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Abstract

We consider a modified version of the de Finetti model in insurance risk theory in which, when
surpluses become negative the company has the possibility of borrowing, and thus continue its op-
eration. For this model we examine the problem of estimating the “time-in-the red” over a finite
horizon via simulation. We propose asmoothed estimatorbased on a conditioning argument which
is very simple to implement as well as particularly efficient, especially when the claim distribution
is heavy tailed. We establish unbiasedness for this estimator and show that its variance is lower than
the näıve estimator based on counts. Finally we present a number of simulation results showing
that the smoothed estimator has variance which is often significantly lower than that of the naı̈ve
Monte-Carlo estimator.
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Short title: Smoothed Monte Carlo for Risk Processes.

1 Introduction

We consider the classical continuous time claim process in insurance risk theory which has the fol-

lowing structure: Claims occur at times{tn; n ∈ N} which form a Poisson process with rateλ and

corresponding counting process{N(t); t ≥ 0} whereN(t) =
∑∞

k=1 1(tk ≤ t). The claim sizes

{Zk; k ∈ N} are independent, identically distributed random variables, having common distribution

functionF with F (x) = 0 whenx < 0 and finite meanµ. Furthermore,N and{Zk} are assumed to

be independent. Then,
∑N(t)

i=1 Zi represents the accumulated claims up to timet.
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In the Craḿer–Lundberg model (e.g. see [5]) the free reserves processX is defined as

Xt = u + ct−
N(t)∑

i=1

Zi

whereu is the initial capital andc > 0 the premium income per unit time. Then, the profit over the

interval[0, t] is St = ct−∑N(t)
i=1 Zi. Therelative safety loadingρ is defined by

ρ =
c

λµ
− 1

and gives the expected profit rate per unit time as a percentage of the expected claims that have occurred

up to that point. We assume thatρ > 0, (positive safety loading). Under this assumption, ast → ∞,

Xt almost surely will drift to+∞. The typical measure for the long-term financial stability of the

risk business in the Craḿer–Lundberg model is theruin probability, which is usually expressed as a

function of the initial capitalu, and defined asP{Xt < 0 , for somet > 0}. If one only considers

the operation of the company over a finite horizon, say the interval[0, T ], then the finite horizon ruin

probability, P{X(t) < 0, for somet ≤ T} may be the relevant performance criterion. For further

details we refer the reader to Grandell [5].

While the Craḿer–Lundberg model has played a central role in the development of risk theory and

of actuarial techniques for the analysis of the long-run stability of an insurance company, it has also

been criticized, particularly in connection with the feature of the model that free reserves accumulate

without bound ast → ∞. In the 1950’s de Finetti [1] proposed an alternative point of view which

places in the center of the economic argument not the long run stability of the company but the present

value of the dividend stream the firm’s operation generates for shareholders. Arguing along these lines

he analyzed a simple model and showed that the optimal dividend strategy before the inevitable ruin

occurs is abarrier strategy. This means that there exists a levelL > 0 such that, as long as the free

reserves are below it all premium income is added to them, whereas as soon as free reserves exceed

it, all additional income from premiums is distributed to the shareholders as dividends. In de Finetti’s

model, the ruin of the insurance company (i.e. the event that the free reserves will become at some

time negative) is a certain event. In his original formulation de Finetti argued that the objective of the

insurance company would be to maximizethe present valueof the total amount of dividends distributed

to shareholders as opposed to keeping the ruin probability below a given value.
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We consider a variation of de Finetti’s model where, when free reserves become negative the com-

pany is not ruined but is instead allowed to continue its operation by borrowing. The period of time

during which the free reserves are negative is usually referred to astime in the red.

Time in the red has been studied before, in the context of the classical Cramér–Lundberg model

based on the following considerations. As argued in Gerber [4], sometimes the event of ruin has a very

small probability and the portfolio is just one out of many in the company. The company may thus

have enough funds available to support some negative surplus for some time (or secure support from

outside sources) in the hope that the portfolio will recover in the future, allowing the company to keep

this business alive. This can be regarded as an investment, since the process will recover in the future.

