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Abstract

We consider a modified version of the de Finetti model in insurance risk theory in which, when
surpluses become negative the company has the possibility of borrowing, and thus continue its op-
eration. For this model we examine the problem of estimating the “time-in-the red” over a finite
horizon via simulation. We proposeseoothed estimatdrased on a conditioning argument which
is very simple to implement as well as particularly efficient, especially when the claim distribution
is heavy tailed. We establish unbiasedness for this estimator and show that its variance is lower than
the nadve estimator based on counts. Finally we present a number of simulation results showing
that the smoothed estimator has variance which is often significantly lower than that oitbe na
Monte-Carlo estimator.

Keywords: Risk theory, de Finetti model, Smoothed Monte Carlo, Variance reduction.
Short title: Smoothed Monte Carlo for Risk Processes.

1 Introduction

We consider the classical continuous time claim process in insurance risk theory which has the fol-
lowing structure: Claims occur at timgs,; n € N} which form a Poisson process with rateand
corresponding counting proce$®/(t);t > 0} whereN(t) = > 72, 1(t; < t). The claim sizes

{Zy; k € N} are independent, identically distributed random variables, having common distribution
function F with F'(z) = 0 whenz < 0 and finite mean. Furthermore)N and{Z;} are assumed to

be independent. The@:ﬁ(f) Z; represents the accumulated claims up to time
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In the Cranér—Lundberg model (e.g. see [5]) the free reserves prakassiefined as

N(t)

Xt:u+Ct_ZZz
=1

whereuw is the initial capital and > 0 the premium income per unit time. Then, the profit over the

interval [0, ¢] is S = ct — ZiN:(lt) Z;. Therelative safety loading is defined by

p= rcﬂ -1

and gives the expected profit rate per unit time as a percentage of the expected claims that have occurred
up to that point. We assume that> 0, (positive safety loading). Under this assumptiont{ as oo,

X, almost surely will drift to+o0c. The typical measure for the long-term financial stability of the

risk business in the Craen-Lundberg model is theiin probability, which is usually expressed as a
function of the initial capitat:, and defined a®{X,; < 0, forsomet > 0}. If one only considers

the operation of the company over a finite horizon, say the intédydl], then the finite horizon ruin
probability, P{X (t) < 0, forsomet < T'} may be the relevant performance criterion. For further

details we refer the reader to Grandell [5].

While the Crangér—Lundberg model has played a central role in the development of risk theory and
of actuarial techniques for the analysis of the long-run stability of an insurance company, it has also
been criticized, particularly in connection with the feature of the model that free reserves accumulate
without bound ag — oo. In the 1950's de Finetti [1] proposed an alternative point of view which
places in the center of the economic argument not the long run stability of the company but the present
value of the dividend stream the firm’s operation generates for shareholders. Arguing along these lines
he analyzed a simple model and showed that the optimal dividend strategy before the inevitable ruin
occurs is aarrier strategy This means that there exists a le¥et> 0 such that, as long as the free
reserves are below it all premium income is added to them, whereas as soon as free reserves exceed
it, all additional income from premiums is distributed to the shareholders as dividends. In de Finetti's
model, the ruin of the insurance company (i.e. the event that the free reserves will become at some
time negative) is a certain event. In his original formulation de Finetti argued that the objective of the
insurance company would be to maximthe present valuef the total amount of dividends distributed

to shareholders as opposed to keeping the ruin probability below a given value.



We consider a variation of de Finetti’s model where, when free reserves become negative the com-
pany is not ruined but is instead allowed to continue its operation by borrowing. The period of time

during which the free reserves are negative is usually referred tionasin the red.

