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We examine level crossings of sample paths of queueing processes and investigate 
the conditions under which the limiting empirical distribution for the workload process 
exists and is absolutely continuous. The connection between the density of the workload 
distribution and the rate of downcrossings is established as a sample path result that 
does not depend on any stochastic assumptions. As a corollary, we obtain the sample 
path version of the Tak~cs formula connecting the time and customer stationary distributions 
in a queue. Defective limiting empirical distributions are considered and an expression 
for the mass at infinity is derived. 
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1. Introduction 

The investigation of relationships between time-stationary characteristics of 
the workload process and rates of downcrossings has a long history. We refer the 
reader to the monograph of Franken et al. [6, pp. 57 and 142]. Among the early 
results on level crossing methods for queues, we mention Brill and Posner [1,2], 
who examined queues with Poisson arrivals, Kt3ning et al. [6], Rolski [10], and 
Schmidt [11], who investigated level crossings in a stationary and ergodic context, 
and Cohen [4] and Shanthikumar [13], who examined regenerative queues using 
level crossing methods. Miyazawa [9] developed the general form of the Rate 
Conservation Law and used it to derive the connection between level crossings and 
the density of the time stationary workload. In the same vein is the paper by 
Ferrandiz and Lazar [5]. Besides their intrinsic interest, level crossings have been 
used in the analysis and control of priority and vacation queues and queues in a 
random environment. We refer the reader to Shanthikumar [13, 14], Miyazawa [9], 
and the references therein. 
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In this paper, we take a sample path approach in the spirit of Stidham [15], 
and Stidham and E1 Taha [16], which does not require stochastic assumptions and 
which leads to a simpler and more direct proof. Our results are related to the 
deterministic version of Miyazawa's Rate Conservation Law developed independently 
by Sigman [12], and to the sample path approach in Wolff [18] for the distribution 
of excess life and age in point processes. 

In the absence of any stochastic assumptions, we define "waiting" and "sojoum" 
time distributions as limiting empirical distributions and show that, under appropriate 
conditions, their existence implies the existence and absolute continuity of the 
limiting empirical distribution for the proportion of time the workload spends below 
a certain level. The connection between the empirical density of the workload 
process and the rate of downcrossings at a given level is established. Since downcrossing 
and upcrossing rates are equal, this leads to the sample path version of the Tak~ics 
formula connecting time and customer stationary workload distributions in queues. 

In the stationary and ergodic context, the steady-state distribution for the 
workload process is either honest or defective with mass 1 at infinity w.p.1. Empirical 
distributions derived from arbitrary sample paths may exhibit more complicated 
limiting behavior. In particular, the limiting empirical distribution for the workload 
process may be defective, with only part of its mass at infinity. These issues are 
investigated in section 4 where, among other results, an expression for the mass at 
infinity is given. 

2. Piecewise continuous sample paths and associated empirical distributions 

Let {Tn}~ENo be a strictly increasing sequence of points such that To > 0, 
lim,,Tn = oo, and {VAt 20 be a nonnegative, right continuous real function with left 
limits defined on [0, oo). Let Wn def �9 = = l n n d r  " Vt and B n def  VT n _ Wn >_ O. W e  assume Vt 
to be strictly decreasing in the interval [T~, T n + 1), n = 0, 1 . . . . .  except when it is 
equal to zero. 

A S S U M P T I O N  1 

Throughout the paper, we assume that the "arrival rate" ;t., defined by 

lim 1T~ = ~-1, 
n-**~  n 

exists and 0 < & < oo. 

D E F I N I T I O N S  

u x is a downcrossing epoch at level x > 0 if there exists e>  0 such that 
V~x_ 8 > x > Vu~+, ~ for all 0 < 8< e. Let Dt x be the downcrossing counting process 
at level x. Let {u~} be the sequence of downcrossing epochs at level x and {r~'} the 
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corresponding sequence of upcrossings defined by r~' = sup {s:s > u'[_ 1, Vs (- X}. Let 
{my} be the sequence of occupation times above x defined by m x = u x - ~x. Define 
the mean occupation t ime in [x, ,,o), m x, by the following limit when its exists: 

lim 1 ~.  x m x. - -  m i = 

For every n ~ IN and t ~ IR+, define the empirical distributions Fw, n, Fw+B,~, and 
v ,  t �9 