The problem of finding if this recovery is quick enough or not, giving good value or not for the money

invested, was studied by dos Reis [3] where the distribution of the number of occasions on which the

surplus falls below zero is given and results for the moments of the duration of a single period of

negative surplus and the total duration of negative surplus are obtained. Also, Dickson and dos Reis [2]

consider the distributions of the duration of a single period of negative surplus and of the total duration

of negative surplus. They derive explicit results in some cases and show how to approximate these

distributions through the use of a discrete time risk model. A markovian analysis of a discrete model

with recursive formulas for computing the time in the red is presented in Wagner [10]. The above

analytic results have been obtained under the assumption that the claim occurrence process is Poisson.

In general, analytic results are not available and one would have to resort to simulation experiments in

order to estimate the time in the red.

To the best of our knowledge, the time in the red process for the de Finetti model has not so far been

studied. In this paper we propose a smoothed Monte Carlo estimator which has of course the advantage

of being applicable under general stochastic assumptions regarding the claim process. This estimator

is related to the estimator proposed by Ross and Schechner [8] for the estimation of the mean passage

time and the distribution of the passage time in stochastic simulations of discrete Markov chains.
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2 Model description and Monte Carlo estimators

To describe the evolution of the system let, as before,{tn; n = 1, 2, . . .} denote the epochs when

claims occur,Zn the size of thenth claim, andXt the size of the free reserves at timet. Also set

t0 = 0 and suppose that the initial value of the free reserves process isu. Then the process{Xt; t ≥ 0}
has piece–wise continuous paths, which we will assume to beright–continuouswith probability one.

Between claim occurrences the sample paths of{Xt} increase with ratec until the levelL is reached

and then they remain constantly equal toL (since additional income from premiums is distributed to

the shareholders) until the next claim occurs. When this happens, the free reserves are decreased by the

amount of the claim (see figure 1). The evolution of the process{Xt} can be described heuristically by

the following equations

d

dt
Xt = c1(Xt < L), t ∈ (tn, tn+1), n = 0, 1, 2, . . .

Xtn = Xtn− − Zn, n = 1, 2, . . . ,

together with the initial conditionX0 = u. In the above equations, as usual,Xtn− denotes the value of

free reserves just before thenth claim occurs whileXtn the corresponding value just after the claim.

From a mathematical standpoint,{Xt} is defined (pathwise) as the unique solution of the integral

equation

Xt = u + c

∫ t

0
1(Xs < L)ds −

N(t)∑

k=1

Zk.

An explicit solution to the above equation is provided by equation (13) of the Appendix.

If the operating horizon ist, the total amount of money given to the shareholders is equal to

c

∫ t

0
1(Xs = L)ds,

while the total time in the red is equal to
∫ t

0
1(Xs < 0)ds.

A discretized performance criterion which is essentially equivalent to the total time in the red over the

horizon[0, t] would be

M(t) =
N(t)∑

i=1

1 (Xti < 0) , (1)
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Figure 1: The free reserves processXt

the total number of claims up to timet that result in negative free reserves. By an abuse of terminology

we will also be callingM(t) henceforth for convenience ”time in the red”.

Since we assume that the net profit condition holds, once the process falls below zero it will remain

negative only for a finite period of time before becoming positive again. If we call such periods of

negative surplusesred periods, then, as long as we have positive loading, red periods are random

variables that are finite with probability 1.

Thenäıve Monte-Carlo estimatorfor the time in the red based on counts isM(t), as given in (1).

In this paper we propose the followingsmoothed estimator

K(t) =
N(t)∑

i=1

F (Xti−). (2)

whereF (x) := 1− F (x) for all x ∈ R.

