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We consider a stochastic process with an embedded point process in a stationary and
ergodic contextUnder a “lack of anticipation” assumption for the evolution of the
process vis-a-vis the point processnew betterfworse than used expectation
property for the point procesand a monotonicity assumption for the behavior of

the process between poinisequalities between event and time averages are ob-
tained Sample path monotonicity between points is not requiasds the case with
existing approachesnd can be replaced with a simple monotonicity requirement
for the expected value of the process between poinegjualities between condi-
tional event and time averages are also examined via a novel argument involving a
conditional version of the Palm inversion formula

1. INTRODUCTION

The connection between event and time averages has received a great deal of
attention in the literatureNolff [27] established PASTA as a general property of
Poisson events for nonanticipating systefing, for systems whose present state
does not depend on future Poisson arrivafénong the more recent papers that
have appeared on this subject we mention Melamed and \\Hitt5], Brémaud

[3,5], Stidham and EI Tahf24], and Koning and Schmidtl2,13]. The converse
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problem to PASTA namely the problem of whether and under what conditions
equality between event and time averages implies Poisson ewagslso inves-
tigated in the above papers and is known as ANTIPAS$8e Miyazawa and
Wolff [17]; for a surveysee BrémaudKannurpattj and Mazumdaf6]).

An important problemrelated to PASTAIs to identify sufficient conditions
under which event averages are largmrsmallej than time average&oning and
Schmid{10,11] have provided an answer for stationary and ergodiG(&/m queue-
ing systemsAdditional results along the same lineand further referencesire
contained in FrankerKoning, Arndt, and Schmid{9] and Brandt Franken and
Lisek[2]. The same problem was addressed in NiQ], following the martingale
approach in Wolf{27].

The main contributions of this paper can be summarigectw approach to the
Lack of Anticipation(LA) property is presentedRoughly speakingwe examine a
processX; with an embedded point procefsand causality is expressed as a prop-
erty of the Palm expectation of functions of the system conditional on the time of
occurrence of the next evefithis more general definition becomes necessary since
for non-Poisson streamfaiture events will not generally be independent of the his-
tory of X, regardless of whether the system is causal

The analysis is carried out in the stationary and ergodic framewdrich im-
plies that both event and time averages exist and they are equal to the time-stationary
and event-stationaryPalm expectationsrespectivelyThe issue then becomes one
of comparison of these two expectatiof$is is in contrast to most of the PASTA
literature whergtypically, stationarity and ergodicity are not assumiecthis more
general framework it is typically shown thdt the time averagéover a finite ho-
rizon) converges to a numbéor a random variableas the time horizon goes to
infinity, the event average must also converge and the limit is the same n@wnber
random variablg provided that the events form a Poisson stream and the Lack of
Anticipation property 27] (or, more generallythe Lack of Bias property14,15]) is
satisfied

Instead of requiring monotonicity of the sample paths between gwgatsim-
ply require monotonicity of certain conditional expectations as functions of ime
condition which is satisfied when the paths are stochastically monotonic between
events This significantly increases the range of applicability of our results

No renewal assumptions for the point process are imadeed only be station-
ary and ergodic and possess the new bétterse than used expectatigiNB (W)UE)
property(in contrast witH 20]). This extension is far from straightforward in view of
the difficulties involved in appropriately generalizing the LA assumption

Inequalities between conditional event and time stationary expectations arg given
paralleling results on conditional PASTRosenkrantz and Simha1]; van Doorn
and Regterschd®6]). Besides their intrinsic intereshequalities between condi-
tional time-stationary and event-stationary expectations sometimes comprise a nec-
essary intermediate step toward inequalities between unconditional expectations
This is done via a conditional version of the Palm inversion forppuiesented in the
Appendix
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2. EVENT AND TIME AVERAGES

