA(0,u]]du, (22)

whereν−1 =
∫∞

0
udG(u) is the mean interarrival time, provided that the following two con-

ditions hold:

a) The system is FIFO, i.e.Tm + Wm ≤ Tn + Wn w.p.1 wheneverm < n.

b) The system enjoys the following Lack of Anticipation Property: UnderP ∗, W0 and

A(0, u] are independent for allu > 0. This simply states that the sojourn time of

a customer cannot be influenced by future arrivals, and future arrivals in turn do not

contain any information regarding the sojourn time of the customer who arrives at 0.
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In our situation it is clear that both conditions are satisfied. Also,E∗[zA(0,u]] =
∑∞

n=0 znP ∗(Tn ≤

u < Tn+1) and, if we denote bŷG(s) =
∫∞

0
e−stdG(t) the Laplace transform ofG, a straight-

forward computation gives

ν

∫ ∞

0

e−suE∗[zA(0,u]]du =
ĜI(s)

1− zĜ(s)
(23)

where we have used the notation̂GI(s) := νs−1(1 − Ĝ(s)) to denote the Laplace transform

of the integrated tail distributionthat corresponds toG. In view of (18) and (3) we have

P ∗(W0 > u) =
M∑

m=1

cmρme−u(µm−λ). (24)

Thus, from (22), (23), and (24) we conclude that

Π(z) = 1−
M∑

m=1

cmρm
(1− z)ĜI(µm − λ)

1− zĜ(µm − λ)
.

The above displays the total number of probe customers in the system as a combination of

geometric factors.
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