1 
Fw,n (x) = n ~ l ( ~ x ) ,  (1) 

i=1 

1 n 

Fw+8,n(x) = n "~-'~ l(w,,.+8;_<x), (2) 
i=1 

t 

Fv,t (x) = ~ l(g__.x)ds. (3) 

o 

Define also the limiting empirical distributions, whenever  they exist, by means of  
the limits: 

Fw(x) = lim Fw,n(X), FW+B(X)= lim FW+B,n(X) and Fv(x)= lim Fv,t(x). 
l l  ---> o o  n - . ~  o o  ?1.--.~ r  

Finally, define Fw,~(x-) as in (1) with a strict inequality and 

F w ( x - )  = l im F w ,  n ( x - ) .  

3. Rates of downcrossings and empirical densities 

In the above context, we show that the existence of the "arrival rate" A and 
the l imiting empirical distributions Fw and Fw + ~ at a single point x are enough to 
guarantee the existence of the rate of downcrossings Ax. 

THEOREM 1 

Assume that, for some x > 0, the limiting empirical distributions Fw(x) and 
Fw + s(x) exist. Then 

(i) The rate of  x-downcrossings Zx d e f l i m t ~  (1/t)D:, exists and is given by 

/~x =/~ [ Fw ( x - )  - Fw+B (x)]. (4) 
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(ii) If  the limiting empirical distribution at x, Fw + B(X), exists, then the average 
occupation time m z exists and the following relation holds: 

;~XmX = 1 - Fv (x). (5) 

Proof  

(i) We first show that the limit exists and is equal to the expression in (4) 
along the sequence of"arrival  points" {T,}. If an x-downcrossing occurs in (Tn, Tn + 1), 
then l(w~+Bi>x ) --l(w.+l_>x)= 1, else the difference of the indicator functions in 0. 
Therefore, 

1 x 1 n 
lim Dr. = lim El(w.+Bi>x)-l(wm_>x) 
n---)~ ~ n  n---~ "~n i=1 

= lim n lim --1 ~ I(W~.+B~>x) -- l(w~+,~x). 
n~o* "~n n---)~ n i=1 

An appeal to "X = &Y" (Stidham and E1 Taha [16]) completes the proof. 

(ii) The second part follows from a direct application of  the sample path 
version of  Little 's law (Stidham [15]). [] 

In general, unless one makes additional assumptions, there is no guarantee 
that the empirical distribution Fv(x) will exist. However, the situation changes if 
one assumes that Fw(x) and FW+B(X) exist for all x in some dense subset of  the 
reals, J. Next, we establish the absolute continuity of Fv and the connection between 
the corresponding density and the downcrossing rate ;ix for systems satisfying 

ASSUMPTION 2 

{G} is continuous and right-differentiable in (Tn, T,,+ l) for all n E IN and 
there exists a "processing rate" function g : IR + ---) IR + with g(y)  > c > 0, for y > 0, 
and g(0) = 0 such that the right derivative D+Vt exists and 

D+Vt = -g (Vt ) .  

This implies, of course, that Vt is strictly decreasing in [Tn, Tn+ 1), except when 
Vt = 0. Let us also recall the following lemma from real analysis: 

LEMMA 1 (see Chung [3, pp. 133-134]) 

Assume that Fw and Fw + a exist for a dense countable subset of  the reals, say 
J, which contains all discontinuity points of Fw and FW+B. Then they exist for all 
x ~ IR and Fw, n (respectively, Fw + B,n) converges to Fw (respectively, Fw + B) uniformly. 
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THEOREM 2 

Assume that the limiting empirical distributions defined above exist for all 
x ~ J. Then, for any interval (a, b], a > 0, the limiting empirical distribution 
Fv(a, b] def Fv(b)-Fv(a) exists and is given by 

b 

Fv (a, b] =/], f [Fw (y) - Fw+~ (y)lg(y)-i dy. (6) 
a 

Proof 
We compute again the limit along the sequence of "arrival points" {Tn}. 

