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Abstract

We examine Push and Pull production control sys-
tems under a make-to-order policy with safety stock.
We compute the distribution of the waiting time until
a demand is satisfied, as well as flow time distributions
and service levels for both systems. Work-in-process
levels are determined as well. The analysis is carried
out under Markovian assumptions and the explicit re-
sults on flow times depend on non-overtake conditions
that are satisfied for single machine stations.

1 Introduction

This paper is a first step in an attempt to model
the performance of various Push and Pull production
strategies and the way they respond to external de-
mands. These demands could represent either outside
orders or signals from downstream cells in the same
plant. The production line is modelled as a series of
single machine stations with exponential processing
times, external demands are Poisson and, in this pa-
per, two production control schemes are examined: A
Push scheme with safety stock S and a Pull scheme
with limited Work-in-process.

In the Push scheme each time a demand arrives it
immediately authorizes the release of a new job. The
demand is satisfied immediately from the stock or it
is backlogged. The Pull scheme examined is similar
to CONWIP (see [20, 19, 21]). The main difference
is that instead of the requirement that the WIP in
the system remain constant we require that the total
work-in-process including the Finished Goods Inven-
tory (FGI) remain constant and equal to N . Exter-
nal demands, if not immediately satisfied, are again
backlogged. In this scheme the arrival of a demand

authorizes the release of a new job only when the
work in process is less than N or equivalently the
finished goods inventory is greater than zero. Oth-
erwise the demand is backlogged. Proper operation
of this scheme, which ofcourse depends crucially upon
the right choice for N , results in the same benefits in
terms of increased system control as other pull systems
[4, 18, 16, 20].

A number of performance criteria are considered,
namely average WIP, the probability that a demand
will be backlogged, and the mean time to satisfy a
demand. We also examine mean flow time as well as
flow time variability and obtain explicit expressions in
terms of the parameters of the system.

2 Systems under a Push Policy with
Safety Stock

In this section, we examine in detail the push pol-
icy described above and obtain explicit expressions
for performance criteria of interest including the to-
tal WIP in the system, the probability that a demand
will be backlogged, and the average amount of time
for a demand to be satisfied.

Once a demand arrives, one new job will be released
to join the queue at machine N (e.g., once the first de-
mand arrives, the (S+1)-th job will enter the system).
While there are S units of initial inventory which serve
as safety stock, once a demand arrives one anticipates
that a finished job will be sent out so at the same time
one new job is released to the system. Therefore the
work in process (WIP), which includes the unfinished
jobs in process and the finished jobs in the buffer is
always greater than or equal to S.

An explicit expression for Eτ , the mean time to fill



a demand in steady state, can be obtained when ser-
vice times are exponential and the demand stream is
Poisson. Equations (1) and (2) show clearly the de-
pendence of Eτ on S.

2.1 Exponential servers and Poisson de-
mands

Consider the system described earlier with the ex-
ception that the initial inventory S consists of finished
jobs, in the buffer instead of raw material in the queue
of machine M . In the long run one can easily show
(via a coupling argument) that this modification in
the initial condition makes no difference as far as Eτ
is considered. We assume that the demand is Poisson
with rate λ, and for all i = 1, 2, · · · ,M , the processing
time of machine i is exponential with rate µi. Sup-
pose that ρi = λ/µi < 1. Then we can compute Eτ
through Little’s law:

Under the push policy we consider once a demand
arrives, a new job is released to system. Considering
only the M stations (and disregarding finished job in-
ventory) this system behaves as an open Jackson net-
work. Let X

(i)
t be the WIP at machine i at time t and

define

Xt =
M∑
i=1

X
(i)
t ,

the total WIP in the system. In steady state

P (X(1)
t = n1, · · · , X(M)

t = nM ) =
M∏
i=1

(1− ρi)ρi
ni .

Therefore the negative part of Xt − S, Yt = (Xt −
S)−, is the finished goods inventory while the positive
part, Zt = (Xt − S)+ is the number of backlogged
demands. Applying Little’s law to the finished goods
inventory buffer, we obtain

λEτ = E(Xt − S)+, (1)

which indicates that Eτ is decreasing in S. We pro-
ceed to obtain an expression for Eτ :

P (Xt = k) =
∑

{~n : n1+···+nM=k}

M∏
i=1

ρni
i (1− ρi)

= G(M,k)
M∏
i=1

(1− ρi),

with G(M,k) given by:

G(M,k) =
∑

{~n : n1+···+nM=k}

M∏
i=1

ρni
i .