Suppos€g X;;t € R} is a real valued stochastic process wift continuoussam-
ple paths(which will often be referred to as “the systepand{T,;n € Z} a point
process(the “events). Let {F;—o0 < t < oo} be the filtration generated by the
history of {X;;t € R} and{T,;n € Z}. These processes are assumed jointly sta-
tionary and ergodic under the probability meas@&reThroughout the paper we
denote byP° the Palm transformation d? with respect to the points dfT,,}, and
as usualE° denotes expectation with respectR8 (Intuitively, P° is the condi-
tional probability measutegiven that we have a point at the origisee e.g.,
Franken et al[9] and Baccelli and BrémauldL].) We shall follow the standard
conventionP%(T, = 0) =1, P(T, = 0 < T;) = 1. Define the distribution function
for the interevent times bp°(T, = x) = F%(x) and assume that its expectation is
finite: E°T, = 1/A < co. To simplify the expositionassume also th@°(0) = 0.
Finally, N is the counting measure associated w{ifly}, that is for any Borel
subsetB of R, N(B) = >,z 1(T, € B), andNc the restriction ofN on C for any
Borel setC (thus Nc(B) = N(B N C)).

2.1. The Lack of Anticipation Property

Ouir first task is to extend the LA assumption to encompass non-Poisson streams of
events WhenN is a Poisson counting measuome can simply require thaor all

t, the history of the proced4¥X; s=t} be independent of the restrictionbn (t,c0),

N (i.€., independent of future event&Vhen N is not a Poisson steam, however,

the history of the systefXs; s=< t} may depend on the future of the point process, not
necessarily because the system is noncausal and anticipates future events but be-
cause of the statistical dependence betwegn,nd N_,, ; on which{Xs;s =t}
dependsThe following assumptioriwhich is equivalent to that if20]) circum-

vents this problemWe will call it Strict Lack of Anticipation to distinguish it from
related assumptions that follow

Assumption SLA (Strict Lack of Anticipationfor anyy =0, s= 0, n € N, any
bounded measurable R" — R, and anyA € F,

EO[h(th,...,th)|Aﬂ {T1> S—l—y}] = EO[h(th"”,thNAm {Tl = S}]’ (1)
forall0=t;=t,= ... =t,=s

The above assumption is unnecessarily strict for our purposes and will be re-
laxed In this paper we will use instead the following special case of SLA

Assumption L A (Lack of Anticipation)}or any positiveboundedreal functionh,

E°[h(X)|T, >t]=E°[h(X,)|T,=1], fort>0. 2
Remark 1:1t is easy to see thd®) is equivalent to the condition
E°[h(Xy)|Ty = t] = E°[h(X)|T, =1], fort>0, 3

whethert is an atom of ° or not
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Remark 2: To see that SLA implies LAnotice that withA = Q, n=1, (1) becomes

E°[h(X)|T, > t+y]=E°[h(X)|T,>1t], forally>0,t>0, (4)

which is equivalent to

PO(let)
E°[h(Xt)|tsTlst+y]= E°[h(xt)|T1>t+y] 1- PO(t=T =t+y)
FESTh(XT = ] o B = (5)
VTPt =T, =t +y)

Assuming that is not an atom of ° (i.e., P°(T, = t) = 0), (5) becomes
E°[h(X)[t=Ty=t+y]=E°[h(X)ITa > t+Y]
which, asy — 0, reduces td2) using a Dominated Convergence argument

Whent is an atom ofF®, asy — 0, (5) reduces to a tautolog§¥rom SLA it
follows that fort > 0,0=y=t,

E°[h(X-y) [T > t = y] = E°[h(X—) [Ty > t]. (6)

Assume without loss of generalityto be continuousSinceX has left-continuous
paths &s. andhis bounded

lim E°[h(X,-,) 1T, > t = y)]
0
lim E°Th(X,) [Ty > t = y] = a
yL0

MBS >ty © O0Mm=t
ylo

from the bounded convergence theoré&®a consequenc) implies(3), which is
equivalent to LA

2.2. Stochastic Ordering and Monotonicity Assumptions

Consider now a reameasurable functioh, such thatE[h(Xy)] = 0. We will re-

strict our attention to systems that satisfy the LA assumption and we will introduce
stochastic ordering and monotonicity assumptions under which the event average
E°Th(X,)] and the time averagé[h(X,)] satisfy the inequalitE°[h(X,)] =(=)
E[h(Xo)].

