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We consider a stochastic process with an embedded point process in a stationary and
ergodic context+ Under a “lack of anticipation” assumption for the evolution of the
process vis-à-vis the point process, a new better~worse! than used expectation
property for the point process, and a monotonicity assumption for the behavior of
the process between points, inequalities between event and time averages are ob-
tained+Sample path monotonicity between points is not required~as is the case with
existing approaches! and can be replaced with a simple monotonicity requirement
for the expected value of the process between points+ Inequalities between condi-
tional event and time averages are also examined via a novel argument involving a
conditional version of the Palm inversion formula+

1. INTRODUCTION

The connection between event and time averages has received a great deal of
attention in the literature+ Wolff @27# established PASTA as a general property of
Poisson events for nonanticipating systems~i+e+, for systems whose present state
does not depend on future Poisson arrivals!+ Among the more recent papers that
have appeared on this subject we mention Melamed and Whitt@14,15# , Brémaud
@3,5# , Stidham and El Taha@24# , and Köning and Schmidt@12,13# + The converse
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problem to PASTA, namely the problem of whether and under what conditions
equality between event and time averages implies Poisson events, was also inves-
tigated in the above papers and is known as ANTIPASTA~see Miyazawa and
Wolff @17#; for a survey, see Brémaud, Kannurpatti, and Mazumdar@6# !+

An important problem, related to PASTA, is to identify sufficient conditions
under which event averages are larger~or smaller! than time averages+ Köning and
Schmidt@10,11# have provided an answer for stationary and ergodic G0G0c0m queue-
ing systems+ Additional results along the same lines, and further references, are
contained in Franken, Köning, Arndt, and Schmidt@9# and Brandt, Franken, and
Lisek @2# + The same problem was addressed in Niu@20# , following the martingale
approach in Wolff@27# +

The main contributions of this paper can be summarized+A new approach to the
Lack of Anticipation~LA ! property is presented+ Roughly speaking, we examine a
processXt with an embedded point processTn and causality is expressed as a prop-
erty of the Palm expectation of functions of the system conditional on the time of
occurrence of the next event+This more general definition becomes necessary since,
for non-Poisson streams, future events will not generally be independent of the his-
tory of Xt , regardless of whether the system is causal+

The analysis is carried out in the stationary and ergodic framework, which im-
plies that both event and time averages exist and they are equal to the time-stationary
and event-stationary~Palm! expectations, respectively+ The issue then becomes one
of comparison of these two expectations+ This is in contrast to most of the PASTA
literature where, typically, stationarity and ergodicity are not assumed+ In this more
general framework it is typically shown that, if the time average~over a finite ho-
rizon! converges to a number~or a random variable! as the time horizon goes to
infinity, the event average must also converge and the limit is the same number~or
random variable!, provided that the events form a Poisson stream and the Lack of
Anticipation property@27# ~or,more generally, the Lack of Bias property@14,15# ! is
satisfied+

Instead of requiring monotonicity of the sample paths between events, we sim-
ply require monotonicity of certain conditional expectations as functions of time, a
condition which is satisfied when the paths are stochastically monotonic between
events+ This significantly increases the range of applicability of our results+

No renewal assumptions for the point process are made+ It need only be station-
ary and ergodic and possess the new better~worse! than used expectation~NB~W!UE!
property~in contrast with@20# !+This extension is far from straightforward in view of
the difficulties involved in appropriately generalizing the LA assumption+

Inequalities between conditional event and time stationary expectations are given,
paralleling results on conditional PASTA~Rosenkrantz and Simha@21#; van Doorn
and Regterschot@26# !+ Besides their intrinsic interest, inequalities between condi-
tional time-stationary and event-stationary expectations sometimes comprise a nec-
essary intermediate step toward inequalities between unconditional expectations+
This is done via a conditional version of the Palm inversion formula, presented in the
Appendix+
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2. EVENT AND TIME AVERAGES

