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Abstract 

We briefly describe sensitivity analysis methods for simulation via stochastic intensities and give applications on 
derivative estimation of event averages. We consider a process depending on a parameter and an event-counting process 
and obtain expressions for the derivatives of the expected number of events occurring while the process is in a given set. 
The necessary assumptions of these expressions to hold are also examined more specifically for queueing systems. The 
case of queues with renewal and nonhomogeneous Poisson arrivals is discussed in some detail. 
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1. Introduction 

In this paper  a general method for derivative estimation is proposed for a large class of problems that can 
be cast in a form involving stochastic integrals with respect to a counting process. It uses a compensator  
identity in conjunction with infinitesimal perturbation analysis (IPA) techniques to provide low variance 
unbiased estimates at the expense of additional computat ional  requirements. For  background on IPA and 
related techniques the reader is referred to I-6]. See also [3] for a recent review of sensitivity analysis 
techniques. For  earlier work on derivative estimation via compensators see [11]. 

2. Stochastic intensities and derivative estimation for simulations 

Let {Xt(0); t ~> 0} be a real valued stochastic process with left-continuous paths depending on a parameter  0, 
and {At; t /> 0} an embedded point process (e.g. arrivals to, or departures from the system), both defined on 
a filtered probabili ty space and adapted to {~} t  > o. Let 2, be the ~- in tens i ty  of At. Typically, one is 
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interested in performance criteria of the form 

J(0) = E f(Xs(O))dAs (1) 
0 

and the objective is to obtain estimators for (d/dO)J(O). In this paper we confine ourselves to the case 
f (x )  = lB(x), the indicator function of a subset B of the state space of the process, and we obtain estimators 
for 

d--- E[ f'o 
Under additional conditions we will extend these results to obtain steady state estimates for (d/dO)P~(O), 
where PB(O) is the steady state probability that an arrival finds the system in B. 

The key idea in the method we propose here is the use of the compensator identity 

which holds provided that f(X~) is an o~-predictable process and the expectation exists (e.g. see [2]). 
Here and in the sequel we suppress the dependence on 0 except when we want to draw attention to it. 

While IPA methods would use (d/d0)ft o f(X~)dA~ evaluated along a sample path of the process to estimate 
(d/d0) J(0), we propose to use instead (d/d0)~t o f (X,)ds ,  which in many cases important in applications can 
also be evaluated along a sample path. The estimators obtained this way have increased computational 
requirements but are unbiased in many cases where the IPA estimators are biased (see [10]). This is because 
while it may not be permissible to differentiate with respect to 0 inside the expectation on the left-hand side of 
(2), it is often permissible to do so on the right-hand side as we will see in the examples given in Sections 3 and 
4. For a related method (Smoothed Perturbation Analysis) which uses conditioning we refer the reader to 
[5, 7, 8]. 

3. Derivative estimates for the expected number of arrivals in a given set 

We start with the assumption that the process {Xt(O); t >~ 0} has sample paths which are left-continuous 
with limits from the right w.p.1. Suppose that {~-t} is a filtration which includes the history of the process up 
to time t, tr - {Xs(0); s ~< t}. Assume also for simplicity that the counting process {At; t ~> 0} does not depend 
on 0 and denote its ~-ccompensator by At = ~t o 22 ds. Henceforth we will refer to this process as "arrivals" 
keeping in mind that it could be any embedded point process that satisfies our assumptions. Without loss of 
generality we assume that Xo(O)¢B, Let {ui(0)} and {vi(0)}, i e t~, be the sequence of entrance and exit times 
respectively from B which in general will depend on 0. Let { U,(0); t ~> 0} and { Vt(0); t >/0} be the counting 
processes associated with entrance and exit times from B, respectively. Throughout the paper prime denotes 
differentiation with respect to 0. To simplify the notation, the dependence on 0 is often not made explicit. 

We also denote by zt(O) = l~x, to)~n~ the indicator process corresponding to B. The postulated left-continuity 
of the sample paths of X guarantees that it is an ~,-predictable process i.e. that, for all t, X, is measurable 
w.r.t, the predictable a-field ~ ( ~ )  [2, p.8]. While X,(0) will not have in general left-continuous sample paths, 
it is also ~-predictable as long as B is a Borel set (since, for instance, {Xt(0) = 1} = {Xt(0) e B} e ~ ( ~ )  in 
view of the fact that Xt is predictable). 