Therefore,

E(Xt − S)− =
S∑

k=0

(S − k)P (Xt = k)

=
S∑

k=0

(S − k)G(M,k)
M∏
i=1

(1− ρi)

=
M∏
i=1

(1− ρi)
S∑

k=0

(S − k)G(M,k) .

Since (Xt − S)+ = Xt − S + (Xt − S)− and

EXt =
M∑
i=1

ρi

1− ρi
,

we get

Eτ =
1
λ

{
M∑
i=1

ρi

1− ρi
− S

+

(
M∏
i=1

(1− ρi)

)(
S∑

k=0

(S − k)G(M,k)

)}
. (2)

Anticipating (8) which is established in the next sec-
tion,

Eτ =
1
λ

{
M∑
i=1

ρi

1− ρi
− S +

M∏
i=1

(1− ρi)×

M∑
m=1

ρm − (S + 1)ρS+1
m + SρS+2

m

(1− ρm)2
∏
l 6=m

(1− ρl/ρm)

 . (3)

2.2 Customer service criteria

In this framework we can address a number of re-
lated issues pertaining to the level of service:



The probability that a demand will be satisfied imme-
diately is given by P (S−Xt > 0) = P (Xt < S). Since
Xt =

∑M
i=1 Xi

t , its distribution is the convolution of
N independent geometric random variables (because
of the independence of the number of customers in
each station). We examine two cases in detail:

a) All stations are identical. In this case the distri-
bution of Xt is Pascal, i.e.

P (Xt = k) =
(

M + k

k

)
(1− ρ)Mρk. (4)

b) If all stations have different utilizations then

P (Xt = k) =
M∑
i=1

ρk
i

M∏
l=1

(1− ρl)∏
l 6=i

(1− ρl/ρi)
. (5)

The derivation of (5) is interesting since it does not
make use of convolutions directly. The partial frac-
tions expansion through which it is obtained is shown
here in the case where ρi 6= ρj for i 6= j. The z-
transform of Xt can then be written as

EzXt =
M∏
i=1

1− ρi

1− zρi
=

M∑
i=1

Ai

1− zρi

or
M∏
i=1

(1− ρi) =
M∑
i=1

Ai

∏
l 6=i

(1− zρl) .

Letting z = ρ−1
i gives

Ai =
∏M

l=1(1− ρl)∏
l 6=i(1− ρl/ρi)

, i = 1, 2, . . . ,M.

Hence,

E[zXt ] =
M∑
i=1

1
1− zρi

M∏
l=1

(1− ρl)∏
l 6=i

(1− ρl/ρi)
, (6)

from which we obtain (5).

An alternative for computing the distribution of Xt

uses the normalization constants for CQNs for which

a number of efficient computational algorithms exist.

P (Xt = k) =
∑

~n:n1+···+nM=k

M∏
i=1

(1− ρi)ρni
i

= G(M,k)
M∏
i=1

(1− ρi) . (7)

A comparison between (5) and (7) suggests the fol-
lowing expression for the normalization constant in a
CQN

G(M,k) =
M∑
i=1

ρk
i∏

l 6=i(1− ρl/ρi)
. (8)

2.3 Probability that a demand will be sat-
isfied immediately

The probability that a demand will be satisfied im-
mediately is given by

P (Xt < S) =
S−1∑
k=0

P (Xt = k)

=
M∏
i=1

(1− ρi)
S−1∑
k=0

G(M,k)

=
M∑
i=1

S−1∑
k=0

ρk
i

∏M
l=1(1− ρl)∏

l 6=i(1− ρl/ρi)

=
M∑
i=1

(1− ρS
i )
∏
l 6=i

1− ρl

1− ρl/ρi
. (9)

2.4 Total WIP in an open system

From the above analysis we can easily obtain an
expression for the distribution of the total WIP in an
open system:

P (Xt ≤ n) =
M∏
i=1

(1− ρi)
n∑

k=0

G(M,k)

= G(M + 1, n)
M∏
i=1

(1− ρi),

where G(M + 1, n) is the normalization constant
of a CQN with n customers and M + 1 stations



with mean service times ρ1, . . . , ρM , 1, or equivalently
µ−1

1 , . . . , µ−1
M , λ−1. In view of (8)

G(M,n) =
M∑

m=1

ρn
m

(1− 1/ρm)
∏

l 6=m(1− ρl/ρm)

+
1∏M

m=1(1− ρl)

and hence

P (Xt ≤ n) = 1 −
M∑

m=1

ρn
m

(1/ρm − 1)
∏
l 6=m

(1− ρl/ρm)
.

