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We consider the problem of estimating passage times in stochastic simulations of
Markov chains+ Two types of estimator are considered for this purpose: the “sim-
ple” and the “overlapping” estimator; they are compared in terms of their asymp-
totic variance+ The analysis is based on the regenerative structure of the process
and it is shown that when estimating the mean passage time, the simple estimator
is always asymptotically superior+However,when the object is to estimate the expec-
tation of a nonlinear function of the passage time, such as the probability that the
passage time exceeds a given threshold, then it is shown that the overlapping esti-
mator can be superior in some cases+ Related results in the Reinforcement Learn-
ing literature are discussed+

1. INTRODUCTION

This article deals with passage time estimation in discrete-time Markov chains+
Starting from a given state, i , of an irreducible, positive recurrent Markov chain
$Xn;n � N % with countable state space S,we want to estimate the mean time required
for the process to reach another state, j+More generally, if T j � inf $n � 0: Xn � j %
denotes the hitting time of state j, then we are interested in estimating Ei f ~T j!,
where the function f : S � R is such that the expectation exists+ Of particular impor-
tance is the probability that the passage time exceeds a given threshold, n � N,
obtained if we choose f ~x!� 1~x � n!+
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For Markov chains with a large state space and lack of structure, simulation
might be the only practical option; thus, the problem we discuss is relevant in appli-
cations+ Passage-time-estimation problems arise naturally in many situations+ For
instance, in queuing networks, one is often interested in the statistics of the time
until a certain critical buffer overflows+ Harrison and Knottenbelt @7# gave a mod-
ern survey of passage time problems in queuing applications+ Such problems are of
great importance in the analysis of manufacturing systems and communications
networks+ Another important application for passage time estimation comes from
the connection between the mean passage time, Ei Tj , and the potential ~or funda-
mental! matrix of the Markov chain, ~Zij !, defined via Zij �(n�0

` ~Pij
n �pj !+ This is

related in turn to bias properties, rapidity of convergence to steady state, and the
sensitivity of the stationary distribution with respect to perturbations of the transi-
tion probability matrix+ For this last application, which is becoming increasingly
important, we refer the reader to Meyer @11# , Cao and Chen @3# , Cho and Meyer
@4# , and Heidergott and Hordijk @8# +

A number of approaches have been proposed for improving the naïve Monte
Carlo estimate of the passage time+ In particular, we mention Ross and Schechner
@14# , who proposed a method using hazard rates ~and which is essentially based on
conditioning! in order to reduce the variance of the estimator+ An alternative idea,
which becomes particularly advantageous when the target state corresponds to a
rare event, uses change of measure arguments+ We refer the reader to Glynn and
Iglehart @6# , Nakayama, Goyal, and Glynn @12# , and Shahabuddin @15# +

However, even the naïve estimate for passage times presents some intricacies+
If starting from a given state, i , we happen to return to i several times before we
eventually visit j, are we to consider that we have multiple, correlated measure-
ments of the passage time or a single one? Depending on how we answer this ques-
tion, we obtain two different estimators+ The simple estimator derives a single
estimate of the passage time from each such realization+ The overlapping estimator,
on the other hand, derives one additional measurement for each return to state i
before the visit to j+ However, these multiple measurements obtained by the over-
lapping estimator are, of course, not independent+As it is shown in Section 3, both
estimators are strongly consistent, so we need a criterion to decide which one is
preferable+We answer this question using an asymptotic variance comparison car-
ried out via elementary regenerative arguments in Section 4+ Despite the messy
analysis, the question has a rewarding answer+ For the problem of estimating mean
passage times, the simple estimator, which ignores repeated visits to the initial state
i , is always superior compared to the overlapping estimator, and the ratio of the two
asymptotic variances has a simple form+ On the other hand, when estimating the
probability that the passage time exceeds a given threshold, the situation is more
complicated and, in some cases, the overlapping estimator might be asymptotically
superior to the simple estimator+

