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Abstract

We derive the distribution of the time-to-empty for an open tandem Jackson network
assuming that, while in equilibrium at time 0, the arrival stream is suddenly shut off. The
analysis is based on analogous results regarding the distribution of the time-to-empty for
the corresponding closed tandem Jackson network. The results obtained are used in the
analysis of a two-class tandem Jackson network with FIFO discipline where customers of
the second class have negligible service times.
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1 Introduction

We consider a open tandem Jackson network Witlsingle server exponential stations with
service rateg,,,, m = 1,2,..., M, and external Poisson arrivals with rate< min,,— . s fim.
Assuming the process to be in equilibrium, we are interested in the distribution of the time it

takes for the system to empty if at time= 0 the arrival process is suddenly switched off.



More formally consider the continuous time Markov ch&in= {X(¢); ¢t € R} with state

space¥ := {n := (ny,...,ny),n, € N} and generator

qm,n+e,—eyn) = pnlng >0), m=1,2,...,.M —1,

)

) = pul(ny >0),

g(n,n) = —Z _1 Mm1(ng, > 0),
)

= 0, for any othem’.

(Heree,, = (0,0,...,1,...,0) is the unit vector in thenth direction inR* and(0,0, .. .,0)
acts as an absorbing state.) The above process, together with the initial cor{oa) =
n) = [T¥_,(1 = p.)p’, describes the behavior of the open tandem Jackson network when

the arrival process is switched off at time= 0.

Note that the time-to-empty is precisely the flow time through the network of a virtual
customer who arrives at time= 0 and finds the system in equilibrium, and whose service
time is zero at all stations. Thus, the time-to-empty can be thought of as a generalization of
the workload (or virtual waiting time) for a tandem network. In section 4 we take advantage of
this remark to apply the results obtained to the analysis of a two-class FIFO tandem network

where customers of the second class have negligible service times.

Let7 = inf{t > 0: X(¢) = (0,0,...,0)} be the time required for the system to empty.
In order to compute the Laplace transforts) := Ee*" we first condition on the number

of customers in the network at time 0. If we denote by
Ry(s) = Ele™" |2 X,,(0) = N]
the Laplace transform af conditional on havingV customers in the system initially, then
ZRN P(3 =1 Xm(0) = N). 1)

The total number of customers in the system in steady state for the original open Jackson

network, before the arrival process is switched off, can of course be obtained as the&um of
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independent geometric random variables and thus its probability generating function takes the

form u u

> 1-— 1—

N M . o Pm - Pm

D AP Xn@=N) = [ 7% = 2y @

N=0 m=1 m=1
where the constants

L—pi
Cm = _ m=1,2 ..., M, 3)
ZQ L—pi/pm

are determined by a partial fractions expansion. The above expansion is of course valid only
if the service rates are different from each other iug. # 1, (and thusp,, # p;) for m # 1,

an assumption which we will adopt for simplicity in the sequel. Thus we have

M
P Xm(0) =N) =) en(l—pm)ph, N=01,2,.... (4)
m=1

In order to evaluaté? y (s) it suffices to realize that this is the same as the time to empti-
ness for the correspondirpsedJackson network in equilibrium if at time O we “break the
loop” and suppose that customers who finish service at stafiegimply leave the system and
do not return to statiom. In the next section we will see how this can be evaluated by turning
what is a question regarding the transient behavior of the network into a question regarding its

steady-state operation.

2 A recursive relationship for the time-to-empty in tandem
closed networks

Consider the same tandem network as before which we now assume operating as a closed
Jackson network witlv customers. In fact we will consider a whole family of closed network
processes, each described by a continuous time Markov CXdin: {X™(t);¢t € R} with

state space” == {n := (n1,...,nu),nm € N,3°M_ n, = N} defined on a probability
space(Q), Z, P), whereX™ () = (X (t),..., XY (t)) denotes the number of customers in

each station at timeé. We assume that the Markov Chax" is stationary undeP and we
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denote by{ DX} the point process of departures from ndde We use the standard numbering
convention thaD})’ < 0 < DY P-a.s. (i.e. callDV the first point strictly to the right of the

time origin) and denote by := DY, — DY, n € Z, the interdeparture times. We will also
denote byPy} the Palm transformation of the probability measéreinder the point process

{DN} and byEY$, expectation with respect tB.