Remark: Recall thatXti− is the size of the reserves,just prior to the occurrence of theith claimand

F (Xti−) is the conditional probability that the process will fall below level zero after the occurrence of

the ith claim, given the size of the free reserves just before the claim occurs. Clearly, while the naı̈ve

estimator assigns to each claim a value of 1 or 0 according to whether it results to a negative value for
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the free reserves or not, the smoothed estimator assigns a valuebetween 0 and 1equal to the conditional

probability that the claim results to a negative value for the free reserves process, given the value of

that process just prior to the claim. In particular we note that the contribution of theith claim in the

näıve estimator is based on the value of the free reserves process at timeti, Xti , while the smoothed

estimatoruses the value just prior toti, Xti−. If Xti− < 0 thenXti < 0 a fortiori and such claims

contribute 1 to both the naı̈ve and the smoothed estimator sinceF (x) = 1 whenx < 0.

The statistical properties of the smoothed estimator will be examined in the next section where it

will be shown that it is superior to the naı̈ve estimator.

3 Statistical Properties of the Smoothed EstimatorK(t)

Here we formulate and prove our main result, namely that the smoothed estimator is unbiased and has

lower variance than the naı̈ve estimator for allt. Of course, the fact that the smoothed estimator has

lower variance is not surprising since, as a general principle, conditioning reduces variance. A proof is

necessary nonetheless and is provided here. What is, perhaps, surprising is the extent to which variance

is reduced by the simple form of conditioning proposed. This is shown clearly in the experimental

results in section 4.

Denote by(Ω, F , P ) the probability space on which the free reserves process has been defined

and byFt = σ − {Xs; s ≤ t} the σ–field generated by the processX up to timet. The filtration

{Ft; t ≥ 0} represents thus the history of the process. For background on the theory of processes we

refer the reader to Ḿetivier [6]. We recall thatFt+ =
⋂

t′>t Ft′ and thatFt− =
∨

t′<t Ft′ , theσ–field

generated by allFt′ with t′ < t. In accordance with the “usual assumptions” the filtration{Ft} is

right–continuous and henceFt+ = Ft.

Recall that, ifT is anFt–stopping time then the stoppedσ–field,FT , is defined asFT := {A ∈
F : A ∩ {T ≤ t} ∈ Ft for all t ≥ 0}. We also defineFT− as theσ–field generated by the collection

of sets{A ∈ F : A ∩ {T < t} ∈ Ft for all t ≥ 0}.

In our case, the times when claims occur,{tn}, form an increasing sequence of stopping times with

respect to the filtration{Ft}. The correspondingσ–fieldsFti represent the information available up to
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the epoch of occurrence of theith claim, including the size of theith claim,Zi. Because of the simple

structure of our process which evolves according to a deterministic law between claim occurrences and

our assumption of right–continuity for the sample paths, it is easy to see that the correspondingσ–fields

Fti− contain all the information up to the epoch of occurrence of theith claim,excluding the size of

theith claim.

We are now ready to state our main result.

Theorem 1. The smoothed estimator for the time in the red, given by (2) is unbiased and has lower

variance than the näıve estimator (1) i.e.EK(t) = EM(t) for all t ≥ 0 and

Var(K(t)) ≤ Var(M(t)) for all t ≥ 0. (3)

Proof: We first establish the unbiasedness of the smoothed estimator by showing that its expectation is

equal to that of the naı̈ve estimator which is obviously unbiased. Indeed we have

EM(t) = E

[ ∞∑

i=1

1(Xti < 0, ti ≤ t)

]

=
∞∑

i=1

E [E [1(ti ≤ t)1(Xti < 0)]|Fti−]

=
∞∑

i=1

E [E [1(Xti < 0)|Fti−]1(ti ≤ t)]

=
∞∑

i=1

E
[
1(ti ≤ t)F (Xti−)

]

= E

[ ∞∑

i=1

F (Xti−)1(ti ≤ t)

]
= EK(t)

The interchange between the sum and the expectation in the second and in the last equality can be

justified easily using an argument based on the monotone convergence theorem. The fourth equality

holds because

E [1(Xti < 0)|Fti−] = E [1(Xti− − Zi < 0)|Fti−] = E [1(Zi > Xti−)|Fti−]

= F (Xti−).