Suppose$Xt ; t [ R% is a real valued stochastic process withleft continuoussam-
ple paths~which will often be referred to as “the system”! and$Tn;n [ Z% a point
process~the “events”!+ Let $Ft ;2` , t , `% be the filtration generated by the
history of $Xt ; t [ R% and $Tn;n [ Z%+ These processes are assumed jointly sta-
tionary and ergodic under the probability measureP+ Throughout the paper we
denote byP0 the Palm transformation ofP with respect to the points of$Tn%, and
as usual, E0 denotes expectation with respect toP0+ ~Intuitively, P0 is the condi-
tional probability measure, given that we have a point at the origin; see, e+g+,
Franken et al+ @9# and Baccelli and Brémaud@1# +! We shall follow the standard
conventionP0~T0 5 0! 5 1, P~T0 # 0 , T1! 5 1+ Define the distribution function
for the interevent times byP0~T1 # x! 5 F 0~x! and assume that its expectation is
finite: E0T1 5 10l , `+ To simplify the exposition, assume also thatF 0~0! 5 0+
Finally, N is the counting measure associated with$Tn%, that is, for any Borel
subsetB of R, N~B! 5 (n[Z 1~Tn [ B!, andNC the restriction ofN on C for any
Borel setC ~thus, NC~B! 5 N~B ù C!!+

2.1. The Lack of Anticipation Property

Our first task is to extend the LA assumption to encompass non-Poisson streams of
events:WhenN is a Poisson counting measure, one can simply require that, for all
t, the history of the process$Xs;s# t% be independent of the restriction ofNon~t,`!,
N~t,`! ~i+e+, independent of future events!+When N is not a Poisson steam, however,
the history of the system$Xs;s# t% may depend on the future of the point process, not
necessarily because the system is noncausal and anticipates future events but be-
cause of the statistical dependence between N~t,`! and N~2`, t# on which$Xs;s # t%
depends.The following assumption~which is equivalent to that in@20# ! circum-
vents this problem+We will call it Strict Lack of Anticipation to distinguish it from
related assumptions that follow+

Assumption SLA (Strict Lack of Anticipation):For anyy $ 0, s $ 0, n [ N, any
bounded measurableh :Rn r R, and anyA [ F0,

E0 @h~Xt1, + + + ,Xtn!6A ù $T1 . s1 y%# 5 E0 @h~Xt1, + + + ,Xtn!6A ù $T1 . s%# , (1)

for all 0 # t1 # t2 # {{{ # tn # s+

The above assumption is unnecessarily strict for our purposes and will be re-
laxed+ In this paper we will use instead the following special case of SLA:

Assumption LA (Lack of Anticipation):For any positive, bounded, real functionh,

E0 @h~Xt !6T1 . t# 5 E0 @h~Xt !6T1 5 t# , for t . 0+ (2)

Remark 1: It is easy to see that~2! is equivalent to the condition

E0 @h~Xt !6T1 $ t# 5 E0 @h~Xt !6T1 5 t# , for t . 0, (3)

whethert is an atom ofF 0 or not+
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Remark 2:To see that SLA implies LA, notice that withA5 V, n51, ~1! becomes

E0 @h~Xt !6T1 . t 1 y# 5 E0 @h~Xt !6T1 . t# , for all y . 0, t .0, (4)

which is equivalent to

E0 @h~Xt !6 t # T1 # t 1 y# 5 E0 @h~Xt !6T1 . t 1 y#S12
P0~T1 5 t!

P0~t # T1 # t 1 y!D
1 E0 @h~Xt !6T1 5 t#

P0~T1 5 t!

P0~t # T1 # t 1 y!
+ (5)

Assuming thatt is not an atom ofF 0 ~i+e+, P0~T1 5 t! 5 0!, ~5! becomes

E0 @h~Xt !6 t # T1 # t 1 y# 5 E0 @h~Xt !6T1 . t 1 y#

which, asy r 0, reduces to~2! using a Dominated Convergence argument+

When t is an atom ofF 0, asy r 0, ~5! reduces to a tautology+ From SLA it
follows that, for t . 0, 0 # y # t,

E0 @h~Xt2y!6T1 . t 2 y# 5 E0 @h~Xt2y!6T1 . t# + (6)

Assume without loss of generalityh to be continuous+ SinceX has left-continuous
paths a+s+ andh is bounded,

lim
yf0

E0 @h~Xt2y!6T1 . t 2 y# 5

lim
yf0

E0 @h~Xt2y!1~T1 . t 2 y!#

lim
yf0

E0 @1~T1 . t 2 y!#
5 E0 @h~Xt !6T1 $ t#

from the bounded convergence theorem+As a consequence, ~6! implies~3!,which is
equivalent to LA+