If we were to assume that at time 0 “the loop is broken” between statiand station 1
so that customers who finish service at statidrsimply leave the system without returning
then, since at time 0 the system is a closed network in equilibrium, the time for the system to
empty is preciselyD¥, the time till the N'th departure in a closed network wiffi customers
in equilibrium. This of course is true since all stations have single servers so that it is not

possible for one customer to overtake another. Thus
Ry(s) = Ee PN,
We are now ready to establish the following

Theorem 1. The time-to-empty starting from equilibrium for a closed tandem Jackson network

with IV customers is given by the expression

N—1 ANAN_L "+ Ao aN-1
(N—1)1 dsV 1

Ry(s) = (1) Ry (s) (5)

where )\ is the throughput in such a network withcustomers and?,(s) is the time to

emptiness from equilibrium in the network with a single customer given by

1-— E?[e*SD%]
]

S

R1(5> =\ ) (6)

where
M

EYe—Pi) = T . 7
N =110 )




Proof: We will use the approach in [10] (see also [12]) as follows. Xét*! be the same
closed Jackson networkith N + 1 customersaand suppose that it is stationary undeér If

we denote by{ D)Y*'} the departure process for this system ané{f.; denotes the Palm
probability transformation of> under{DX*+1} then, as a consequence of the arrival theorem

(see [6], [8], [3], [9], [7]), we have

N+1
—sDy

Ry(s) = ER/H@

However, by the shift invariance properties BY. ,, and sincePy. (D)™ = 0) = 1, we
also have

. 0 —S(DN+1—DN+1) . 0 (DN+1 DN+1) . . 0 (DN+1_DN+1 )

Using the above equations in conjunction with the arrival theorem we conclude that

N+1 N+1
DNt —DNFh

Ry(s) = E%, e P = Ee PN Phy) k=12 ... N—1. (8)

(In the above argument note thay; (s) is originally expressed as a stationary expectation, then

the arrival theorem is used to express it as a Palm expectation in a network with one additional
customer, then a shift is performed along the points of the departure process, and finally the
arrival theorem is used once more to return to a stationary expectation in the original network

with IV customers.) Using the Palm inversion formula (see [1]) we obtain the relationship

DN
FesPN_—DN)  — )\NE?V/ 1 e~ sON_ DN gr — ANE]OV[déVe*S(D%—k*DgW)]
0

= AES[AN e PNa=DO] k=12, N -1, (9)

where, in the last equation we have again used the shift invarianeg.oFrom (8) and (9),

adding term by term, we obtain

N-2
(N — D)Ry(s) = Y AvEN[d e *PN1=P)] = \yEO[DN_ e "Ph1], (10)
k=0

where, in the above equation we have taken into accountiha.s. D) = 0 andDY_| =

dy + dY¥ + .-+ dY_,. However we have

X d o v d . .y d
D) = — B[N ] = — L Blem PN = — 2Ry (5

orN  —
E'[Dy e ds ds ds
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(where we have used the arrival theorem again!) and hence equation (10) can be written as

Ay d

Bv(s)=-§75

Ry-1(s). (11)

Applying the above recursively we obtain readily (5). It remains to establish (6) which how-
ever follows immediately by applying the Palm inversion formula once more. (This should be
intuitively obvious: R, (s) = E[e*P1] is simply the forward recurrence time of the departure
procesqy D! } in the closed network with single customen equilibrium.) Finally, (7) clearly
holds sinceD;{ under P} is the typical cycle time in a closed tandem network with a single

customer. [

From the above theorem it is clear that the explicit computatioRofs) is not difficult.
In the next section we carry out this computation and we return to the problem of the open

network.