Assumption NBUE (NWUE)The point proces§T,} has the NBUENWUE) prop-
erty, that is PO(T, > x) = P(T, > x), (P%(T, > x) = P(T, > x)) for all x > 0.

Remark 3:Let F&(x) = A [3[1 — F°(s)]ds The NBUE (NWUE) assumption is
equivalent td-¢ =y(=4) F.

Finally a monotonicity assumption is needed that involves both the system
and the functiorh. Let supdF°) denote the support ¢t°:
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Assumption MD (MI) (Monotonicity)UnderP? (i.e., conditional onT, = 0),
P (t) = E°[h(X)[TL > t]
is a decreasingMD) (increasingMI)) function oft on supgF°).
Sufficient conditions that imply assumption MIMI ) are(in order of increas-
ing generality:
i. {X.} has paths that are monotone decreaéimgeasingPC-as. onTo=t <
T, andh is a monotone increasing function

ii. {X¢} is stochastically monotone decreasiimgreasingonTy <t < T, and
his a monotone increasing function

iii. h(X,) is stochastically monotone decreasiimgcreasingonTo =t < T;.

We point ouf however that in some casethe stochastic monotonicity of the pro-
cessX; between events may be hard to establish or may not beangenonetheless
assumption MDMI) may be valid Such an example will be provided later

2.3. Inequalities Between Event and Time Averages

THEOREM 1: Let X be a process with an embedded point processalisfying
assumptions LA and NBUBNWUE), and let h be a reglmeasurable functigrfor
which Eh(Xg) < co and assumption MD hold3hen

E°h(Xo) =(=) ER(Xo). (7)
If Eh(Xy) < oo and assumption Ml holdshen
E°h(X,) =(=) Eh(Xo). (8)
Proor: By stationarity
EN(X) = E%n(x;) = [ EOLN(XIT, = s]dFO(s) ©

The above equation together with LAur NBUE (NWUE) and MD assumptions
give

E°h(X,) =(=) f E°[h(X.)|T; > s]A[1— F°(s)]ds (10)
0]
From the above it follows that

o]

E°h(X,) =(=) /\f E°[h(Xs)|T, > s]P°(T, > s) ds
0
= )\foo E°[h(X.)1(T, > s)]ds

Ty
= )\Eof h(X,) ds
0

= Eh(Xo), (11)
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where in the last two equations we have used Fubini's theorem and the Palm inver-
sion formula respectivelyf1]. u

Assumption MD(MI) was stated in its most general forim the following
corollaries special cases of systems satisfying WD) are given

Let C; denote the set of increasing functidhs— R. Let {X(t)}, t € supp(F°)
be a collection of random variables with distribut®(X(t) € B) = E°(X, € B| T, =
t). Suppose thak(t) is a family of stochastically decreasing.ls (in the usual
stochastic order Then for any real functiorh,

he Cr implies Eh(X(t))

is a decreasing function df (Similar remarks obviously hold for stochastically
decreasing in the convex or concave and stochastically increasing in theasual
vex, or concave stochastic ordg22,23,25].)

Remark 4: Together with the LA assumptiothis implies that
E°[h(Xy)|T; > t] = E°[h(X)|Ty > t] d0<u=s=t.