Time in the red has been studied before, in the context of the classicabGHanmdberg model
based on the following considerations. As argued in Gerber [4], sometimes the event of ruin has a very
small probability and the portfolio is just one out of many in the company. The company may thus
have enough funds available to support some negative surplus for some time (or secure support from
outside sources) in the hope that the portfolio will recover in the future, allowing the company to keep
this business alive. This can be regarded as an investment, since the process will recover in the future.
The problem of finding if this recovery is quick enough or not, giving good value or not for the money
invested, was studied by dos Reis [3] where the distribution of the number of occasions on which the
surplus falls below zero is given and results for the moments of the duration of a single period of
negative surplus and the total duration of negative surplus are obtained. Also, Dickson and dos Reis [2]
consider the distributions of the duration of a single period of negative surplus and of the total duration
of negative surplus. They derive explicit results in some cases and show how to approximate these
distributions through the use of a discrete time risk model. A markovian analysis of a discrete model
with recursive formulas for computing the time in the red is presented in Wagner [10]. The above
analytic results have been obtained under the assumption that the claim occurrence process is Poisson.
In general, analytic results are not available and one would have to resort to simulation experiments in

order to estimate the time in the red.

To the best of our knowledge, the time in the red process for the de Finetti model has not so far been
studied. In this paper we propose a smoothed Monte Carlo estimator which has of course the advantage
of being applicable under general stochastic assumptions regarding the claim process. This estimator
is related to the estimator proposed by Ross and Schechner [8] for the estimation of the mean passage

time and the distribution of the passage time in stochastic simulations of discrete Markov chains.



2 Model description and Monte Carlo estimators

To describe the evolution of the system let, as bef¢tg;n = 1,2,...} denote the epochs when

claims occur,Z,, the size of thenth claim, andX; the size of the free reserves at tihe Also set

to = 0 and suppose that the initial value of the free reserves proces3 ieen the procesgX;;t > 0}

has piece—wise continuous paths, which we will assume tigbé-continuouswith probability one.

Between claim occurrences the sample path§Xf} increase with rate until the levelL is reached

and then they remain constantly equalltgsince additional income from premiums is distributed to

the shareholders) until the next claim occurs. When this happens, the free reserves are decreased by the
amount of the claim (see figure 1). The evolution of the pro¢égg can be described heuristically by

the following equations

d
%Xt = Cl(Xt <L), tc (tn,tn+1), n=0,1,2,...

th = Xt_—Zn, n:1,2,...,

n

together with the initial conditioXy, = . In the above equations, as usus}, — denotes the value of
free reserves just before theh claim occurs whileX,,, the corresponding value just after the claim.
From a mathematical standpoiftX;} is defined (pathwise) as the unique solution of the integral

equation
N(t)

t
X; = u+c/ 1(Xs < L)yds — ZZk’
0 k=1
An explicit solution to the above equation is provided by equation (13) of the Appendix.

If the operating horizon is, the total amount of money given to the shareholders is equal to

t
c/ 1(Xs = L)ds,
0

while the total time in the red is equal to

t
/ 1(X, < 0)ds.
0

A discretized performance criterion which is essentially equivalent to the total time in the red over the

horizon[0, ¢] would be

M@t)=) 1(X;, <0), 1)
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Figure 1: The free reserves process

the total number of claims up to tintg¢hat result in negative free reserves. By an abuse of terminology

we will also be callingM (t) henceforth for convenience "time in the red”

Since we assume that the net profit condition holds, once the process falls below zero it will remain
negative only for a finite period of time before becoming positive again. If we call such periods of
negative surplusesed periods then, as long as we have positive loading, red periods are random

variables that are finite with probability 1.

Thendive Monte-Carlo estimatdior the time in the red based on countsli§t), as given in (1).

In this paper we propose the followirsgnoothed estimator

N(t)
K(t) =) F(Xi-). 2
i=1
whereF(z) := 1 — F(z) forall x € R.

Remark: Recall thatX,,_ is the size of the reservesist prior to the occurrence of thih claimand
F(Xy,-) is the conditional probability that the process will fall below level zero after the occurrence of
theith claim, given the size of the free reserves just before the claim occurs. Clearly, whiléxtbe na

estimator assigns to each claim a value of 1 or 0 according to whether it results to a negative value for
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the free reserves or not, the smoothed estimator assigns ebetlueen 0 and équal to the conditional
probability that the claim results to a negative value for the free reserves process, given the value of
that process just prior to the claim. In particular we note that the contribution afhib@aim in the

naive estimator is based on the value of the free reserves process di,tiie, while the smoothed
estimatoruses the value just prior tg, X;,—. If X;,_ < 0thenX,, < 0 a fortiori and such claims

contribute 1 to both the iie and the smoothed estimator sif¢er) = 1 whenz < 0.