Another important application of the estimation problem that we discuss in this
article stems from its connection with Reinforcement Learning+ This is a simulation-
based stochastic approximation framework that has been successfully used for the
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computation of near-optimal policies in large-scale Markov decision processes ~see
Bertsekas and Tsitsiklis @1# !+

In the analysis of such algorithms there appear a “first visit” and an “every
visit” estimator that correspond to the simple and overlapping estimators, respec-
tively, introduced in this article+ In Singh and Sutton @16# some of the statistical
properties of these estimators have been analyzed in the context of Reinforcement
Learning algorithms and, in particular, it has been shown that the “every visit” ~or
overlapping! estimator is asymptotically inferior to the “first visit” ~or simple! esti-
mator in terms of the mean squared error ~MSE! criterion+ In this article, ~1! we
provide a rigorous analysis of the statistical properties of the estimators, ~2! by
using standard results on asymptotic statistical properties of ratio estimators we are
able to shift our focus from the MSE to the asymptotic variance ratio of the two
estimators and thus provide much simpler asymptotic results, and ~3! we examine
not only mean passage times but also expectations of nonlinear functions of the
passage time as well, such as the probability that the passage time exceeds a given
threshold+ In that case, there are situations where the overlapping estimator might
be superior to the simple estimator in terms of asymptotic variance+

Finally, we should point out the conceptual affinity between the estimators in
this article and the ones proposed in Calvin and Nakayama @2# ,who consider regen-
erative simulations with two sequences of regeneration points and use a permuta-
tion scheme that results in variance reduction+

Preliminary results on this problem, together with an analysis of a similar prob-
lem involving superposition of two point processes, can also be found in Kara-
michalakou and Zazanis @9# + For analytic results regarding passage times in Markov
chains we refer the reader to Kemperman @10# , and Syski @17# +

2. ESTIMATORS FOR THE MEAN PASSAGE TIME IN MARKOV CHAINS

We consider a discrete-time Markov chain, X � $Xn;n � 0,1,2, + + +% , on a countable
state space S+We will denote its transition probability matrix by ~Pij !, and we will
assume that it is irreducible and positive recurrent+We are interested in estimating
the mean passage time from state i to state j using data obtained from the sample
path of the chain+Although we restrict our attention here to discrete-time processes,
the situation in continuous time is quite analogous+ Let S1

i � min$n � 0 : Xn � i %
denote the time of the first visit of X to state i and S1

j � min$n � S1
i : Xn � j % de-

note the time of the first visit to j after the first visit to i + We define recursively
Sk

i � min$n � Sk�1
j : Xn � i % and Sk

j � min$n � Sk
i : Xn � j % for k � 2,3, + + + + The

$Sk
i ; k � 1% are a ~possibly delayed! sequence of regeneration points for X and, with

the possible exception of an initial segment until the first visit to state i , the sample
path of X splits into cycles starting with a visit to i and ending with the first sub-
sequent return to i after visiting j+

Consider a sample path consisting of n such cycles and let us take a closer look
at the kth cycle+ Two estimators for the mean passage time from i to j naturally
suggest themselves:
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• The simple estimator

Fn :�
1

n (k�1

n

W1, k ,

where n is the number of cycles and W1, k :� Sk
j � Sk

i is the first passage time
from state i to state j in the kth cycle ~see Fig+ 1!+

• The overlapping estimator

Cn :�
(
k�1

n

(
l�1

Qk

Wl, k

(
k�1

n

Qk

,

where n is again the number of cycles, Qk is the total number of visits to state
i in the kth cycle, and Wl, k is the passage time from state i to state j for the lth
visit of state i in the kth cycle ~see Fig+ 2 and the discussion that follows!+