Assumption A.I. The entrance and exit times ui(O), v/CO ), are piecewise differentiable functions of 0 ~ [ a, b] for 
all i ~ • w.p.1. 
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In queueing applications the entrance and exit times will typically be piecewise continuous, differentiable 
functions of 0, the discontinuities consisting of jumps. It is at these jump points that the derivatives u~(O), v'~(O) 
will fail to exist. 

Assumption A.2. With probability 1 the sample paths {Zs(0); 0 <~ s <~ t} satisfy the following Lipschitz condition 
in O: 

f o -  Z~(02)I ds ~ - [ , ~ s ( O 1 )  K(t ,B)  IO1 021 

with E[K( t ,B)]  < oo. 

Assumption A.3. Assume that 

[ ] E sup [v'i(O)12,,~o) < oo 
OE[a,b] i= 1 

and i u,(o) 1 2 1 '  E sup ui(O)12,,w ~ < ~ .  
I O~[a, bl i=1  

Finally, to simplify the exposition and the expressions obtained we will assume that P(vi(O) 
= t) = P(u~(O) = t) = 0 for all i. At the end of this section (Eq. (12)) we show how the expression for the 

derivative is modified if an entrance or exit time coincides with the end of the observation interval [0, t] with 
probability greater than zero. 

In view of (2) the reader can easily verify that the expected number of arrivals that finds the system in B is 

f'o f' f/' E )GdA, = E Zs2~ds = E 2sds. (3) 
0 i = 1  . iAt  

We can now state our main result. 

Theorem 1. Under the above assumptions f (O) ~ f  E St o x~(O) dAs is differentiable with derivative given by 

d v,(o) v,o) 
-~of(O) = E ~, 2v,~o)V',(O)- E ~ 2.,(o,U',(O). (4) 

i = 1  i = 1  

Proof. Write the right-hand side of (3) as ~i~ 1 gi(0), where 

I 
ViAt 

gi(O) = E[Av,^,  - A.,^t] = E 2~ds. (5) 
UiAI 

I~i At (Since 2~ is nonnegative and v~ ~> ui for all co and i, Av,^t - A.,^t = S.,^~2~ds ~> 0, and Fubini's theorem 
applies here.) 

Let M ~ N, define 2y = 2 s ^ M  for all 
{Oi, u(O)}i.g~, given by 

fM(O) = E f'o Xs(O)2~ ds 

and 

f U TM 9i, M(O) -=- E 2~ds. 
i A t  

s, and consider the sequences of functions {fM(O)}M~N and 

(6) 

(7) 
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To establish (4) we shall first show that 

(0 )  = gi.M(O) = E [ z v ,  vi lw i  <~ t ) - }~u, Ui l(u, <~ t)] f o r  a l l  M ,  (8 )  
i=1 i=0  

and then let M ---, ~ .  From A.1 and the definition of 2y we have the inequality 

fo + zs(O)l ds MK(t,B)I i. (9) 

Hence a straightforward application of the dominated convergence theorem allows us to differentiate the 
right-hand side of (6) inside the expectation to obtain 

dfM(O) = E [ d  f'o':(O'2~ds] ~=o E[,%v,I<o,~,,'M' --2,u',,,.<~,)]., , (10) 

Having established (8) we let M --* @, and show that l i m u . ~ ( d / d O ) f u ( O )  = (d/dO)l imM,o~fu(O) =f ' (0) .  
For this purpose it is sufficient to show (see [1, p. 204]) that 
(a) f~(O) = Y~i~= 1 9'i.M(O) converges uniformly for 0 • [a, b] as M ~ ~ to f ' (O) = ~,i~ 1 9'i(0), and 
(b) that there exists 0o • [a,b] for which fM(0o) --,f(Oo). 

To obtain the uniform convergence in (a) notice that 

9'i(0)- ~ 9'i.M(O) = i=~t E[v'il<~,~t)(2~, - ) ~ ) ] -  ~ E[u'/Io,,~,)(2,, , - 2# ) ] .  
i=1 i=1 i=1 

Applying the triangular inequality one sees that the right-hand side of the above equation is dominated by 

OE[a,b] i= ! Oe[a,bl i= 1 

which is finite because of A.3. An application of the monotone convergence theorem completes the proof of 
(a). (b) follows immediately (for any 0o • [a,b]) from a straightforward application of the monotone 
convergence theorem in (6). [] 

If the simplifying assumption P(vi = t) = P(ui = t) = 0 does not hold then the counterpart of (4) is 