3 Closed form expressions for the time-to-empty in closed
and open Jackson networks

Here we will assume for simplicity that the service rates in different nodes of the network are

different (u,, # 1; whenp # ). Under this assumption it has been shown in [10] that

M —k+1
O [y,
where
am:H ad , m=12,...,M. (13)
l#m Ha =

The constants,,, arise from the partial fractions expansion

M
Lo

m=1

M

" + - (14)



If we setC' := Hn]\le(l — pm) then it is easy to see that these constants are connected to the

constants (3) via the relationship

C
1—pm

- (15)

Cm —

From (5), (6), (7), (12), and (14), after some elementary manipulations, we obtain the
following closed form expression for the time-to-empty for a closed tandem Jackson network
initially in equilibrium with N customers:

ZM L O (. + 8) ™ N

E%:l amum

It is interesting to compare the above formula with the expression for the Laplace transform

Ry(s) = (16)

of the cycle time of a customer in this network with customers, which we will denote by

dy(s), as given in [10]
M -N

M —N+1
Zm 1 Oém:um

We are now in a position to compute the Laplace transform of the time to empty for the

open tandem Jackson network in steady state. From (1), (4), (15), and (16) we obtain

R(S) _ OzzampNZm lam(ﬂm+s)

N=0m=1 Zm L Ot N
M M - i \
— -
— 1—pm) + m . 18
Ha=em + 20 (gl—pl/pm%m—m 19)

Again, the comparison with the corresponding flow time, namely the time it takes from the
moment a customer arrives to the first station till the time it leaves the last station in steady
state is interesting. If this flow time is denoted ®ys), then it is well known (e.g. see [9],
[7]) that

M

B(s) = _Hm— A — i H 1= p Fom — A (19)
mzl/v‘m_A"f'S m—1 l;éml_pl/pm Mm_/\+37

the second expression above following by a partial fractions expansion of the first.



Finally we compute the Laplace transform of the time-to-empty for the same system as-
suming that at time 0 it is in steady state and conditioning on the ekeahthere areN or
more customers in the systeBElementary manipulations similar to the ones described above

give
m=1 CmPm imts Pm T Pm Lm—Ats

M N ?
Zm:l Cmpm

where the constants, are given in (3). Note the similarity of the above expression with the

Ele™ | Yoy Xm(0) 2 N] =

(20)

corresponding result for the M/M/1 queue. Suppose that an M/M/1 system with arrival rate
and service ratg > \ is in equilibrium at timef = 0, and at that time the arrival process is
switched off. Then the Laplace transform of the time required for the system to empty can be

easily computed via a conditioning argument and is equal to

( a )N(1— bt ) (1)
J I P pu—)ﬂ—s

wherep = \/p. It is worth noting that the corresponding result for the tandem network given

in (20) is simply a weighted average of the corresponding M/M/1 factors for each station.

From (20) we can readily obtain the mean time for the network to empty given that there

are at leastV customers in the system

E[T | 2%21 Xm(O) 2 N] _ N Zm:l cmpmﬂm + Zm:l Cmpm (,Um ) '

>t CmP > et €

4 Application: A two-class tandem network with probe cus-
tomers

Consider now an open, tandem Jackson network with classes of customer€ustomers
belonging to the first class arrive to the system according to a Poisson process with rate
and their service rates at thié stations areuy, o, .. ., 1y, as before. Customers belonging

to the second class, arrive according to an independent Poisson process witlamatéhe



service discipline is FIFO for all customers and stations. We will assume that the service
times of class-2 customers at the various stations are so small compared with the time scale
of the system that we can entirely ignore them. Thus these customers, which we will call
probe customerdlow through the system without delay except for the fact that they have to
wait in front of class-1 customers. There are many cases both in communications systems
and in manufacturing where such a model is applicable. Then one can easily see that the flow
time of the typical probe customer is precisely the time-to-empty for the Jackson network in
equilibrium with only one class of customers. Thus (18) gives also the flow time for probe
customers. Let us now denote bl z) the probability generating function (p.g.f.) of the
stationary number of probe customers in the system. Then we can use the distributional law
of Little (see [4], [5]) to obtain

N(z) = Rw(l—2) = [[(1—pm) + me<H L—p ) i = A

m=1 m=1 I#m I pl/pm Hm — A +v—-vz

Thus the stationary distribution of probe customers is expressed as a combination of geometric

factors.