The statistical properties of the smoothed estimator will be examined in the next section where it

will be shown that it is superior to the ive estimator.

3 Statistical Properties of the Smoothed Estimatork(t)

Here we formulate and prove our main result, namely that the smoothed estimator is unbiased and has
lower variance than the na estimator for alt. Of course, the fact that the smoothed estimator has
lower variance is not surprising since, as a general principle, conditioning reduces variance. A proof is
necessary nonetheless and is provided here. What is, perhaps, surprising is the extent to which variance
is reduced by the simple form of conditioning proposed. This is shown clearly in the experimental

results in section 4.

Denote by(Q2, .#, P) the probability space on which the free reserves process has been defined
and by.Z7;, = 0 — {Xs;s < t} the o—field generated by the proce&Sup to timet. The filtration
{Z;t > 0} represents thus the history of the process. For background on the theory of processes we
refer the reader to Btivier [6]. We recall that?; . = ,~, #y andthat#,_ = \/,,_, %y, theo—field
generated by al7, with ' < t. In accordance with the “usual assumptions” the filtrat{oh, } is

right—continuous and hencg;, = .%;.

Recall that, ifT" is an.%;—stopping time then the stoppedfield, %, is defined as? := {4 €
FAN{T <t} e #forallt > 0}. We also defineZr_ as thes—field generated by the collection
ofsets{A € .7 : An{T <t} € % forallt > 0}.

In our case, the times when claims ocdut, }, form an increasing sequence of stopping times with

respect to the filtratiof.#; }. The corresponding—fields.#;, represent the information available up to



the epoch of occurrence of thih claim,including the size of théth claim, Z;. Because of the simple
structure of our process which evolves according to a deterministic law between claim occurrences and
our assumption of right—continuity for the sample paths, it is easy to see that the correspoHidiluts

F,— contain all the information up to the epoch of occurrence ofithelaim, excluding the size of

thesth claim

We are now ready to state our main result.

Theorem 1. The smoothed estimator for the time in the red, given by (2) is unbiased and has lower

variance than the rige estimator (1) i.eEK (t) = EM(t) forall ¢t > 0 and

Var(K(t)) < Var(M(t)) forallt>0. (3)

Proof: We first establish the unbiasedness of the smoothed estimator by showing that its expectation is

equal to that of the rnige estimator which is obviously unbiased. Indeed we have

oo
EM(t) = E|) 1(X;, <0,t; <t)
=1

_ iE [E1(t; <)1L(Xy, <0)]| F,-]

7

— iE [E[1(Xy, < 0)| F,—]1(t; < )]
=1

[e.9]

= Y B[t < )F(X,,-)]

=1

- E = BK(t)

S (X )1 < 1)
i=1

The interchange between the sum and the expectation in the second and in the last equality can be
justified easily using an argument based on the monotone convergence theorem. The fourth equality

holds because

E(1(Xy, <0)|F,-] = E[L(Xy- —Zi <0)|F,_| = E[1(Z > Xy,—)| Fr,-]

(3

= F(X,,).

This establishes the unbiasedness of the smoothed estimator.



Next we will establish (3). We should point out that when the claim distribution is deterministic
the smoothed estimator becomes the same as thie oae. Thus the inequality above cannot be strict
in all cases. It is however possible to show that, if the deterministic claim case is excluded, then the
inequality (3) becomes strict. We begin with the relationship

EIM*(t)] = E|) (X, <0)1(Xy; <0)1(t; <t,t; < t)]

i7j

= EM(t) +2E

i<j

D 1(Xe, < 0)1(Xy, < 0)1(t; < t)] :

(Both indices,i andj here and in the sequel range of course from 1 to infinity.) Write also the corre-

sponding relationship

BIK>)] = B |3 F(X)F(X, )1t < tt; <)

However, we have already established thdt/ (¢) = FK(t) and

E

Z (FQ(X%—) - F(th—)> 1(ti < t)] <0

7
since each one of the terms inside the sum is negative or zero. Thus, in order to establish (3), it suffices

to prove that

E ) 1(Xy, <0)1(Xy; < 0)1(t; < 1)