Using again "Y = ~.X", we obtain 

T, 

Fv(a,b]= lim 1 f n~o. ~ l(a<Vs<-b)dS" (7) 
0 

Since between two successive arrivals, the process decreases with rate g(Vs), we 
have 

T/+I b b 

f l(a<Vs<b, dS= f l(w,+e,>y)g(y)-ldy-f l(w~+~>_r)g(y)-ldy. ( 8 )  

Ti a a 

Expressing the integral in (7) as a sum of integrals with the aid of (8) and letting 
n ~ ,~, we obtain the expression in (6) for Fv(a, b]: 

f 1 n+l lim n lim l(wo-~>y)--- l(N_>y ) 
n---~,,,, ~ n  n---~ ~ i=1 /I i=2 

a 

g(y)-i dy 

=;1, 

b 
f lim [Fw: (y-) - Fw+~,n (y)] g(y)-I dy 
a 

b 

= Z f [Fw (y-) - Fw+8 (y)] g(y)-i dy. (9) 
a 

Passing the limit inside the integral in the above derivation is justified by the fact 
that Fw,,, and Fw+8,n converge uniformly to Fw and Fw+B according to lemma 1. 
Since Fw(y-)=Fw(y), except possibly at a countable set of points, we 
obtain (6). [] 
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Using queueing theoretic language, (6) gives the connection between the time 
stationary and customer stationary distributions of the workload in a queueing 
system. It is in fact the sample path version of the Tak~tcs formula [17] which has 
been obtained under a variety of stochastic assumptions by a number of  authors. 
We mention in particular Lemoine [8], K6ning et al. [7], and Schmidt [11]. (For 
a complete account, see [6].) 

COROLLARY 1 

Under the assumption of theorem 2 and the additional assumption that 
Fv (0) ~f limt_)o. Fv.t (0) exists, Fv(x) is absolutely continuous, except for possible 
atoms at 0 and 0% with density (A/g(x))[Fw(x)- Fw+B(x)]. 

COROLLARY 2 

From theorem 1 and corollary 1 follows that for any level x >  0, Fv has 
density fv(x)= AX/g(x). In particular, when the processing rate g(x)= l(x>0), the 
density at level x is equal to the rate of downcrossings at that level. 

COROLLARY 3 

Under the assumptions of theorem 2, from theorem 1 and corollary 2 follows 
that, for any level x > 0, the mean occupation time above x exists and is given by 

fv(X) 
(mX) -1 = g(x) 1-F-'~x)" 

4. Existence of Fv(O) and Fv(oo) 

From theorem 2, with a = 0 and b --) oo, we obtain 

o o  

Fv(oo) - Fv(O) = ,~ [ [ Fw(y) - Fw+~(y)]g(y)-ldy, (10) 
0 

provided that the limiting empirical distributions Fw and Fw+8 exist on a dense 
subset of (0, oo). If Fv is honest (i.e. if Fv(oo) = 1) or, more generally, if Fv(oo) 
exists, the above argument would guarantee the existence of Fv(O). If the processing 
rate function g is such that Sog(y)-ldy < oo, then using (9) with a = 0 and b = 0,, and 
appealing to the dominated convergence theorem, we obtain 

o o  

1- Fv(O) = A l [Fw(y)- Fw+9(y)]g(y)-ldy. (11) 

0 
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From (10) and (11), we conclude that Fv(oO) = 1 regardless of  whether  FW§ and 
Fw are defective or not. 

In the more interesting case where Ig-a = oo, additional conditions on {Fw§ 
are needed to guarantee the existence of  Fv(O). Theorem 3 provides a sufficient 
condition for Fv(O) to exist and for Fv to be honest. Theorem 4 provides sufficient 
conditions for the existence of Fv(O) and an expression for the "mass at infinity", 

THEOREM 3 

Suppose that the family of empirical distributions {Fw + ~,n}n ~ ~ is uniformly 
integrable. Then Fv(O) exists and Fv is honest. 