This condition is obviously satisfied when the sample paths; afre decreasing in
[Th,Thyq) for all n € Z as. Our assumption ishowever much weakerand this
allows one to apply the above results to a considerably larger number of systems

The main point to notice is that we do not require the sample paths of the sto-
chastic procesk; to be decreasing as in Nj@0]. We simply require the stochastic
monotonicity ofX, fort € [T,, T, 1). Also, the event sequence need not be renewal

CoroLLARY 1: Consider a system satisfying NBUNWUE) and LA which fur-
thermore has sample paths decreasifigcreasing w.p.1 between eents that is
under P, X,= X, P%a.s., for T,= 0= s=t = T,. Then(7) holds for any monotone
increasing h

Proor: Obviously the monotonicity of the sample paths between events implies
that MD (MI) assumption holdgherefore Theorem 1 applies u

Remark 5: The above resultCorollary 1) applied to the workload process of Gl
G/c/m queues first appeared [d0]. (For further details we refer the reader to
Franken et al[9].) Niu [20] obtained a result similar to Corollary though his lack
of anticipation assumption is more restrictive than the one presented here

CoROLLARY 2: Suppose thata system satisfies NBMEVUE) and LA and has sam
ple paths that are stochastically decreasiimcreasing between gents in the usual
stochastic orderthat is under P°, for any nondecreasing, lE°[h(X,)|T, > t]is a
decreasingincreasing function Then(7) holds

Remark 6: This significantly generalizes the results[R0], since we only require
stochastic monotonicity
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3. EXAMPLES AND APPLICATIONS

In the following examples we consider systems whisktween evenidave sto-
chastic monotonicity propertiggither in the usual stochastic ordering or in the
increasing convex orderingvhile the sample paths themselves are not monotonic

3.1. Age Process for the Superposition of Two Independent
Point Processes

As before let {T.;n € Z}, i = 0,1, be the arrival epochs of two point processes
assumed jointly stationary and ergodic under the probability me&suve further
assume that und@rthe two point processes are independeatP' denote the Palm
probability measure with respect to the point proddg$, andE' the corresponding
expectationlt is not hard to see that the two point processes are also independent
underP' [1]. We define the distributionB;(x) = P'(T{ = x), i = 0,1, and

f Fi(u)du

0

fooo F. (u) du,

with F; = 1 — F;. Denote the superposition of the two processeéRy, and define
the proces¥; with left continuousample paths by means of

def

Fe(x) = P(T{ =x) =

Xt = 2 1(Rn <t= Rn-%—l)(t - Rn)

n=-—oo

X; is of course the “age process” associated WRh}. As a consequence of the
independence of the two point processes umifeit is not hard to see that

PO(X, > X|T2=1) =PoX, > x|T? > 1) = FE(X)1(x = 1).
This, in turn, implies via a standard approximation argumghfat

E°Th(X)| T = t] = E°[h(X)|T > t]

= J h(x) dFE(x) + h(t)Eg(t). (12)
0

The first equation if{12) shows that the LA assumption is satisfiéfd in addition
his increasingthen the RHS 0f12) is increasing irt; hence Ml is satisfied Thus
from Theorem 1 it follows that if T.*} satisfies the NBUENWUE) condition then

E°[h(Xo)] =(=) E[h(X)].
3.2. The Workload Process in a Gl + G/Gl/1 Queue

Consider a single server queue with an arrival process consisting of the superposi-
tion of two stationary and ergodic arrival process8s= {S;;n € Z} andT =
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{T;n € Z}. The two arrival processes are independéifite service process is
i.i.d. with (possibly different distributions for the two arrival stream&ssume
the “T” component of the arrival process to be renewal with NBWNBNVUE)
interarrival distribution We can use Theorem 1 to show that the expected work-
load as seen by the renewal stream of arrivadlsis smaller(largen than the time
averageWe state this formally as

THEOREM 2: Let X denote the workload proce&defined to béeft-continuougand

E° denote the expectation with respect to the Palm measure corresponding to the
renewal arrval point process Tif the arrival process T satisfies the NBUE assump
tion then

E%Xo = EXo,
with the inequality reersed in the NWUE case

Proor: While our theorem concerns the total workload in the systiemwill be
useful to distinguish between the workload due to$tarival stream and that due
to the renewal stream. In fact we will assume tha® customers havpreemptive
priority overT customersWith the above assumptioiet XZbe the workload due to
Scustomers an¥d that due tdl customersClearly XS andX;" are not independent
Under the assumption th&tcustomers have preemptive priority oviecustomers
however the workload proceskSis independent of the arrival proceSs}.