1<j

> E !Z F(X,,)F(X, )10 < t)]

1<j

or equivalently

E [Z [1(Xe, < 0)1(X, < 0) — F(X,)F(Xy, )] 1(t; < t)] >0



or

Y E[E[(1(Xy, <0)1(Xy, <0) = F(Xy, ) F(Xy, ) 1(t; < t) | F,]] > 0. (4)
1<J
Since Xy,—, X;, € %, the inner expectation of the typical term in the above summation can be

expressed as

E[1(Xy, < 0)1(Xy, <0)1(t; < t) — F(Xy,— ) F(Xy,-)1(t; < t)| F,]
= E[1(Xy, <0)1(Xy; <0)1(t; <t) — 1(Xy, < 0)F(Xy,-)1(t; <)
+1(Xy, < 0)F(Xy,)1(t; < t) — F(Xyo ) F(Xy,-)1(t; < )| F,]
= 1(Xy, <0)E[(1(Xy, <0) = F(Xy,-)) 1(t; < t)| F,]
+ (1(Xy, <0) = F(Xy,2)) E [F(Xy,-)1(t; < t)| F,] -

However,i < j implies that7;, C .%;, and hence, taking into consideration that = X;._ — Zj,

E[(1(Xy, <0)— F(Xy,—)) 1(t; < t)| F,]
= E[E[(1(Xy,- < Z;j) — F(Xy,-)) 1(t; < )| F,—]| F]
= E[B[1(Xy- < Zj)| Fy;-| 1ty < 1) — F(Xy,-)1(ty < 1)| P,

= 0

where, in the next to the last equation we have used the fact thak ¢) € .7, . In the last equation
we have also used the fact that 1(X,, - < Z;)| F,~| = F(Xy,-). So, in order to establish (4), it
suffices to show that

Y E[(1(Xy, <0) = F(Xy,)) E[F(Xy, )1(t; <t) |.F,]] 20

1<J

or equivalently
> E[(1(Xe, <0) = F(X¢,)) F(Xe,)1(t; < 1)) > 0. (5)

1<J
But Xti = Xti, — Z; a.ndth, = th' + YVZJ with

where the first term in the above sum is the amount paid due to claims and the second is the total income
from premiums that is added to the free reserves. With this notation the typical term in the sum (5) can
be written as

E[(1(Xt,— — Zi <0) — F(Xy,-)) F(Xy, + Yij)1(t; < t)] . (6)

9



We will show that (6) is non—negative and this will establish (5) and thus the second part of the theorem.

To this end it is enough to show that the following conditional expectation is non—negative:

B[(1(Xy— = Z; <0) = F(Xy,)) F(Xy, +Yij)1(t; < )| Fr-] > 0. (7)

7

In order to prove (7) we have to check two cases:

1. Xy,— <0. Thenl(X;,— — Z; < 0) = 1 andF(X;,_) = 1 with probability 1, so the left hand

side of (7) vanishes.

2. Xy,— > 0. In this case, write the left hand side of (7) as an iterated expectation

L [E [ (I(Xti— —Z; < 0) - F(th—)) F(Xh + Y;J)l(tj < t)‘ ytz]

Tt ] (8)

(remember that?;, . C .%;,). Using the Strong Markov property, the inner expectation in (8) can be

written as
(U(Xp— — Z; < 0) = F(Xy,-)) E [F(Xy, + Yi )1(t; < t)| F,]

= (1(Xy,— — Zi <0) = F(Xy,)) E [F(Xy, + Yij)1(t; < )| Xy, ] . (9)

Let
o) = E [F(Xy, + Yi;)1(t; < t)| Xy, =1 . (10)

In the Appendix (corollary 1) it is shown thatis an increasing function af. But then, (8) can be

written as

BE[(U(Xy— = Z; < 0) = F(X¢,-)) (Xt — Zi)| T, -]
> E[1(Xy— — Z; <0) = F(X4,-)| F—| E (Xt — Z;)| Fo,—]

7 K3

= 0. (11)

The inequality above is a consequence of corollary 1 of the Appendix with

and
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being the corresponding increasing functions. Then the last equality in (11) follows immediately from

the fact thatP(X;,_ — Z; < 0| Xy,_) = F(X¢,—) This concludes the proof of (7) and hence the proof

of the theorem. |

The fact that the smoothed estimator has lower variance is of course not surprising. What is inter-
esting however, is the extent to which the simple type of smoothing we propose reduces variance. This

is shown in the simulation results presented in the next section.