One might be tempted to derive directli(z) by noting that the number of probe cus-
tomers who arrive between two consecutive class-1 customers is geometrically distributed
with p.g.f. given byﬁ and then composing this p.g.f. with the p.g.f. of the total number
of class-1 customers in the system, as given in (2). Such reasoning, however, will not lead to
the correct result since the number of class-1 customers in the system at any given time and

the interarrival intervals corresponding to these customers are, of caotsedependent.

Clearly, as long as the process of class-1 customers is in steady state, the flow time of
probe customers will be given by (18), regardless of the statistics of their arrival process, pro-
vided of course that this arrival process be independent of the arrivals and service requirements
of class-1 customers. What may become more complicated is the determination of the statis-

tics of the total number of probe customers in the network. However, when probe customers



arrive according to a renewal process with interarrival distribu@onndependent of the ar-
rivals and service times of class-1 customers, then, as we will see, the stationary number of
probe customers in the system can be easily determined. This is done using the distributional

version of Little’s law for renewal arrivals in the form given in [11] (see also [2]).

In the framework adopted there, one starts with a marked point pr¢¢éssiv,,); n €
Z}, which is assumed to be stationary under the probability med3urehe marksiv,, are
assumed to be non-negative w.p. 1. Corresponding to this marked point process one defines

the arrival counting measu&B) := > _, 1(T,, € B), whereB is any Borel set iR, and

nez
the system size proce$qt) .= > , 1(T, <t < T, +W,). T, is to be interpreted as the
arrival epoch of thexth customer}¥V,, as his sojourn time through the system, ahd) as the

total number of customers in the system at timbn our situation{7,,} is the renewal arrival
process of probe customergy,,} their corresponding sojourn times through the network,
andY (t) the total number of probe customers in the network at tifwe will also denote by

P* the Palm transformation d® with respect to the point proce$$, }. LetIl(z) := Ez"©
denote the p.g.f. of the stationary number of probe customers in the system. In [11] itis shown
that

M(z) =1—v(l—2) /OOO P*(Wy > u) E* [z qu, (22)

wherev~! = [ udG(u) is the mean interarrival time, provided that the following two con-

ditions hold:

a) The systemis FIFO, i.4g,, + W,, < T, + W, w.p.1 whenevem < n.

b) The system enjoys the following Lack of Anticipation Property: Unééy W, and
A(0,u] are independent for alk > 0. This simply states that the sojourn time of
a customer cannot be influenced by future arrivals, and future arrivals in turn do not

contain any information regarding the sojourn time of the customer who arrives at 0.
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In our situation it is clear that both conditions are satisfied. Ao A0 = 3" 2"P*(T, <
u < T,41) and, if we denote bﬁ(s) = [;7 e~*'dG(t) the Laplace transform af, a straight-
forward computation gives

Gi(s)

1—2G(s) (3)

V/ e~ SU Fr* [ZA(O,u}]du —
0

where we have used the notatiéh(s) := vs!(1 — G(s)) to denote the Laplace transform
of theintegrated tail distributiorthat corresponds t6'. In view of (18) and (3) we have

M
P*(Wy > u) = Z Con e Hm N (24)

m=1

Thus, from (22), (23), and (24) we conclude that

M

(z)=1-— Z ConPm

m=1

(1= 2)G(ptm — \)
1= 2G(ptm — A)

The above displays the total number of probe customers in the system as a combination of

geometric factors.
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