This establishes the unbiasedness of the smoothed estimator.
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Next we will establish (3). We should point out that when the claim distribution is deterministic

the smoothed estimator becomes the same as the naı̈ve one. Thus the inequality above cannot be strict

in all cases. It is however possible to show that, if the deterministic claim case is excluded, then the

inequality (3) becomes strict. We begin with the relationship

E[M2(t)] = E


∑

i,j

1(Xti < 0)1(Xtj < 0)1(ti ≤ t, tj ≤ t)




= EM(t) + 2E


∑

i<j

1(Xti < 0)1(Xtj < 0)1(tj ≤ t)


 .

(Both indices,i andj here and in the sequel range of course from 1 to infinity.) Write also the corre-

sponding relationship

E[K2(t)] = E


∑

i,j

F (Xti−)F (Xtj−)1(ti ≤ t, tj ≤ t)




= E

[∑

i

F
2(Xti−)1(ti ≤ t)

]
+ 2E


∑

i<j

F (Xti−)F (Xtj−)1(tj ≤ t)




= EK(t) + E

[∑

i

(
F

2(Xti−)− F (Xti−)
)
1(ti ≤ t)

]

+2E


∑

i<j

F (Xti−)F (Xtj−)1(tj ≤ t)


 .

However, we have already established thatEM(t) = EK(t) and

E

[∑

i

(
F

2(Xti−)− F (Xti−)
)
1(ti ≤ t)

]
≤ 0

since each one of the terms inside the sum is negative or zero. Thus, in order to establish (3), it suffices

to prove that

E


∑

i<j

1(Xti < 0)1(Xtj < 0)1(tj ≤ t)


 ≥ E


∑

i<j

F (Xti−)F (Xtj−)1(tj ≤ t)




or equivalently

E


∑

i<j

[
1(Xti < 0)1(Xtj < 0)− F (Xti−)F (Xtj−)

]
1(tj ≤ t)


 ≥ 0
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or
∑

i<j

E
[
E

[(
1(Xti < 0)1(Xtj < 0)− F (Xti−)F (Xtj−)

)
1(tj ≤ t) |Fti

]] ≥ 0. (4)

SinceXti−, Xti ∈ Fti , the inner expectation of the typical term in the above summation can be

expressed as

E
[
1(Xti < 0)1(Xtj < 0)1(tj ≤ t)− F (Xti−)F (Xtj−)1(tj ≤ t)

∣∣Fti

]

= E
[
1(Xti < 0)1(Xtj < 0)1(tj ≤ t)− 1(Xti < 0)F (Xtj−)1(tj ≤ t)

+1(Xti < 0)F (Xtj−)1(tj ≤ t)− F (Xti−)F (Xtj−)1(tj ≤ t)
∣∣Fti

]

= 1(Xti < 0)E
[(

1(Xtj < 0)− F (Xtj−)
)
1(tj ≤ t)

∣∣Fti

]

+
(
1(Xti < 0)− F (Xti−)

)
E

[
F (Xtj−)1(tj ≤ t)

∣∣ Fti

]
.

However,i < j implies thatFti ⊂ Ftj− and hence, taking into consideration thatXtj = Xtj− − Zj ,

E
[(

1(Xtj < 0)− F (Xtj−)
)
1(tj ≤ t)

∣∣Fti

]

= E
[
E

[ (
1(Xtj− < Zj)− F (Xtj−)

)
1(tj ≤ t)

∣∣Ftj−
]∣∣Fti

]

= E
[
E

[
1(Xtj− < Zj)

∣∣Ftj−
]
1(tj ≤ t)− F (Xtj−)1(tj ≤ t)

∣∣ Fti

]