Let P° denote the Palm measure with respect to the point pracdisis easy to
see intuitively that the statistics o underP® and underP should be the same
because of the fact théX>;t € R} and{T,;n € Z} are independenThis is in fact,
the case provided that the distribution functiBA(T, — T, = x) is spread outA
rigorous proof of this can be obtained using the Choquet-Dény thetfemanis
[28]).

We now show thaE°[ X;| T, = t]is a monotone decreasing functiortahdeed
due to the independenceXfand{T,}, E°[ XS| T, =t] = EXS. On the other han
is a decreasing function 6bn{T, > t} P%-as. Bearing in mind thaX, = XS+ X/,
we see thaE°[X,|T, = t] is a decreasing function df hence the monotonicity
assumption MD is satisfied

Finally, to show that the LA assumption is satisfjewtice that for 0= Ty =
t=T, X =XJ — [y1(X$ =0, X > 0)du X{, in turn, is independent of
{Ta;n = 1}. Thus bearing in mind thaX is left-continuous E°[X[|T, = t] =
E°[X/|T, > t]. Turning our attention now to the part of the workload dueSto
we see thaE°[X3|T, = t] = E°[XJ|T, > t] = EX$ because of the independence
of XSandT. Hence E°[XS + X[|T, =t] = E°[ XS + X/ |T, > t]. u

3.3. The Number of Customers in a (Gl + G)2/M/1 Queue

Consider a single server queue with two independent stationary and ergodic streams
of arrivals Each arrival corresponds to a batch of customers requiring independent
exponentially distributed services times with rpf¢he same for both stream#ss in

the previous exampléet {T,,} denote the arrival epochs of batches from the first
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streamwhich we will assume to be renewal with NBUEWUE) interarrival times

and let{S,} denote those of the second stredymder the above assumptigribe
statistics of the number of customers in the system will not change if we suppose that
customers from streaf®have preemptive priority over those of strednietting

N (N°) be the number of customers from stre@(s), N, = N, + NS be the total
number of customeysind arguing as in SectionZ we can show thaE°Ny = EN,

(with the inequality reversed in the NWUE case

4. INEQUALITIES BETWEEN CONDITIONAL EVENT AND TIME AVERAGES

Here we will broaden the above framework by adjoining to the original pro2gss
a “mark” or “environment” proces¥. The combined proces%;,Y;) together with
the point process, are assumed jointly stationary and ergodicis framework does
not differ mathematically from that of SectionRatherit simply represents a shift
of emphasis whichas we shall seean be quite fruitful in applications

For instancesuppose that with each one of the “everfig'we associate a mark
K, taking values in a mark spa¢K, K). While K could be in general any complete
separable metric space aftdits Borel setsin the examples we will present it is
typically a countable set or a subset Rf. Define the right-continuous process
{Y;;t € R} by means oft, = Y- K, (T, =t < T,;1). Let{F; —oo <t < oo} be the
filtration generated by the internal history gX;;t € R} and{(T,,K,); n € Z}.
Suppose that these processes are jointly stationary and ergodic under the probability
measure,

A simple example would be that of a Markov Renewal Pro€&g«,,) driving
a stochastic systerhlere the environment process is the procgssK,onT, =t <
T,+1. Another example often occurring in applications is that of a doubly stochastic
Poisson processlereg the environment process would be the right-continuous mod-
ification of the predictable version of tt#g-predictable procesg with nonnegative
sample pathd/Ve will assume thaY; = aw.p.1 for some positive constaat but we
will not require thatP(Y; = 0) = 0.