' - ,  ' ' ' 

f (O) = E 2v,[vilt~,< , t~,:o(vi) ] - E )..,[uilt.,< o l~.,=t)(ui) ]. (12) 
i=1 i=1 

4. Application to sensitivity analysis of queues 

Consider a queueing system with arrival process {As; s >~ 0} and departure process {Ds(0); s >/0} which 
depends on a parameter 0 E [a,b].  The number of customers in the system at time t is given by 
Ns(O) = No + As - Ds(O). We consider the left-continuous version of {Ns(0); s ~> 0}. Let {~rt} be a filtration 
such that, for each t, ~ contains the history of the process a - {Ns(0); s ~< t}, and let 2t be the ~-s tochast ic  
intensity of the arrival process. Denote by J(O, t) the expected number of arrivals that find k or more 
customers in the system in [0, t] (k = 1, 2 . . . .  ). Without loss of generality, we assume that No < k w.p. 1. With 
the notation introduced in Section 3, B = {n • ~:  n >1 k}. ui(O) corresponds to the ith arrival that finds 
k customers in the system, and vi(O) to the ith departure that leaves k - 1 customers behind. In this system, 
entrances to B occur only at arrival epochs. Let T~, j = 1, 2 . . . . .  denote the epoch of the jth arrival and St(O) 
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thejth departure epoch. To simplify the notation we will often write Nsj(O) instead of Nsjw~(O). For each 0, the 
sets {vi(O); i e [~} and {S~(0); j ~ ~,  Nsj(O) = k} have the same elements since exits from B correspond to 
departure epochs which leave k - 1 customers behind (N~(O) is left-continuous). 

The following theorem adapts the results of Section 3 to this framework and provides a set of alternative 
assumptions that may be easier to check in queueing applications. 

Theorem 2. Suppose that the queuein# system described above satisfies Assumptions A. 1-A.3, or alternatively 
the following assumptions: 
B.1. Let Si(0), i = 1,2 . . . . .  denote the ith departure time. The derivative with respect to 0, S'i(0), exists w.p.1. 
8.2. E[SUpo~t~.bIZ°L (°) ISi(0)l]  < ~ .  

B.3. E [sup0~[~. b] E ~L c°) 2s,(o) lSi(O)1] < ~ .  
Then J (O, t) = E ~t o 1(~(o) >1 k) dA, is differentiable and 

d o, 
~-~ J(O,t) = E E 2s, lcNs,=k) Sti" 

i = 1  

Proof. The proof consists in showing that the assumptions of Theorem 2 imply those in Section 3. For each 
i define q~i(0) = inf{j: Y~=I I(NT~W)=k-1) = i} and 7~i(0) = inf{j: Y~=l l(Ns.(O)=k) = i}. Then ui(O) = T~,(o) and 
vi(O) = S~,co ~. Note that lim~,0~i(0 + 6 ) =  ~i(0) and lim~,o ~i(O + 6 )=  ~Pi(O) w.p.1. Since the arrival 
process does not depend on 0, ui(O)= 0. Similarly, as a result of B.1, v~(0)= S~,(o~(O). Hence, in this 
framework, B.1 implies A.1. 

The fact that the arrival process does not depend on 0 also allows us to write the following crude 
inequality: 

[lcN~(O,)>~k) - -  ltNdO2)>~k)Jds ~ E [S i (Ot )  - -  S i (02)]  
) i = 1  

Dt (0) 

~< Io, - 0el sup ~ Isi(o)l. 
06[a,b] i = 1  

In the second inequality above we have made use of the mean value theorem S~(01) - Si(02) = (0~ - 02)S~(0o) 
with 0o e (0t, 02). Hence B.2 implies A.2 with 

Dt (0) 

g( t ,k )  = sup ~ 15'i(0)1. 
O¢[a,b] i= 1 

Finally, 

Vt (0) Dt (0) Dt (0) 

i = 1  i = 1  i = l  

(since not all departures correspond to exits from B) and thus B.3 implies A.3. [] 

The following sections provide illustrations of the above ideas for single server queues with renewal and 
nonhomogeneous Poisson arrivals. 

5. Derivative estimators for customer-stationary probabilities in a GI/G/I queue 

Consider a GI/GI/1 queue with input process (~i, ai), i = 1, 2 . . . . .  where z1 is the interarrival time between 
the ith and (i + 1)th customers, and al is the workload brought by the ith customer to the system. We will 
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assume both {a~} and {zi} to the i.i.d., the former with distribution F(x, O) depending on a parameter 0, and 
the latter with distribution G, absolutely continuous with density g. 