2.2. Stochastic Ordering and Monotonicity Assumptions

Consider now a real, measurable functionh, such thatE @h~X0!# # `+ We will re-
strict our attention to systems that satisfy the LA assumption and we will introduce
stochastic ordering and monotonicity assumptions under which the event average
E0@h~X0!# and the time averageE @h~X0!# satisfy the inequalityE0@h~X0!# #~$!
E @h~X0!# +

Assumption NBUE (NWUE):The point process$Tn% has the NBUE~NWUE! prop-
erty, that is, P0~T1 . x! $ P~T1 . x!, ~P0~T1 . x! # P~T1 . x!! for all x . 0+

Remark 3:Let F e~x! 5 l *0
x@1 2 F 0~s!# ds+ The NBUE ~NWUE! assumption is

equivalent toF e #st~$st! F+

Finally a monotonicity assumption is needed that involves both the system~Xt !
and the functionh+ Let supp~F 0! denote the support ofF 0:
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Assumption MD (MI) (Monotonicity):UnderP0 ~i+e+, conditional onT0 5 0!,

c~t! 5 E0 @h~Xt !6T1 . t#

is a decreasing~MD! ~increasing~MI !! function of t on supp~F 0!+

Sufficient conditions that imply assumption MD~MI ! are~in order of increas-
ing generality!:

i+ $Xt % has paths that are monotone decreasing~increasing! P0-a+s+ onT0 # t ,
T1 andh is a monotone increasing function+

ii + $Xt % is stochastically monotone decreasing~increasing! onT0 # t , T1 and
h is a monotone increasing function+

iii + h~Xt ! is stochastically monotone decreasing~increasing! on T0 # t , T1+

We point out, however, that in some cases, the stochastic monotonicity of the pro-
cessXt between events may be hard to establish or may not be true, and nonetheless
assumption MD~MI ! may be valid+ Such an example will be provided later+

2.3. Inequalities Between Event and Time Averages

Theorem 1: Let Xt be a process with an embedded point process Tn satisfying
assumptions LA and NBUE~NWUE!, and let h be a real, measurable function, for
which Eh~X0! , ` and assumption MD holds+ Then

E0h~X0! #~$! Eh~X0!+ (7)

If Eh~X0! , ` and assumption MI holds, then

E0h~X0! $~#! Eh~X0!+ (8)

Proof: By stationarity,

E0h~X0! 5 E0h~XT1
! 5E

0

`

E0 @h~Xs!6T1 5 s# dF0~s!+ (9)

The above equation together with LA, our NBUE ~NWUE! and MD assumptions
give

E0h~X0! #~$! E
0

`

E0 @h~Xs!6T1 . s#l@12 F 0~s!# ds+ (10)

From the above it follows that

E0h~X0! #~$! lE
0

`

E0 @h~Xs!6T1 . s#P0~T1 . s! ds

5 lE
0

`

E0 @h~Xs!1~T1 . s!# ds

5 lE0E
0

T1

h~Xs! ds

5 Eh~X0!, (11)
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where, in the last two equations we have used Fubini’s theorem and the Palm inver-
sion formula, respectively@1# + n

Assumption MD~MI ! was stated in its most general form+ In the following
corollaries special cases of systems satisfying MD~MI ! are given+

Let CI denote the set of increasing functionsI :r R+ Let $ FX~t!%, t [ supp~F 0!
be a collection of random variables with distributionP~ FX~t! [ B!5E0~Xt [ B6T15
t!+ Suppose that FX~t! is a family of stochastically decreasing r+v+’s ~in the usual
stochastic order!+ Then, for any real functionh,

h [ CR implies Eh~ FX~t!!

is a decreasing function oft+ ~Similar remarks obviously hold for stochastically
decreasing in the convex or concave and stochastically increasing in the usual, con-
vex, or concave stochastic orders@22,23,25# +!