= 0

where, in the next to the last equation we have used the fact that1(tj ≤ t) ∈ Ftj−. In the last equation

we have also used the fact thatE
[
1(Xtj− < Zj)

∣∣Ftj−
]

= F (Xtj−). So, in order to establish (4), it

suffices to show that

∑

i<j

E
[(

1(Xti < 0)− F (Xti−)
)
E

[
F (Xtj−)1(tj ≤ t) |Fti

]] ≥ 0

or equivalently
∑

i<j

E
[(

1(Xti < 0)− F (Xti−)
)
F (Xtj−)1(tj ≤ t)

] ≥ 0. (5)

But Xti = Xti− − Zi andXtj− = Xti + Yi,j with

Yi,j := −
j−1∑

k=i+1

Zk + c

∫ tj

ti

1(Xs < L)ds,

where the first term in the above sum is the amount paid due to claims and the second is the total income

from premiums that is added to the free reserves. With this notation the typical term in the sum (5) can

be written as

E
[(

1(Xti− − Zi < 0)− F (Xti−)
)
F (Xti + Yi,j)1(tj ≤ t)

]
. (6)
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We will show that (6) is non–negative and this will establish (5) and thus the second part of the theorem.

To this end it is enough to show that the following conditional expectation is non–negative:

E
[(

1(Xti− − Zi < 0)− F (Xti)
)
F (Xti + Yi,j)1(tj ≤ t)

∣∣Fti−
] ≥ 0. (7)

In order to prove (7) we have to check two cases:

1. Xti− ≤ 0. Then1(Xti− − Zi < 0) = 1 andF (Xti−) = 1 with probability 1, so the left hand

side of (7) vanishes.

2. Xti− > 0. In this case, write the left hand side of (7) as an iterated expectation

E
[
E

[ (
1(Xti− − Zi < 0)− F (Xti−)

)
F (Xti + Yi,j)1(tj ≤ t)

∣∣ Fti

]∣∣ Fti−
]

(8)

(remember thatFti− ⊂ Fti). Using the Strong Markov property, the inner expectation in (8) can be

written as

(
1(Xti− − Zi < 0)− F (Xti−)

)
E

[
F (Xti + Yi,j)1(tj ≤ t)

∣∣Fti

]

=
(
1(Xti− − Zi < 0)− F (Xti−)

)
E

[
F (Xti + Yi,j)1(tj ≤ t)

∣∣Xti

]
. (9)

Let

ϕ(u) := E
[
F (Xti + Yi,j)1(tj ≤ t)

∣∣Xti = u
]
. (10)

In the Appendix (corollary 1) it is shown thatϕ is an increasing function ofu. But then, (8) can be

written as

E
[(

1(Xti− − Zi < 0)− F (Xti−)
)
ϕ(Xti− − Zi)

∣∣Fti−
]

≥ E
[
1(Xti− − Zi < 0)− F (Xti−)

∣∣Fti−
]
E [ϕ(Xti− − Zi)|Fti−]

= 0. (11)

The inequality above is a consequence of corollary 1 of the Appendix with

f(x) := 1(x > Xti)− F (Xti)

and

g(x) := ϕ(Xti− − x)
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being the corresponding increasing functions. Then the last equality in (11) follows immediately from

the fact thatP (Xti−−Zi < 0 | Xti−) = F (Xti−) This concludes the proof of (7) and hence the proof

of the theorem.

The fact that the smoothed estimator has lower variance is of course not surprising. What is inter-

esting however, is the extent to which the simple type of smoothing we propose reduces variance. This

is shown in the simulation results presented in the next section.

4 Simulation results

Simulation experiments were conducted in order to evaluate in practice the performance of the above

algorithm. For different values of the initial capitalu and the ceilingL, 10000 iterations were per-

formed and 1000 claim epochs were created. Positive loading values ofρ = 0.03, 0.05, and0.1 were

considered. In all cases, the time and reserve axes where scaled so thatc = λ = 1. Experiments were

conducted for two different claim size distributions as follows

1. The exponential distribution with c.d.f

F (x) = 1− e−x/µ, x > 0

and meanE(X) = µ, so thatµ was set equal to 0.97, 0.952, and 0.909 respectively in order to

have the above values forρ. Results are shown in Table 1.