Without loss of generality, suppose that the first customer arrives to an empty server at time t = 0. We will 
consider the number of customers in the system process N~(O), as 0 varies in an interval [a, b], such that 
sup0~t~,bl ~0 ~ X dF(x, 0) < Era (to ensure stability) and sup0~t~.bl So x dF(x, 0) < oo. To construct a family of 
sample paths parametrized by 0 on the same probability space let a(O + 6) = F-~(F(a, 0), 0 + 6). We will 
assume that tr'~ = dai/dO exists a.s. Then {a'~} is also an i.i.d, sequence. For details we refer the reader to [12]. 
Notice that {Nt(O); t >>, 0} determines {N,(r/); t >~ 0} for all r/E [a, b]. {Nt(O); t >~ 0} is defined to be left- 
continuous. We will denote by {As; s ~> 0} and {D~; s I> 0} the counting processes associated with arrivals and 
departures from the system. (These are both defined to be right continuous.) As before, {o~} is a filtration 
containing the history of the process a - {N,(0); s ~< t}. Also define for convenience three additional 
(left-continuous) processes related to Ns, namely {Z~; s ~> 0}, the time since the last arrival process, {2~; 
s ~> 0}, the ~,~t-stochastic intensity process corresponding to the arrivals, and finally { Y,; s ~> 0}, where 

° fl Yt = ~ o ' ; -  Ysl(~,=l)dD~, 
i = 0  

(13) 

Intuitively, if 6 is a small perturbation to 0, Ytfi is how much ahead (or behind) schedule the server would be 
as a result of this. 

Theorem 3. In the above framework suppose that 

[ °'(~'~ g(Zs'(~D 1 E sup a'i(O) 2 < oo and E sup ~ 1 --  a(Zs,~o))ISI(0)I < oo. 
0E[a,  b] 0e Ia ,  b] i = 1 

Let J(O, t) = (1/t)E [Sto ltN~ ~ k) dA~]. Then J(O, t) is differentiable on [a, b] and 

d j(0, t) !E[f'o;~sY~l,N:~)dD~ ]. 
d0 t 

(14) 

Proof. Here, as before, {ui} and {v~} are the sequences of upcrossings from level k - 1 to k and downcrossings 
from level k to k - 1, respectively. Clearly, B.1 is satisfied with S'i = Ys,, i = 1, 2 . . . . .  We next show that B.2 is 
satisfied. Indeed from the above remark, (13), and No = 0, IS'ih -< vA, [all and hence "-z Z.~I = 1 

o,0, ) 2  
sup ~ IS'i(O)l ~ sup lai(O)] . 

0 i = 1  \ i = 1  O 

Furthermore, since A, is a renewal counting process and {sup0 la~(0)} is an i.i.d, sequence, independent of At, 
E(~a,'= 1 sup0 la'gl) a ~< CE[supo(a'l)2]EA 2 for some numerical constant C > 0 (see [9, p. 22]). The observation 
that EA~ < oo for all r > 0 for any renewal process which has interarrival times greater than zero with 
positive probability and the fact that E sup0 a'~z(O) < ~ by assumption concludes this argument. B.3 is also 
satisfied by assumption. A straightforward application of Theorem 2 to J(0, t) = ( l / t)E~ l(Ns ~> g)dAs gives 

d J(O,t) 1 E l  ~ )~S,S'II(Ns,=k)]. 
dO t t_i~ 

l 
This, together with the fact that Ys, = S'i and E = So l(s =k)dD~, establishes (14). [] 

In the next theorem we extend the results to steady state customer averages. 
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Theorem 4. Let Pk be the customer stationary probability of k or more customers in the system. Then 

dO Pk EQ1 2sYsltNs=k)dDs ' 

where Q~ and R a are the number of  customers in the first busy cycle and its length, respectively. 

(15) 

Proof. It is enough to show that 

d lim J(O, t) }im d J(O,t), (16) 

the rest following from a standard regenerative argument. The validity of(16) is guaranteed from a standard 
theorem (e.g. see [1, p. 204]) provided that l im ,~J (Oo , t )  exists for some 0o ~ [a,b] and that d/dOJ(O,t) 
converges uniformly in [a, b] to some limit as t --* 0o. The first condition is obviously satisfied because of the 
regenerative nature of the system while the second is easily seen to hold using a modification of Lorden's 
inequality for renewal-reward processes [4]. [] 

Since Sg = Z~= ~ aj is the ith departure time in the first busy period, (15) can be written in a form suitable for 
regenerative simulation: 

PR= ~ E i=1 ~ l~N~,=k) l _ G ( Z s , )  j=l 

Let us note here once again that differentiating inside the expectation to get the right-hand side (14) would 
not have been possible had we not used the compensator identity (2). Thus the IPA estimate would be biased 
in that case. 