Remark 4:Together with the LA assumption, this implies that

E0 @h~Xu!6T1 . t# $ E0 @h~Xs!6T1 . t# ∀0 , u # s# t+

This condition is obviously satisfied when the sample paths ofXt are decreasing in
@Tn,Tn11! for all n [ Z a+s+ Our assumption is, however, much weaker, and this
allows one to apply the above results to a considerably larger number of systems+

The main point to notice is that we do not require the sample paths of the sto-
chastic processXt to be decreasing as in Niu@20# +We simply require the stochastic
monotonicity ofXt for t [ @Tn,Tn11!+ Also, the event sequence need not be renewal+

Corollary 1: Consider a system satisfying NBUE~NWUE! and LA which, fur-
thermore, has sample paths decreasing~increasing! w+p+1 between events, that is,
under P0, Xs $ Xt P0-a+s+ , for T0 5 0 # s# t # T1+ Then~7! holds for any monotone
increasing h+

Proof: Obviously the monotonicity of the sample paths between events implies
that MD ~MI ! assumption holds; therefore, Theorem 1 applies+ n

Remark 5:The above result~Corollary 1! applied to the workload process of GI0
G0c0m queues first appeared in@10# + ~For further details we refer the reader to
Franken et al+ @9#+! Niu @20# obtained a result similar to Corollary 1, though his lack
of anticipation assumption is more restrictive than the one presented here+

Corollary 2: Suppose that a system satisfies NBUE~NWUE! and LA and has sam-
ple paths that are stochastically decreasing~increasing! between events in the usual
stochastic order, that is, under P0, for any nondecreasing h, E0@h~Xt !6T1 . t# is a
decreasing~increasing! function+ Then~7! holds+

Remark 6:This significantly generalizes the results in@20# , since we only require
stochastic monotonicity+
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3. EXAMPLES AND APPLICATIONS

In the following examples we consider systems which, between events, have sto-
chastic monotonicity properties~either in the usual stochastic ordering or in the
increasing convex ordering! while the sample paths themselves are not monotonic+

3.1. Age Process for the Superposition of Two Independent
Point Processes

As before, let $Tn
i ;n [ Z%, i 5 0,1, be the arrival epochs of two point processes,

assumed jointly stationary and ergodic under the probability measureP+We further
assume that underP the two point processes are independent+ LetPi denote the Palm
probability measure with respect to the point process$Tn

i %, andEi the corresponding
expectation+ It is not hard to see that the two point processes are also independent
underPi @1# +We define the distributionsFi ~x! 5 Pi ~T1

i # x!, i 5 0,1, and

Fi
e~x! 5

def
P~T1

i # x! 5

E
0

x

OFi ~u! du

E
0

`

OFi ~u! du

,

with OFi 512 Fi + Denote the superposition of the two processes by$Rn%, and define
the processXt with left continuoussample paths by means of

Xt 5 (
n52`

`

1~Rn , t # Rn11!~t 2 Rn!+

Xt is of course the “age process” associated with$Rn%+ As a consequence of the
independence of the two point processes underP0, it is not hard to see that

P0~Xt . x6T1
0 5 t! 5 P0~Xt . x6T1

0 . t! 5 OF1
e~x!1~x # t!+

This, in turn, implies, via a standard approximation argument, that

E0 @h~Xt !6T1
0 5 t# 5 E0 @h~Xt !6T1

0 . t#

5E
0

t

h~x! dF1
e~x! 1 h~t! OF1

e~t!+ (12)

The first equation in~12! shows that the LA assumption is satisfied+ If , in addition,
h is increasing, then the RHS of~12! is increasing int; hence,MI is satisfied+ Thus,
from Theorem 1 it follows that if$Tn

0% satisfies the NBUE~NWUE! condition, then

E0 @h~X0!# $~#! E @h~X0!# +

3.2. The Workload Process in a GI 1 G/GI/1 Queue

Consider a single server queue with an arrival process consisting of the superposi-
tion of two stationary and ergodic arrival processes, S 5 $Sn;n [ Z% and T 5
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$Tn;n [ Z%+ The two arrival processes are independent+ The service process is
i+i+d+ with ~possibly! different distributions for the two arrival streams+ Assume
the “T” component of the arrival process to be renewal with NBUE~NWUE!
interarrival distribution+ We can use Theorem 1 to show that the expected work-
load as seen by the renewal stream of arrivals “T” is smaller~larger! than the time
average+ We state this formally as

Theorem 2: Let Xt denote the workload process~defined to beleft-continuous! and
E0 denote the expectation with respect to the Palm measure corresponding to the
renewal arrival point process T+ If the arrival process T satisfies the NBUE assump-
tion then

E0X0 # EX0,

with the inequality reversed in the NWUE case+

Proof: While our theorem concerns the total workload in the system, it will be
useful to distinguish between the workload due to theSarrival stream and that due
to the renewal streamT+ In fact we will assume thatScustomers havepreemptive
priority overT customers+With the above assumption, let Xt