Markov-Modulated Poisson Processes afecourse the simplest such exam-
ple. In this frameworkthe relationship between conditional event and time averages
was investigated21,26], and a conditional PASTA result was obtained under
Wolff’s LAA assumption

We next present conditional versions of the Lack of AnticipatibiBUE
(NWUE), and Monotonicity assumptions of the previous section

Assumption CLA (Conditional Lack of Anticipationfror any positive bounded
real functionh,

ETh(XJ)|Yo = kT, > s] = E°[h(X)|Yo =k Ty =s], forallke K. (13)

Assumption C-NBUE (C-NWUE) [Conditional NBUE (NWUE)he point process
{T,} has the conditional NBUENWUE) property that is

PO(T, > x|Yo=Kk) = P(T;, > x|Y, = k), (14)
(PO(Ty > x|Yo=k) = P(T; > x|Y, = k)), forall x> 0 and allk € K.
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Let supgF°) denote the support ¢° Our last assumption involves both the
system(i.e.,, X;) and the functiorh.

Assumption CMD (CMI) (Conditional MonotonicitylUnderP? (i.e., conditional
onTy,=0),

P(sk) = E°[h(Xy)|Yo=KkT, > s] (15)
is a decreasin¢CMD) (increasing CMI)) function ofson supgF°) for allk € K.

THEOREM 3: Let X be a process with an embedded point processalisfying
assumptions CLA and-8BUE (C-NWUE), and let h be a reglmeasurable func
tion which satisfies EfX,) < co and CMD Then

E°[h(Xo)|Yo- = k] =(=) E[h(Xo)[Yo = K]. (16)
If Eh(Xp) < oo and CMI assumption holdghen
E°[h(Xo)|Yo- = k] =(=) E[h(Xo)|Yo = K]. (17)

Proor: Let FO(s|k) = PO(T, = s|Y, = k). By stationarity and the fact thak; is
left-continuous and; is right-continuous and constant on the intef\@Tr,),

Eo[h(X0)|Yo, =k]= Eo[h(XT1)|YT17 =k]= Eo[h(XTl)‘Yo K]
= f E°[h(Xs)|Yo = k, T, = s] dF°(s|k). (18)
0
From(18), and CLA C-NBUE (C-NWUE), and CMD assumptionsve obtain

| et = kT = slarecsik

PO(T1 > s|Yy = k)
EO[T1|Y0 = k]

=(=) foo E°[h(Xs)|Yo = kT, > s] ds (19)

Hence from (18), (19), and(13), it follows that

EOTh(Xo) Yo = k] =(=) k] f EOTN(X) LT, > §) Yo = k] ds

W
1 T
T OE[T,|Y, = k] E°UO h(X) ds|Y, = k}
= E[h(Xo)[Yo = K], (20)

where the last two equalities follow from Fubini’s theorem and the conditional ver-
sion of the Palm inversion formulaespectively(see Lemma 1 of the Appendix
[ |
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We illustrate the necessity for conditioning by means of the following example

Example (The MR/G/c/m queueluppose tha{(T,,K,); n € Z} is a stationary
Markov Renewal Process under the probability meaBuneth K, € K, whereK is

a countable seThis stream constitutes the input to a queueing systemogighvers

and waiting buffer of sizen. The service requirements of the customers constitute a
stationary and ergodic stream of nonnegative random varighispendent of the
arrival streamlf upon arrival all buffer spaces are futhe customer leaves never to
return It is known (e.g., see[1]) that this system always possesses a stationary
regime(though not necessarily uniguéenote byP° the Palm transformation of
the probability measure with respect to the point proces§E,}. Let X, be the work-
load at timet. Clearly, X¢ = X; w.p.1 onT, < s=1t = T,,,. Obviously the CLA
assumption is satisfiedhe LA assumptionhowever is not Indeed unlike the
system considered in Theoremire it is not necessarily true thae[h(X,)|T; >

t] = E°[h(X,)|T, = t]: knowing thatT, = t affects the conditional statistics of the
arrival process beforg, = 0, in particular the length of the interarrival tinffe— T_,

on which Ty, and thereforeX;, obviously dependsOn the other handhe CLA
assumption is satisfied

Eo[h(xt)|Yo =kT, >t]= Eo[h(Xt)\Yo =k T, =t].