4 Simulation results

Simulation experiments were conducted in order to evaluate in practice the performance of the above
algorithm. For different values of the initial capitaland the ceilingl,, 10000 iterations were per-
formed and 1000 claim epochs were created. Positive loading valyes-df.03, 0.05, and0.1 were
considered. In all cases, the time and reserve axes where scaled se-that 1. Experiments were

conducted for two different claim size distributions as follows

1. The exponential distribution with c.d.f
Flz)=1—e2/" >0

and mear£(X) = u, so thatu was set equal to 0.97, 0.952, and 0.909 respectively in order to

have the above values fpr Results are shown in Table 1.

2. The Pareto distribution with c.d.f

F(x):17(1+%)7a, x>0

whereEX = -2- anda > 1. Usinga = 1.1, 1.5, 2, 5, and10 we obtain various values farin

order to have the above values jorResults are tabulated in Tables 2,3, and 4.

It is worth noting that the smoothed estimator we propose outperformsiveeMante Carlo estimator
often by an order of magnitude or more in terms of its variance, particularly in the case of the Pareto

distribution which has heavy tails.
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A Appendix - Stochastic Monotonicity

We begin with a lemma that establishes the stochastic monotonicity of the free reserves process with

respect to the initial capital.

Lemma 1 (Stochastic Monotonicity). If { X;(u)} is the risk process with initial capital, thenu; <

ug implies X (uq) <g Xt(uz) forall ¢.

Proof: The lemma is an immediate consequence of the corresponding stochastic monotonicity result

for queueing systems (see Stoyan [9]). With

N(t)
Sy = ct — Z Zy, (12)
k=1
we have the following representation for the free reserves process
X¢(u) = min {u+5t,L+0igf<t[St—Sv]}- (13)
From the above representation it is clear that uy implies X;(u1) < X;(ug) w.p.1. for allt > 0. |

Having established the stochastic monotonicity of the free reserves process as a function of the
initial reserves, we can now use state the following corollary which establishes the monotonigity of

whose definition is given in (10) and repeated here for convenience.

Corollary 1. Supposéd < i < j. The function
p(@) = B[F(X;, )1(t; < )| X;, =1

is a decreasing function af.

Proof: Use the Strong Markov property to argue that
E[F(X,-)1(t; < t)| Xy, =] = E[F(Xy,_,—)1(tj—i < t)| Xo =17]
and appeal to the stochastic monotonicity lemma above recallingtisaa decreasing function. |
We end this section with the following simple

12



Lemma 2. Suppose thaf, g, are increasing functiond® — R and Z a real random variable. Then

Elf(2)9(2)] = E[f(Z)] Elg(Z)]

provided the expectations exist.

For a proof see Ross [7].
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u L p  [[EM(t) E[K(t)] Var[M(t)] Var[K(t)] |
5 7 097 [[0.034 0.0336  0.03554 0.00077
5 8 097 ||0.0112 0.0119 0.01167 0.0001

5 10 0.97 || 0.0015 0.0015  0.0014979 0.00000163
5 11 0.97 || 0.0007  0.00053 0.000699  0.0000002
8 10 0.97 [ 0.0015 0.0015  0.0015 0.00000162
8 11 0.97 || 0.0006  0.000584 0.000599  0.00000021
10 12 0.97 || 0.0001  0.00016  0.0001 0.00000003
5 7 0.952[ 0.0232 0.0226  0.02386 0.00041