2. The Pareto distribution with c.d.f

F (x) = 1−
(
1 +

x

b

)−a
, x > 0

whereEX = b
a−1 anda > 1. Usinga = 1.1, 1.5, 2, 5, and10 we obtain various values forb in

order to have the above values forρ. Results are tabulated in Tables 2,3, and 4.

It is worth noting that the smoothed estimator we propose outperforms the naı̈ve Monte Carlo estimator

often by an order of magnitude or more in terms of its variance, particularly in the case of the Pareto

distribution which has heavy tails.
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A Appendix - Stochastic Monotonicity

We begin with a lemma that establishes the stochastic monotonicity of the free reserves process with

respect to the initial capital.

Lemma 1 (Stochastic Monotonicity). If {Xt(u)} is the risk process with initial capitalu, thenu1 ≤
u2 impliesXt(u1) ≤st Xt(u2) for all t.

Proof: The lemma is an immediate consequence of the corresponding stochastic monotonicity result

for queueing systems (see Stoyan [9]). With

St := ct−
N(t)∑

k=1

Zk (12)

we have the following representation for the free reserves process

Xt(u) = min
{

u + St, L + inf
0≤v≤t

[St − Sv]
}

. (13)

From the above representation it is clear thatu1 ≤ u2 impliesXt(u1) ≤ Xt(u2) w.p.1. for allt ≥ 0.

Having established the stochastic monotonicity of the free reserves process as a function of the

initial reserves, we can now use state the following corollary which establishes the monotonicity ofϕ

whose definition is given in (10) and repeated here for convenience.

Corollary 1. Suppose1 ≤ i < j. The function

ϕ(u) := E[F (Xtj−)1(tj ≤ t)
∣∣Xti = u]

is a decreasing function ofu.

Proof: Use the Strong Markov property to argue that

E[F (Xtj−)1(tj ≤ t)
∣∣Xti = u] = E[F (Xtj−i−)1(tj−i ≤ t)

∣∣X0 = u]

and appeal to the stochastic monotonicity lemma above recalling thatF is a decreasing function.

We end this section with the following simple
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Lemma 2. Suppose thatf, g, are increasing functions,R→ R andZ a real random variable. Then

E[f(Z)g(Z)] ≥ E[f(Z)]E[g(Z)]

provided the expectations exist.

For a proof see Ross [7].
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u L µ E[M(t)] E[K(t)] Var[M(t)] Var[K(t)]
5 7 0.97 0.034 0.0336 0.03554 0.00077
5 8 0.97 0.0112 0.0119 0.01167 0.0001
5 10 0.97 0.0015 0.0015 0.0014979 0.00000163
5 11 0.97 0.0007 0.00053 0.000699 0.0000002
8 10 0.97 0.0015 0.0015 0.0015 0.00000162
8 11 0.97 0.0006 0.000584 0.000599 0.00000021

10 12 0.97 0.0001 0.00016 0.0001 0.00000003
5 7 0.952 0.0232 0.0226 0.02386 0.00041
5 8 0.952 0.0031 0.0028 0.0033 0.00000625
5 9 0.952 0.0024 0.0027 0.00259 0.0000061
5 10 0.952 0.0009 0.0009 0.000899 0.00000075
5 11 0.952 0.0001 0.0003 0.0001 0.00000009
5 12 0.952 0.0001 0.00011 0.0001 0.00000001
8 10 0.952 0.0012 0.001 0.001198 0.00000077
8 11 0.952 0.0004 0.00034 0.00039988 0.00000009