Proof 
Our uniform integrability assumption is equivalent to the statement 

~f[1-Fw+~,n(y)]dy ~ 0 as x ~ 0% uniformly in n. (12) 

X 

Since Fw + 8,n(Y) < Fw,,,(y), it follows that, for the family {Fw, n} a statement similar 
to (12) holds (and therefore that {Fw,~} is also uniformly integrable). From the 
above and the inequality g(y)-i < c-1 (see assumption 2), it follows that 

f [Fw,n(y)- Fw+8,n(y)]g(y)-ldy 

X 

0 as x ~ o% uniformly in n. (13) 

An argument  similar to (9) in the proof  of theorem 2 shows that 

1-F~(oo)  = lim 1-Fv(x)  
X ..-.-) ~ ,  

or 

= A, x~lim n~lim f[Fw,.(y)-Fw+B,.(y)lg(y)-ldy. 
X 

(14) 

In view of (13), we can change the order of the limits in (14) to conclude that 
1 -  Fv(~)= 0. This immediately implies the existence of  Fv(O) (cf. remark 3). [] 

As we will see, it is possible for Fv to be defective even though Fw § B (and 
a fo r t i o r i  Fw) is not. Here, we will make the simplifying assumption that the 
processing rate g is constant which, without loss of generality, we will assume equal 
to 1. Define the limiting empirical mean jump by 
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n 

= lim • Si, 
n --~,~ i=1 

whenever  this limit exists. 

THEOREM 4 

Assume that g(x) = l(x > 0), that the limiting empirical mean jump B exists, 
and that l imned, n-lWn = 0. Then Fv(O) exists and is equal to 1 - & B.  Furthermore, 
Fv is defective iff B > So[Fw(x)-  Fw+B(x)]dx and the mass at infinity is 

Proof  

e ~  

def f Fv{oO} = 1-Fv(oO) = Z B - Z  [Fw(x)-Fw+B(x)ldx.  

0 

(15) 

We examine the existence of the limit: 

t 

-f fv(O)defl-Fv(O) = t.o~lim -tl f (16) 

o 

Since ~ exists, it is easy to see that we can let t ~ ~ along the sequence {Tn}. The 
existence of the limit in (16) is then tantamount to the existence of  

r. 

lim n I f  n~,* ~'~ "n l (v,>o)ds=:L lim --1 (Wi+Bi_Wi+l) .  (17) 
n~oo n i=1 

0 

We thus have 

1 - F v ( 0 )  = A, lim 1 B i -  -~Wn+l (18) 
n ~  n i=1 

d o  

= A, lim [ (19) n-,~ a [Fw'n(Y) - Fw+a'n(Y)] dy. 
o 

Equation (18) is obtained by telescoping the sum in (17) and using the fact that 
lim n-lW1 = 0. Equation (19) is obtained from (17) using an argument similar to (8). 
From (18) and our assumptions follows that Fv(O) exists and 

m 

Fv (0) = 1 - Yc B. (20) 

n A (Since Wn+l -> W1 + ~'~n= 1 Bi - ~i=1 i, dividing by n and letting n ---) gives ~ B < 1. ) 
Using Fatou 's  lemma in (19), we can pass the limit inside the integral to obtain 
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1 - Fv(O ) = Fv{,~ } + Fv(~ ) - Fv(O) > X f [ F w ( x )  - Fw+~(x )] dx, 

0 

Comparing (10), (20), and (21) concludes the proof. 

(21) 

[] 

COROLLARY 4 

For a system satisfying the assumptions of theorem 4, if Fw+B is defective, 
Fw must also be defective and Fw{oo} = Fw+8{oo}. 

Proof 

By contradiction. Suppose Fw+B{oo} > Fw{oo}. Then 

o o  

oo = z f tFw(x)-  F, +B(x)]dx <- 1-  Fv(0). 
0 

[] 

Example 

We illustrate the case where Fv is defective even though Fw § 8 (and Fw) is 
not. Define S = {n2; n ~ IN}, and consider a single-server queueing system with 
processing rate g identically equal to 1; interarrival sequence defined by A,, = a if 
n ~ S, and An= aqn if n ~ S; service sequence given by B,,= b if n ~ S, and 
B,, = bxln if n ~ S, where 0 < b < a. It is easy to check that ~ exists and equals 
2/3a, that Fw exists and has an atom of size 1 at 0, and that Fw+8 exists and has 
an atom of  size 1 at b. Also, the empirical mean service time exists and B = 3b/2. 
One can also check that Fv exists and is defective, i.e. has b/3a of its mass at 
infinity, in agreement with (15). Finally, notice that Fv(O)= 1 - b / a  = 1 -  ~,'B 
= 1 - (2/3a)(3b/2). 
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