Sbe the workload due to
Scustomers andXt

T that due toT customers+ ClearlyXt
SandXt

T are not independent+
Under the assumption thatScustomers have preemptive priority overT customers,
however, the workload processXt

S is independent of the arrival process$Tn%+
Let P0 denote the Palm measure with respect to the point processT+ It is easy to

see intuitively that the statistics ofXt
S underP0 and underP should be the same

because of the fact that$Xt
S; t [ R% and$Tn;n [ Z% are independent+ This is, in fact,

the case provided that the distribution functionP0~T1 2 T0 # x! is spread out+ A
rigorous proof of this can be obtained using the Choquet-Dény theorem~Zazanis
@28# !+

We now show thatE0@Xt 6T15 t# is a monotone decreasing function oft+ Indeed,
due to the independence ofXt

Sand$Tn%,E0 @Xt
S6T15 t#5EX0

S+On the other hand,Xt
T

is a decreasing function oft on $T1 . t% P0-a+s+ Bearing in mind thatXt 5 Xt
S1 Xt

T,
we see thatE0@Xt 6T1 5 t# is a decreasing function oft; hence the monotonicity
assumption MD is satisfied+

Finally, to show that the LA assumption is satisfied, notice that for 05 T0 #

t # T1, Xt
T 5 X0

T 2 *0
t 1~Xu

S 5 0, Xu
T . 0! du+ X0

T, in turn, is independent of
$Tn;n $ 1%+ Thus, bearing in mind thatXt

T is left-continuous, E0 @Xt
T6T1 5 t# 5

E0 @Xt
T6T1 . t# + Turning our attention now to the part of the workload due toS,

we see thatE0 @Xt
S6T1 5 t# 5 E0 @Xt

S6T1 . t# 5 EX0
S because of the independence

of XS andT+ Hence, E0 @Xt
S 1 Xt

T6T1 5 t# 5 E0 @Xt
S 1 Xt

T6T1 . t# + n

3.3. The Number of Customers in a (GI 1 G)B/M/1 Queue

Consider a single server queue with two independent stationary and ergodic streams
of arrivals+ Each arrival corresponds to a batch of customers requiring independent,
exponentially distributed services times with rateµ, the same for both streams+As in
the previous example, let $Tn% denote the arrival epochs of batches from the first
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stream,which we will assume to be renewal with NBUE~NWUE! interarrival times,
and let$Sn% denote those of the second stream+ Under the above assumptions, the
statistics of the number of customers in the system will not change if we suppose that
customers from streamShave preemptive priority over those of streamT+ Letting
Nt

T~Nt
S! be the number of customers from streamT~S!, Nt 5 Nt

T 1 Nt
S be the total

number of customers, and arguing as in Section 3+2, we can show thatE0N0 # EN0

~with the inequality reversed in the NWUE case!+

4. INEQUALITIES BETWEEN CONDITIONAL EVENT AND TIME AVERAGES

Here we will broaden the above framework by adjoining to the original process, Xt ,
a “mark” or “environment” processYt + The combined process~Xt ,Yt ! together with
the point processTn are assumed jointly stationary and ergodic+This framework does
not differ mathematically from that of Section 2+ Rather, it simply represents a shift
of emphasis which, as we shall see, can be quite fruitful in applications+

For instance, suppose that with each one of the “events”Tn,we associate a mark
Kn taking values in a mark space~K ,K!+While K could be in general any complete
separable metric space andK its Borel sets, in the examples we will present it is
typically a countable set or a subset ofRn+ Define the right-continuous process
$Yt ; t [ R% by means ofYt 5(n[Z Kn 1~Tn # t , Tn11!+ Let $Ft ;2`, t ,`% be the
filtration generated by the internal history of$Xt ; t [ R% and $~Tn,Kn!; n [ Z%+
Suppose that these processes are jointly stationary and ergodic under the probability
measureP+

A simple example would be that of a Markov Renewal Process~Tn,Kn! driving
a stochastic system+Here the environment process is the processYt 5 Kn onTn # t ,
Tn11+ Another example often occurring in applications is that of a doubly stochastic
Poisson process+Here, the environment process would be the right-continuous mod-
ification of the predictable version of theFt -predictable processYt with nonnegative
sample paths+We will assume thatYt # a w+p+1 for some positive constanta, but we
will not require thatP~Yt 5 0! 5 0+