10 12 0.952 0.0001 0.00011 0.0001 0.00000001
5 7 0.909 0.0093 0.0093 0.01 0.00007756
5 8 0.909 0.0032 0.00314 0.00319 0.00000854
5 9 0.909 0.0029 0.00276 0.002891 0.00000607
5 10 0.909 0.0002 0.0003 0.0001999 0.00000001
5 11 0.909 0.0002 0.0001 0.0001999 0.00000001
8 10 0.909 0.0001 0.0003 0.0001 0.00000011
8 11 0.909 0.0002 0.0001 0.0001998 0.00000001

Table 1: Exponential distribution.
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u L a b E[M(t)] E[K(t)] Var[M(t)] Var[K(t)]
10 15 1.1 0.097 0.3815 0.3733 0.4874 0.013724

1.5 0.485 0.933 0.925 1.4146 0.177
2 0.97 0.6716 0.6714 0.937 0.1187
5 3.883 0.0381 0.0424 0.03925 0.0008676
10 8.73 0.0039 0.0037 0.003885 0.00000798

10 20 1.1 0.097 0.338 0.335 0.438935 0.009738
1.5 0.485 0.7236 0.7286 1.0321 0.09812
2 0.97 0.4756 0.4693 0.57386 0.05045
5 3.883 0.016 0.016 0.01673 0.0001
10 8.73 0.0004 0.0006 0.00039988 0.0000002

10 40 1.1 0.097 0.25 0.25 0.31048 0.004027
1.5 0.485 0.4135 0.4139 0.49916 0.020125
2 0.97 0.18 0.18 0.19036 0.005117
5 3.883 0.0011 0.0011 0.0011 0.00000044
10 8.73 0 0.00000124 0 0

10 50 1.1 0.097 0.23 0.23 0.2625 0.00293
1.5 0.485 0.334 0.333 0.37468 0.01107
2 0.97 0.138 0.138 0.1446 0.00226
5 3.883 0.0003 0.0004 0.0003 0.00000007
10 8.73 0 0 0 0

20 50 1.1 0.097 0.229 0.229 0.256 0.003
1.5 0.485 0.33 0.33 0.3825 0.011
2 0.97 0.137 0.138 0.14317 0.00224
5 3.883 0.0003 0.0004 0.0003 0.00000006
10 8.73 0 0 0 0

20 75 1.1 0.097 0.188 0.188 0.207 0.00155
1.5 0.485 0.23 0.227 0.25 0.0035
2 0.97 0.075 0.076 0.0765 0.00048
5 3.883 0 0 0 0
10 8.73 0 0 0 0

50 80 1.1 0.097 0.18 0.18 0.2 0.00138
1.5 0.485 0.2078 0.21 0.2244 0.003
2 0.97 0.0702 0.069 0.072 0.00036
5 3.883 0.0685 0.069 0.0686 0.00036
10 8.73 0 0 0 0

50 100 1.1 0.097 0.16 0.16 0.187 0.00096
1.5 0.485 0.1739 0.1688 0.1818 0.00153
2 0.97 0.0509 0.0494 0.0513 0.00014
5 3.883 0 0 0 0
10 8.73 0 0 0 0

Table 21: Pareto withρ = 0.03

1Zero entries here and elsewhere for the naı̈ve Monte Carlo estimator signify that in 10,000 iterations no claims resulted
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u L a b E[M(t)] E[K(t)] Var[M(t)] Var[K(t)]
10 15 1.1 0.095 0.36 0.36 0.453 0.0121

1.5 0.476 0.83 0.84 1.2158 0.1534
2 0.952 0.5797 0.5865 0.807 0.0979
5 3.81 0.0329 0.0323 0.034 0.00058
10 8.57 0.0027 0.0025 0.00269298 0.00000433

10 20 1.1 0.095 0.325 0.323 0.417 0.00913777
1.5 0.476 0.68 0.68 0.9627 0.08529263
2 0.952 0.4123 0.4098 0.50055 0.04075988
5 3.81 0.0116 0.0119 0.0116 0.00007
10 8.57 0.0004 0.0004 0.0003998 0.00000012