6. Nonhomogeneous Poisson arrivals 

We start with a sequence of service times and a deterministic, time varying intensity 2(s, 0) that depends on 
a parameter 0 ~ O. Assume that 2(s,0) is strictly positive on ff~+x O and that (O/O0)A(s,O) exists for all 
s ~ ~+. We construct a parametrized workload process Xs(O) by letting the nth arrival time T,(O) be 

T.(O) = A - l(e., 0), 

where {e.}.~ is a unit rate Poisson process. Then, since e. = A(T.(O), 0), differentiating with respect to 0 we 
obtain 

dT, D2A(Tn,O) D2A(Tn,O) 
dO DtA(T, ,O)  2(T., 0) ' 

where D1A (resp. D2A) is the derivative of A with respect to its first (resp. second) argument. In that case, 

d E ~t  l B( Xs) dA~ = E ~ 2v, v'i - E ~. 2uiul 
~l t l  J O {vie~0,tl} {uje~o, tl} 

+ ~ E[I~., ~< 0 [DzA(vi, O) - DzA(ul, 0)] + 1~.,<, ~< ~,)[D2A(t, 0) - D2A(ui, 0)]]. 
i = l  

(18) 
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7. Implementation considerations 

Notice that (17) can be used to estimate (d/dO)Pk while observing a single path of the system by simply 
keeping track of two quantities, namely the age of the busy period Yt and the age of the arrival process Z ,  
When 0 is a location (scale) parameter of F(x, 0), Ysi becomes the discrete (continuous) age of the busy period 
at the ith departure epoch, making the implementation of (17) very simple. 

Here of course we take advantage of the fact that the stochastic intensity is simply the hazard rate, and the 
only part of the history of the process necessary to determine 2, is the age of the arrival process at time t. For 
most models used in practice, one would be able to compute the stochastic intensity easily. This would be the 
case for instance for superpositions of renewal processes (in which case one would of course need to know the 
ages of all the arrival processes involved), for Markov renewal processes (in which case one would need to 
know the state of the underlying Markov chain and the time since the last arrival), for interrupted renewal 
processes (such as the output from an upstream server), etc. 

References 

[1] R.G. Bartle, The Elements of Real Analysis, Wiley, New York, 1976. 
[2] P. Br6maud, Point Processes and Queues, Springer, New York 1981. 
[3] P. Br6maud, "Maximal coupling and rare perturbation analysis", QUESTA 11,307-333, 1992. 
[4] P.H. Chen and M. Zazanis, "Steady state IPA estimates for regenerative systems", Technical Report, IEOR Dept., Univ. of 

Massachusetts, Amherst, 1993. 
[5] M.C. Fu and J.Q. Hu, "Smoothed perturbation analysis for general discrete-event systems", IEEE Trans. Automat. Control AC-37, 

1483-1500, 1992. 
[6] P. Glasserman, Gradient Estimation via Perturbation Analysis, Kluwer Academic Publisher, Cambridge, MA, 1990. 
[7] P. Glasserman and W.B. Gong, "Smoothed perturbation analysis for a class of discrete event systems", IEEE Trans. Automat. 

Control AC-35, 1218-1230, 1990. 
[8] W.B. Gong and Y.C. Ho, "Smoothed perturbation analysis for discrete event systems", IEEE Trans. Automat. Control AC-32(10) 

858-866, 1987. 
[9] A. Gut, "'Stopped Random Walks: Limit Theorems and Applications", Springer, New York, 1988. 

[10] P. Heidelberger, X.R. Cao, M.A. Zazanis and R. Suri, "Convergence properties of infinitesimal perturbation analysis", Manage- 
ment Sci. 34(11) 1281-1301, 1988. 

[11] M.A. Zazanis, "Compensators and sensitivity analysis of queueing systems", in: Proc. 26th Allerton Conf. on Communication, 
Control, and Computing, pp. 549 554, 1988. 

[12] M.A. Zazanis and R. Suri, "Perturbation analysis of the GI/GI/I queue", QUESTA 18, 199-248, 1994. 