5 8 0.952( 0.0031 0.0028  0.0033 0.00000625
5 9 0.952 0.0024 0.0027  0.00259 0.0000061
5 10 0.952] 0.0009  0.0009  0.000899  0.000000[5
5 11 0.952( 0.0001  0.0003  0.0001 0.00000009
5 12 0.952] 0.0001  0.00011 0.0001 0.00000001
8 10 0.952] 0.0012  0.001 0.001198  0.00000077
8 11 0.952] 0.0004 0.00034 0.00039988 0.00000009
10 12 0.952] 0.0001  0.00011  0.0001 0.00000001
5 7 0.909] 0.0093 0.0093  0.01 0.0000775%6
5 8 0.909] 0.0032 0.00314 0.00319 0.00000854
5 9 0.909[ 0.0029 0.00276 0.002891  0.00000607
5 10 0.909( 0.0002  0.0003  0.0001999  0.00000001
5 11 0.909( 0.0002 0.0001  0.0001999  0.00000001
8 10 0.909( 0.0001  0.0003  0.0001 0.0000001.1
8 11 0.909] 0.0002 0.0001  0.0001998  0.00000001

Table 1: Exponential distribution.
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u L|a b | EM(t)] E[K(t)] Var[M(t)] Var[K(t)] |

10 15[1.1 0.097]] 0.3815  0.3733 0.4874 0.013724
1.5 0.485|| 0.933 0.925 1.4146 0.177
2 097 || 06716 0.6714 0.937 0.1187
5 3.883| 0.0381  0.0424 0.03925 0.0008676
10 8.73 || 0.0039  0.0037 0.003885  0.00000798

10 20|11 0.097| 0.338 0.335 0.438935  0.009738
1.5 0.485| 0.7236  0.7286 1.0321 0.09812
2 0.97 || 04756  0.4693 0.57386 0.05045
5  3.883| 0.016 0.016 0.01673 0.0001
10 8.73 || 0.0004  0.0006 0.00039988 0.0000002

10 40| 1.1 0.097] 0.25 0.25 0.31048 0.004027
1.5 0.485| 0.4135  0.4139 0.49916 0.020125
2 097 || 018 0.18 0.19036 0.005117
5 3.883| 0.0011  0.0011 0.0011 0.00000044
10 8.73 || 0 0.00000124 0 0

10 50|1.1 0.097] 0.23 0.23 0.2625 0.00293
1.5 0.485| 0.334 0.333 0.37468 0.01107
2 097 || 0.138 0.138 0.1446 0.00226
5  3.883| 0.0003  0.0004 0.0003 0.00000007
10 8.73 || 0 0 0 0

20 50| 1.1 0.097] 0.229 0.229 0.256 0.003
1.5 0.485| 0.33 0.33 0.3825 0.011
2 097 || 0.137 0.138 0.14317 0.00224
5  3.883| 0.0003  0.0004 0.0003 0.00000006
10 8.73 || 0 0 0 0

20 75|11 0.097] 0.188 0.188 0.207 0.00155
1.5 0.485| 0.23 0.227 0.25 0.0035
2 097 || 0.075 0.076 0.0765 0.00048
5 3.883| 0 0 0 0
10 8.73 || 0 0 0 0

50 80|1.1 0.097] 0.18 0.18 0.2 0.00138
1.5 0.485|| 0.2078 0.21 0.2244 0.003
2 097 || 0.0702 0.069 0.072 0.00036
5  3.883| 0.0685  0.069 0.0686 0.00036
10 8.73 || 0 0 0 0

50 100| 1.1 0.097] 0.16 0.16 0.187 0.00096
1.5 0.485| 0.1739  0.1688 0.1818 0.00153
2 0.97 || 0.0509 0.0494 0.0513 0.00014
5 3.883| 0 0 0 0
10 873 || 0 0 0 0