3 Flow time distributions for Push and
Pull systems

The Pull strategy with WIP limited above by N can
be modeled in the markovian case as an open queueing
network with a global buffer of size N . Demands arrive
according to a Poisson process and are admitted to the
system only if the total number of customers present,
Xt, is less than N . Otherwise they wait outside the
global buffer. If at time t Xt ≤ N then no demands
are backlogged and N −Xt represents finished goods
inventory. If, on the other hand, Xt > N then Xt−N
represents the number of backlogged demands. If the
probability that a demand is backlogged is small the
operation of this system can be adequately approxi-
mated by a closed queueing network. (For details see
[24].)

For a closed queueing network, from Boxma, Kelly,
and Könheim (1984), and Daduna (1982), it follows
that, if Ti is the flow time through the i’th station, the
joint Laplace transform for the flow times of a tagged
customer through the stations satisfies the following
product form relationship

E[e−s1T1−···−sM TM ] = (10)∑
~∈S(M,N−1)

p(j1, . . . , jM )
M∏
i=1

(
µi

µi + si

)ji+1

,

where S(M,N) = {~ : j1 + · · · + jM = N}. (The
above holds provided that a non-overtake condition
holds, which of course is the case for cyclic single server

networks.) Setting ρi = 1/µi, the rhs of the above
equation can be written as

∑
~∈S(M,N−1)

ρj1
1 · · · ρjM

M

G(M,N − 1)

M∏
i=1

(
µi

µi + si

)ji+1

=

M∏
i=1

(
µi

µi + si

) ∑
~∈S(M,N−1)

M∏
i=1

(
1

µi + si

)ji

G(M,N − 1)
.

(11)

The first factor in the above expression corresponds to
the joint Laplace transform of the processing times for
a job. The second factor, corresponding to the joint
Laplace transform of waiting times can be written,
taking into account (8), as(

M∑
m=1

1
µN−1

m

1∏
l 6=m(1− µm/µl)

)−1

×

M∑
m=1

1
(µm + sm)N−1

∏
l 6=m

(
1− µm + sm

µl + sl

)−1

.(12)

To obtain the Laplace transform of the flow time set
s = s1 = · · · = sM :

(
M∏

m=1

µm

µm + s

) M∑
m=1

1
(µm + s)N−1

∏
l 6=m

µl + s

µl − µm

M∑
m=1

1
µN−1

m

∏
l 6=m

µl

µl − µm

.

(13)
The throughput of the closed system is then given by

λ =
G(M,N − 1)

G(M,N)
=

M∑
m=1

1
µN−1

m

∏
l 6=m

µl

µl − µm

M∑
m=1

1
µN

m

∏
l 6=m

µl

µl − µm

=

M∑
m=1

µN
m

∏
l 6=m

(µl − µm)

−1

M∑
m=1

µN+1
m

∏
l 6=m

(µl − µm)

−1 . (14)

For the corresponding open system the Laplace



transform of the flow time is ofcourse

E[e−sTO ] =
M∏

m=1

µm − λ

µm − λ + s
, (15)

where λ is given by (14).

To simplify the comparison we will confine ourselves
here to the balanced case. The Push system is equiva-
lent to an open Jackson network with M exponential
stations with rate µ. Let TO, TC , denote the flow times
for parts in the open and closed systems respectively.
The closed system has N parts and a corresponding
throughput

λ = µ
N

M + N − 1
. (16)

The Laplace transform of the flow time in the open
system is then given by

E[e−sTO ] =
(

µ− λ

µ− λ + s

)M

. (17)

In particular the mean and variance of T0 are given by

E[TO] =
M

µ− λ
, (18)

Var[TO] =
M

(µ− λ)2
.

For the balanced case the Laplace transform of the
flow time is given by,

E[e−sTC ] =
(

µ

µ + s

)M+N−1

. (19)

In particular the mean and variance of the flow time
for the closed system is

E[TC ] =
1
µ

(M + N − 1), (20)

Var[TC ] =
1
µ2

(M + N − 1).

Denoting by cO, cC the corresponding coefficients of
variation we obtain the following expression for their
ratio

cC

cO
=

√
M

M + N − 1
. (21)

(21) suggests that the variability in total processing
time for pull systems is always less than that of open
systems, the effect becoming less pronounced under
heavy utilization.
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