Since{T,} is a Markov Renewal Processonditional onY,, the statistics of the
arrival process beforg, does not depend of; that is

PUT,€Bi=—1...,—n|Yo=kT, > 1)
=PYT,€EB;i=—1...,—n|Yo=kT, =t).
Also, sinceX; is nonincreasing for € [Ty, T;), for s> 0,
E°Th(X)|Yo = kT, > t] = E°[h(Xi1s)| Yo =k Ty >t + 5],

for any nondecreasing functidn

5. FROM CONDITIONAL TO UNCONDITIONAL INEQUALITIES
5.1. General Remarks

Equation(20) can be written as

T

E°[h(Xr,)[Yo]E°[T1[Yo] =(=) Eo[fo 1h(Xs) d5|Yo]- (21)

Taking expectations with respect ¥, dividing both sides witfE®[T, ], and using
again the Palm inversion formula we have

E°[E°[h(Xr,) Yo E°[Ta| Yol
E°[T:]

=(=) Eh(X,). (22)
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Thus we have the following

THEOREM 4: Suppose that the assumptions of thevjres theorem are satisfied
def

and in addition, ®°(Y,) £ E°[h(X+,)| Y], A°(Yo) &' E°[Ty|Yo], are positbely cor
related that is Cov(®°(Yy), A°(Y,)) = 0. Then

E°[h(Xo)] = E[h(Xo)].

The same result holds with the inequalitpeesed in the NWUE cas&hen the
covariance Cov(d°(Yy), A°(Yp)), is negatie.

Proor: It follows immediately from(21) and(22). n

5.2. Countable Mark Space
Suppose tha( is countable and let

$°(k) £ E°[N(Xo)[Yo- = k] and (k) £ E[h(X,)[Yo= K].
We will also denote by®(k) the Palm probabilityP®(Y,_ = k) and byp(k) the
time-stationary probability?(Ys = k). In this section we will examine sufficient
conditions under which

E°[h(Xo)] = kEK $°(k)p°(k) =(=) kEK ¢ (K)p(k) = E[h(Xo)]. (23)

Using the Palm inversion formula we can obtain the following expression for
the likelihood ratio between the Palm and time-stationary probabilitie¥:for

L(K) &' P(Yo = k) _ E°[T11(Yo = K)]
= Po(Yo. =k) E°[T,]P°(Yo_ = k)

_E°[MlY% =K

E°[T,) (e4)

We will assume without loss of generality thatk)/p°(k) is increasing in. (If
this is not the case we can always relabel the elemeris)dfience p® = g p.

THEOREM 5: Suppose thah®(k) is increasing(decreasingin k. If the results of
Sectiord apply, then

E°h(X,) =(=) Eh(X,).

Proor: Under the assumptions of Section 4 we have seen that

$°(k) =(=) ¢ (k). (25)
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Hence

p(k)
p°(k)

=(=) k}‘:( $°(K)p°(k) kZK p(k) = E°h(Xo),  (26)

Eh(Xo) = Z ¢(K)p(k) =(=) 2 $°(k) 5~ p°(K)

where the last inequality following from the fact thatf (k) is increasing and
p° =& p. Similar arguments can be useddifk) is increasing(resp decreasiny
in k. ]

6. EXTENSIONS
AdistributionF° is a-MRLA (a-MRLB) iff
_ 1 (*_
FO(x) =(=) 5[ FO(y)dy forallx=0. 27)

When a = [ F°(y)dy the above definition reduces to the NBURWUE)
property

Assumption C-MRLA (C-MRLB) [Conditional MRL A (MRLB)The point process
{T,} has the conditional a-MRL,(Sa-MRLB) property that is

PUT,>xYo=y) = = P(Tl >x[Yo=1y), (28)

(PUT, > x|Yo=y) =1/aP(T, > x|Yp)) for allx > 0 and ally € K.