Markov-Modulated Poisson Processes are, of course, the simplest such exam-
ple+ In this framework, the relationship between conditional event and time averages
was investigated@21,26# , and a conditional PASTA result was obtained under
Wolff ’s LAA assumption+

We next present conditional versions of the Lack of Anticipation, NBUE
~NWUE!, and Monotonicity assumptions of the previous section+

Assumption CLA (Conditional Lack of Anticipation):For any positive, bounded,
real functionh,

E0 @h~Xs!6Y0 5 k,T1 . s# 5 E0 @h~Xs!6Y0 5 k,T1 5 s# , for all k [ K + (13)

Assumption C-NBUE (C-NWUE) [Conditional NBUE (NWUE)]:The point process
$Tn% has the conditional NBUE~NWUE! property; that is,

P0~T1 . x6Y0 5 k! $ P~T1 . x6Y0 5 k!, (14)

~P0~T1 . x6Y0 5 k! # P~T1 . x6Y0 5 k!!, for all x . 0 and allk [ K +
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Let supp~F 0! denote the support ofF 0+ Our last assumption involves both the
system~i+e+, Xt ! and the functionh+

Assumption CMD (CMI) (Conditional Monotonicity):UnderP0 ~i+e+, conditional
on T0 5 0!,

c~s,k! 5 E0 @h~Xs!6Y0 5 k,T1 . s# (15)

is a decreasing~CMD! ~increasing~CMI !! function ofson supp~F 0! for all k [ K +

Theorem 3: Let Xt be a process with an embedded point process Tn satisfying
assumptions CLA and C-NBUE ~C-NWUE!, and let h be a real, measurable func-
tion which satisfies Eh~X0! , ` and CMD+ Then

E0 @h~X0!6Y02 5 k# #~$! E @h~X0!6Y0 5 k# + (16)

If Eh~X0! , ` and CMI assumption holds, then

E0 @h~X0!6Y02 5 k# $~#! E @h~X0!6Y0 5 k# + (17)

Proof: Let F 0~s6k! 5 P0~T1 # s6Y0 5 k!+ By stationarity, and the fact thatXt is
left-continuous andYt is right-continuous and constant on the interval@0,T1!,

E0 @h~X0!6Y02 5 k# 5 E0 @h~XT1
!6YT12

5 k# 5 E0 @h~XT1
!6Y0 5 k#

5E
0

`

E0 @h~Xs!6Y0 5 k,T1 5 s# dF0~s6k!+ (18)

From ~18!, and CLA, C-NBUE ~C-NWUE!, and CMD assumptions, we obtain

E
0

`

E0 @h~Xs!6Y0 5 k,T1 5 s# dF0~s6k!

#~$! E
0

`

E0 @h~Xs!6Y0 5 k,T1 . s#
P0~T1 . s6Y0 5 k!

E0 @T16Y0 5 k#
ds+ (19)

Hence, from ~18!, ~19!, and~13!, it follows that

E0 @h~X0!6Y02 5 k# #~$!
1

E0 @T16Y0 5 k#
E

0

`

E0 @h~Xs!1~T1 . s!6Y0 5 k# ds

5
1

E0 @T16Y0 5 k#
E0FE

0

T1

h~Xs! ds6Y0 5 kG
5 E @h~X0!6Y0 5 k# , (20)

where the last two equalities follow from Fubini’s theorem and the conditional ver-
sion of the Palm inversion formula, respectively~see Lemma 1 of the Appendix!+

n
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We illustrate the necessity for conditioning by means of the following example:

Example (The MR/G/c/m queue):Suppose that$~Tn,Kn!; n [ Z% is a stationary
Markov Renewal Process under the probability measureP,with Kn [ K ,whereK is
a countable set+This stream constitutes the input to a queueing system withc servers
and waiting buffer of sizem+ The service requirements of the customers constitute a
stationary and ergodic stream of nonnegative random variables, independent of the
arrival stream+ If upon arrival all buffer spaces are full, the customer leaves never to
return+ It is known ~e+g+, see@1# ! that this system always possesses a stationary
regime~though not necessarily unique!+ Denote byP0 the Palm transformation of
the probability measureP with respect to the point process$Tn%+ Let Xt be the work-
load at timet+ Clearly, Xs $ Xt w+p+1 on Tn , s # t # Tn11+ Obviously, the CLA
assumption is satisfied+ The LA assumption, however, is not+ Indeed, unlike the
system considered in Theorem 2, here it is not necessarily true thatE0@h~Xt !6T1 .
t# 5 E0@h~Xt !6T1 5 t#: knowing thatT1 5 t affects the conditional statistics of the
arrival process beforeT050, in particular the length of the interarrival timeT02T21

on which T0, and thereforeXt , obviously depends+ On the other hand, the CLA
assumption is satisfied:

E0 @h~Xt !6Y0 5 k,T1 . t# 5 E0 @h~Xt !6Y0 5 k,T1 5 t# +

Since$Tn% is a Markov Renewal Process, conditional onY0, the statistics of the
arrival process beforeT0 does not depend onT1; that is,

P0~Ti [ Bi ; i 5 21, + + + ,2n6Y0 5 k,T1 . t!

5 P0~Ti [ Bi ; i 5 21, + + + ,2n6Y0 5 k,T1 5 t!+

Also, sinceXt is nonincreasing fort [ @T0,T1!, for s . 0,

E0 @h~Xt !6Y0 5 k,T1 . t# $ E0 @h~Xt1s!6Y0 5 k,T1 . t 1 s# ,

for any nondecreasing functionh+

5. FROM CONDITIONAL TO UNCONDITIONAL INEQUALITIES

5.1. General Remarks

Equation~20! can be written as

E0 @h~XT1
!6Y0#E0 @T16Y0# #~$! E0FE

0

T1

h~Xs! ds6Y0G + (21)

Taking expectations with respect toY0, dividing both sides withE0@T1# , and using
again the Palm inversion formula we have

E0 @E0 @h~XT1
!6Y0#E0 @T16Y0##

E0 @T1#
#~$! Eh~X0!+ (22)
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Thus, we have the following:

Theorem 4: Suppose that the assumptions of the previous theorem are satisfied
and, in addition,F0~Y0! 5

def
E0 @h~XT1

!6Y0# , L0~Y0! 5
def

E0@T16Y0# , are positively cor-
related; that is, Cov~F0~Y0!,L0~Y0!! $ 0+ Then,

E0 @h~X0!# # E @h~X0!# +

The same result holds with the inequality reversed in the NWUE case, when the
covarianceCov~F0~Y0!,L0~Y0!!, is negative+

Proof: It follows immediately from~21! and~22!+ n

5.2. Countable Mark Space

Suppose thatK is countable and let

f0~k! 5
def

E0 @h~X0!6Y02 5 k# and f~k! 5
def

E @h~X0!6Y0 5 k# +

We will also denote byp0~k! the Palm probabilityP0~Y02 5 k! and byp~k! the
time-stationary probabilityP~Y0 5 k!+ In this section we will examine sufficient
conditions under which

E0 @h~X0!# 5 (
k[K

f0~k!p0~k! #~$! (
k[K

f~k!p~k! 5 E @h~X0!# + (23)

Using the Palm inversion formula we can obtain the following expression for
the likelihood ratio between the Palm and time-stationary probabilities forY:

L~k! 5
def P~Y0 5 k!

P0~Y02 5 k!
5

E0 @T11~Y02 5 k!#

E0 @T1#P0~Y02 5 k!

5
E0 @T16Y02 5 k#

E0 @T1#
+ (24)

We will assume without loss of generality thatp~k!0p0~k! is increasing ini+ ~If
this is not the case we can always relabel the elements ofK+! Hence, p0 #LR p+

Theorem 5: Suppose thatf0~k! is increasing~decreasing! in k+ If the results of
Section4 apply, then

E0h~X0! #~$! Eh~X0!+

Proof: Under the assumptions of Section 4 we have seen that

f0~k! #~$! f~k!+ (25)
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Hence,

Eh~X0! 5 (
k[K

f~k!p~k! $~#! (
k[K

f0~k!
p~k!

p0~k!
p0~k!