Table 2: Pareto withp = 0.03
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u Lja b | EM(t)] E[K(t)] Var[M(t)] Var[K(t)] |
10 15[ 1.1 0.095] 0.36 0.36 0.453 0.0121
1.5 0.476|| 0.83 0.84 1.2158 0.1534
2 0.952| 0.5797 0.5865 0.807 0.0979
5 3.81 | 0.0329 0.0323 0.034 0.00058
10 8.57 || 0.0027 0.0025 0.00269298 0.00000433
10 20| 1.1 0.095| 0.325 0.323 0.417 0.00913777
1.5 0.476|| 0.68 0.68 0.9627 0.08529263
2 0.952| 0.4123  0.4098  0.50055 0.04075988
5 3.81 || 00116 0.0119 0.0116 0.00007
10 8.57 || 0.0004 0.0004 0.0003998 0.000000/12
10 40| 1.1 0.095] 0.24 0.24 0.27988 0.00359
1.5 0.476|| 0.38 0.38 0.461 0.017
2  0.952| 0.173 0.168 0.18575 0.0043
5 3.81 || 0.0007 0.0009 0.0006995 0.0000003
10 857 || 0 0 0 0
20 50| 1.1 0.095] 0.2198  0.22 0.251713 0.0026
1.5 0.476| 0.3008 0.31 0.34035 0.00996232
2 0.952| 0.126 0.124 0.13153 0.0019
5 3.81 || 0.0003 0.0003 0.00029994 0.00000005
10 857 || 0 0 0 0
50 100| 1.1 0.095| 0.1587  0.1572 0.16713 0.0008558
1.5 0.476|| 0.1559  0.1585 0.159611 0.00137
2 0.952| 0.0457  0.045 0.04721 0.000132
5 3.81 || 0.0001 0.00006 0.0001 0
10 857 || 0 0 0 0

Table 3: Pareto witlhy = 0.05

in time in the red i.e. all sample paths were strictly positive. Thus both estimates for theEdé&t) and for the variance
Var(M(t)) are in these cases zero. For the smoothed Monte Carlo estimator zero entries mean that the corresponding values

are equal to zero to eight significant digits.
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u L|a b | EM(t)] E[K(t)] Var[M(t)] Var[K(t)] |
10 15[ 1.1 0.0909] 0.339 0.333 0.432 0.0103
1.5 0.4545| 0.692 0.6886  1.02624 0.1015
2 0.909 || 0.416 0.416 0.5453 0.052055
5 3.636 || 0.0153 0.0162 0.01506 0.000176}77
10 8.1818| 0.0012  0.00118 0.0012 0.00000105
10 20| 1.1 0.0909] 0.295 0.297 0.357 0.00692
1.5 0.4545| 0.549 0.553 0.7316 0.05757
2 0.909 || 0.2884  0.2922  0.34946 0.02306
5 3.636 || 0.0057 0.0062 0.005668  0.0000215
10 8.1818| 0.0001  0.0001  0.0001 0.00000003
10 40| 1.1 0.0909] 0.231 0.227 0.26768 0.003
1.5 0.4545| 0.314 0.317 0.37496 0.0122
2 0.909 || 0.134 0.128 0.14315 0.002733
5 3.636 || 0.0003 0.0004 0.0003 0.0000001
10 8.1818| 0 0 0 0
10 50| 1.1 0.0909(| 0.2048  0.2065 0.2246 0.002235
1.5 0.4545| 0.263 0.262 0.30026 0.007088
2 0.909 || 0.095 0.095 0.09758 0.001275
5 3.636 || 0.0001 0.0002 0.0001 0.00000002
10 8.1818| 0 0 0 0
20 50[ 1.1 0.0909] 0.203 0.205 0.235 0.002084
1.5 0.4545| 0.255 0.262 0.2767 0.00707269
2 0.909 || 0.0996 0.0954 0.1043 0.00125
5 3.636 || 0.0002  0.00021 0.0002 0.00000002
10 8.1818| 0 0 0 0
20 75| 1.1 0.0909] 0.165 0.169 0.17986 0.0011758
1.5 0.4545| 0.188 0.182 0.19958 0.00241
2 0.909 || 0.052 0.054 0.053 0.0003
5 3.636 || 0 0 0 0
10 8.1818| 0 0 0 0
50 80| 1.1 0.0909] 0.167 0.164 0.17479 0.00103
1.5 0.4545| 0.163 0.169 0.17598 0.00199
2 0.909 || 0.05 0.05 0.0528 0.00022
5 3.636 || 0 0 0 0
10 8.1818| 0 0 0 0
50 100| 1.1 0.0909| 0.143 0.146 0.1527 0.000712
1.5 0.4545| 0.137 0.136 0.1473 0.00107
2 0.909 || 0.033 0.035 0.0327 0.00009547
5 3.636 || 0.0001 0.0001 0.0001 0
10 8.1818| 0 0 0 0

Table 4: Pareto withh = 0.1
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