THEOREM 6: Suppose that the system satisfies assumptions CMB, and GMRLA
(C-MRLB) for some constant.a’hen

1
E°h(X,) =(=) a Eh(Xo), (29)

whereA = 1/(E°[T,]) is the rate of the point proce$s;}.
Proor: From(18) and(28) we have

EOTh(Xo) [Yo] = f " EOh(Xo) Yo, Ty = TdFO(s]Y)
= [T ECInOk) % Ty > sTdFe(siv)
(0]

1 [o'e}
=(=) af E°[h(Xs)| Yo, T, > s]PO(T, > s|Y,) ds
0

1 [ee)
| et = splas

1 T
- EO|:f h(xs) dSY0:|,
a 0
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where the second equality above follows from the CLA assumpliaking expec-
tation wr.t. Y, above we obtain

T

1 1
E°[h(Xy)] =(=) 3 Eo[fo h(Xs) ds}. (30)

Invoking once more the Palm inversion formula we can write the expectation in the
RHS of (30) as(1/A)Eh(Xy) which establishe&29). u

Example (The MR/G/e/Queue): Suppose that the arrival process is Markov Re-
newal with conditional interarrival distribution satisfying the MRUMRLB) —(1/A)
property[9, p. 148]. Then Theorem 4 can be applied to the workload pracess
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APPENDIX

Here we provide the proof of the conditional version of the Palm inversion formula which was
used in Section 4The process$Y;} is assumed to take values in a measurable sfgag€) and

is right-continuous and constant on each intefValT, . 1). (K is not assumed to be countable
here)

LEMMA 1 (CONDITIONAL PALM INVERSION FORMULA): SUppOse we are ggn a real mea
surable functionh, such that Eh(Xy)] = co. Then the conditional expectation B(Xo)|Ys]
is given by the expression

1 T
E[h(Xo)|Yo] = m Eo[fo h(Xs) dSYO}. (31)
Proor: Itis enough to show that for aly € £
E[1(Y, € B)h(Xo)] = E[1(Yo € B)H(Yo)], (32)

whereH (Yp) is the expression on the RHS &1). Apply the Palm inversion formula on the
RHS of(32), keeping in mind thal, = 0 P°-a.s. to obtain

E[1(Y, € B)H(Y,)] = # EOUOTI 1(Y, € B)H(Y,) ds]

1
m EO[Tll(YO € B)H(Yo)]

EO[T.] E°[1(Yo € B)H(Yo) E°[Ta| Yo11. (33)

In the second equation above we have taken into account the fadothate To<=s< Ty, Y5
remains constant and equal Yg, and similarly, H(Ys) remains equal t¢d(Yy). From the
definition of H(Yy), H(Yo)E°[To| Yo], the last term of33) can be written as
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1 T 1 T
ﬁ Eo|:l(Yo S B)EO[J; h(Xs) dS|Y0:|:| = m E° |:1(Y0 S B)fo h(Xs) dSi|

- B0 EOU "h(X)1(Y, € B) ds]

= E[1(Yo € B)h(Xo)]. (34)

In the second equation we have again used the facthiata piecewise constant process
changing only at the point ¢f,}, whereas the last equation @ce morethe Palm inversion

formula
This last series of equalities establisk@®) and completes the proof of the lemnil K

is a countable set simpler proof of the theorem is possiblhis simplifying assumption
would, however be too restrictive for our purposgs n