10 40 1.1 0.095 0.24 0.24 0.27988 0.00359
1.5 0.476 0.38 0.38 0.461 0.017
2 0.952 0.173 0.168 0.18575 0.0043
5 3.81 0.0007 0.0009 0.0006995 0.0000003
10 8.57 0 0 0 0

20 50 1.1 0.095 0.2198 0.22 0.251713 0.0026
1.5 0.476 0.3008 0.31 0.34035 0.00996232
2 0.952 0.126 0.124 0.13153 0.0019
5 3.81 0.0003 0.0003 0.00029994 0.00000005
10 8.57 0 0 0 0

50 100 1.1 0.095 0.1587 0.1572 0.16713 0.0008553
1.5 0.476 0.1559 0.1585 0.159611 0.00137
2 0.952 0.0457 0.045 0.04721 0.000132
5 3.81 0.0001 0.00006 0.0001 0
10 8.57 0 0 0 0

Table 3: Pareto withρ = 0.05

in time in the red i.e. all sample paths were strictly positive. Thus both estimates for the meanEM(t) and for the variance
Var(M(t)) are in these cases zero. For the smoothed Monte Carlo estimator zero entries mean that the corresponding values
are equal to zero to eight significant digits.
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u L a b E[M(t)] E[K(t)] Var[M(t)] Var[K(t)]
10 15 1.1 0.0909 0.339 0.333 0.432 0.0103

1.5 0.4545 0.692 0.6886 1.02624 0.1015
2 0.909 0.416 0.416 0.5453 0.052055
5 3.636 0.0153 0.0162 0.01506 0.00017677
10 8.1818 0.0012 0.00118 0.0012 0.00000105

10 20 1.1 0.0909 0.295 0.297 0.357 0.00692
1.5 0.4545 0.549 0.553 0.7316 0.05757
2 0.909 0.2884 0.2922 0.34946 0.02306
5 3.636 0.0057 0.0062 0.005668 0.0000215
10 8.1818 0.0001 0.0001 0.0001 0.00000003

10 40 1.1 0.0909 0.231 0.227 0.26768 0.003
1.5 0.4545 0.314 0.317 0.37496 0.0122
2 0.909 0.134 0.128 0.14315 0.002733
5 3.636 0.0003 0.0004 0.0003 0.0000001
10 8.1818 0 0 0 0

10 50 1.1 0.0909 0.2048 0.2065 0.2246 0.002235
1.5 0.4545 0.263 0.262 0.30026 0.007088
2 0.909 0.095 0.095 0.09758 0.001275
5 3.636 0.0001 0.0002 0.0001 0.00000002
10 8.1818 0 0 0 0

20 50 1.1 0.0909 0.203 0.205 0.235 0.002084
1.5 0.4545 0.255 0.262 0.2767 0.00707269
2 0.909 0.0996 0.0954 0.1043 0.00125
5 3.636 0.0002 0.00021 0.0002 0.00000002
10 8.1818 0 0 0 0

20 75 1.1 0.0909 0.165 0.169 0.17986 0.0011758
1.5 0.4545 0.188 0.182 0.19958 0.00241
2 0.909 0.052 0.054 0.053 0.0003
5 3.636 0 0 0 0
10 8.1818 0 0 0 0

50 80 1.1 0.0909 0.167 0.164 0.17479 0.00103
1.5 0.4545 0.163 0.169 0.17598 0.00199
2 0.909 0.05 0.05 0.0528 0.00022
5 3.636 0 0 0 0
10 8.1818 0 0 0 0

50 100 1.1 0.0909 0.143 0.146 0.1527 0.000712
1.5 0.4545 0.137 0.136 0.1473 0.00107
2 0.909 0.033 0.035 0.0327 0.00009547
5 3.636 0.0001 0.0001 0.0001 0
10 8.1818 0 0 0 0

Table 4: Pareto withρ = 0.1
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