$~#! (
k[K

f0~k!p0~k! (
k[K

p~k! 5 E0h~X0!, (26)

where the last inequality following from the fact thatf0~k! is increasing and
p0 #LR p+ Similar arguments can be used iff~k! is increasing~resp+ decreasing!
in k+ n

6. EXTENSIONS

A distributionF 0 is a-MRLA ~a-MRLB! iff

OF 0~x! #~$!
1

a
E

x

`

OF 0~ y! dy for all x $ 0+ (27)

When a 5 *0
` OF 0~ y! dy the above definition reduces to the NBUE~NWUE!

property+

Assumption C-MRLA (C-MRLB) [Conditional MRLA (MRLB)]:The point process
$Tn% has the conditional a-MRLA~a-MRLB! property; that is,

P0~T1 . x6Y0 5 y! $
1

a
P~T1 . x6Y0 5 y!, (28)

~P0~T1 . x6Y0 5 y! # 10a P~T1 . x6Y0!! for all x . 0 and ally [ K +

Theorem 6: Suppose that the system satisfies assumptions CLA,CMD,and C-MRLA
~C-MRLB! for some constant a+ Then

E0h~X0! #~$!
1

la
Eh~X0!, (29)

wherel 5 10~E0@T1# ! is the rate of the point process$Tn%+

Proof: From ~18! and~28! we have

E0 @h~X0!6Y0# 5E
0

`

E0 @h~Xs!6Y0,T1 5 s# dF0~s6Y0!

5E
0

`

E0 @h~Xs!6Y0,T1 . s# dF0~s6Y0!

#~$!
1

a
E

0

`

E0 @h~Xs!6Y0,T1 . s#P0~T1 . s6Y0! ds

5
1

a
E

0

`

E0 @h~Xs!1~T1 . s!6Y0# ds

5
1

a
E0FE

0

T1

h~Xs! ds6Y0G ,
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where the second equality above follows from the CLA assumption+ Taking expec-
tation w+r+t+ Y0 above we obtain

E0 @h~X0!# #~$!
1

a
E0FE

0

T1

h~Xs! dsG + (30)

Invoking once more the Palm inversion formula we can write the expectation in the
RHS of~30! as~10l!Eh~X0! which establishes~29!+ n

Example (The MR/G/c/̀Queue): Suppose that the arrival process is Markov Re-
newal with conditional interarrival distribution satisfying the MRLA~MRLB! 2~10l!
property@9, p+ 148# + Then Theorem 4 can be applied to the workload process+
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APPENDIX

Here we provide the proof of the conditional version of the Palm inversion formula which was
used in Section 4+The process$Yt % is assumed to take values in a measurable space~K ,K! and
is right-continuous and constant on each interval@Tn,Tn11!+ ~K is not assumed to be countable
here+!

Lemma 1 (Conditional Palm inversion formula): Suppose we are given a real, mea-
surable function, h, such that E@h~X0!# #`+ Then the conditional expectation E@h~X0!6Y0#
is given by the expression

E @h~X0!6Y0# 5
1

E0 @T16Y0#
E0FE

0

T1

h~Xs! ds6Y0G + (31)

Proof: It is enough to show that for anyB [ K

E @1~Y0 [ B!h~X0!# 5 E @1~Y0 [ B!H~Y0!# , (32)

whereH~Y0! is the expression on the RHS of~31!+ Apply the Palm inversion formula on the
RHS of~32!, keeping in mind thatT0 5 0 P0-a+s+ to obtain

E @1~Y0 [ B!H~Y0!# 5
1

E0 @T1#
E0FE

0

T1

1~Ys [ B!H~Ys! dsG
5

1

E0 @T1#
E0 @T11~Y0 [ B!H~Y0!#

5
1

E0 @T1#
E0 @1~Y0 [ B!H~Y0!E0 @T16Y0## + (33)

In the second equation above we have taken into account the fact that, for 05 T0 # s, T1, Ys

remains constant and equal toY0, and, similarly, H~Ys! remains equal toH~Y0!+ From the
definition of H~Y0!, H~Y0!E0@T06Y0# , the last term of~33! can be written as
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1

E0 @T1#
E0F1~Y0 [ B!E0FE

0

T1

h~Xs! ds6Y0GG 5
1

E0 @T1#
E0F1~Y0 [ B!E

0

T1

h~Xs! dsG
5

1

E0 @T1#
E0FE

0

T1

h~Xs!1~Ys [ B! dsG
5 E @1~Y0 [ B!h~X0!# + (34)

In the second equation we have again used the fact thatYs is a piecewise constant process,
changing only at the point of$Tn%,whereas the last equation is, once more, the Palm inversion
formula+

This last series of equalities establishes~32! and completes the proof of the lemma+ ~If K
is a countable set, a simpler proof of the theorem is possible+ This simplifying assumption
would, however, be too restrictive for our purposes+! n
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