In order to clarify the structure of the overlapping estimator, note that each
cycle begins with a visit to i and consists of a number of excursions from i during
which the process returns to i without having visited j plus a final excursion start-
ing from i and reaching j without returning to i + The last segment of each cycle is
the return from j to i + During this last segment, the state j can appear several times,
but the state i appears only at the end of the segment+ The appearance of i signals
the beginning of the next cycle+ If we denote by Q the number of times that state i
occurs during a typical cycle ~note that we have dropped the subscript that refers to
the cycle for simplicity!, then we have Q �1 excursions starting from i and ending
at i that do not include state j plus a trip from i to j that does not return to i + Let us
denote by U1,U2, + + + ,UQ�1 the lengths of the Q � 1 excursions that return to i and
by V the length of the final trip+ Then, during this cycle, the overlapping estimator

Figure 1. Overlapping passage time estimator in a Markov chain+
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counts Q passage times from i to j, namely W1 � U1 � U2 � {{{� UQ�1 � V and
W2 � U2 � {{{� UQ�1 � V, + + + ,WQ � V+ For instance, in Figure 2, Qk � 4, W1, k �
U1, k � U2, k � U3, k � Vk, and W3, k � U3, k � Vk+

Clearly, because of the regenerative structure of this process, the resulting cycles
are independent and identically distributed ~i+i+d+! objects, and, in particular, the
random variables Qk, k � 1,2, + + + , are i+i+d+ Let

p :� Pi ~T
j � T i ! (1)

denote the probability that, starting from state i , we visit state j before we return to
i , and let

q :� 1 � p � Pi ~T
i � T j ! (2)

denote the probability of the complementary event+ Then it is clear by the strong
Markov property that Q is a geometric random variable with probability of success
p+ Furthermore, also as a consequence of the strong Markov property, it follows
that the successive excursion times from i to i without visiting j within a cycle, Ul ,
l �1,2, + + + ,Q �1, are conditionally independent, given Q,with common distribution

gii ~n! :� Pi ~T
i � n 6T i � T j !, n � 1,2, + + + ,

which does not depend on Q+ Finally, V is independent of $Q;U1, + + + ,UQ�1% with
distribution

gij ~n! :� Pi ~T
j � n 6T j � T i !, n � 1,2, + + + +

From the above we obtain the following equivalent description of the structure of
our regenerative cycles+ We can assume that we have a sequence of i+i+d+ random
variables with distribution gii which we will designate by $Ul ; l � 1,2, + + +% , a ran-
dom variable V with distribution gij , and a geometric random variable ~r+v+! Q with

Figure 2. Structure of the overlapping estimator+
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probability of success p+ Furthermore, let $Ul % , V, and Q be independent+ Then the
collection of r+v+’s $Q;Ul , l � 1,2, + + + ,Q � 1,V % describes the cycle completely+

We thus have W �(l�1
Q�1 Ul � V and, taking expectations,

EW � E�(
l�1

Q�1

Ul � V�� EUE @Q � 1#� EV+

Since Q is geometric, EQ � 10p and E @Q � 1#� q0p, from which we obtain

EW �
q

p
EU � EV+ (3)

We close the above discussion by noting that the overlapping estimator can also be
written as

Cn �

(
k�1

n �Vk � (
l�1

Qk�1

lUl, k�
(
k�1

n

Qk

, (4)

a fact that will be used in the sequel+

3. STRONG CONSISTENCY OF THE TWO ESTIMATORS
FOR THE MEAN PASSAGE TIME IN MARKOV CHAINS

Recall that an estimator is strongly consistent if it converges with probability 1 to
the quantity to be estimated as the number of observations goes to infinity+

Proposition 1: Both the simple and the overlapping estimator defined earlier are
strongly consistent; that is, as nr `,

Fn �
1

n (k�1

n

W1, kr EW w+p+ 1 (5)

and

Cn �

(
k�1

n

Vk �(
l�1

Qk

lUl, k

(
k�1

n

Qk

r

E�V � (
l�1

Q�1

lUl�
EQ

w+p+ 1, (6)
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with

E�V � (
l�1

Q�1

lUl�
EQ

� EW+ (7)

Proof: Equation ~5! is an immediate consequence of the Strong Law of Large Num-
bers+ ~The irreducibility and positive recurrence of the Markov chain guarantee the
finiteness of EW+! Thus, the simple estimator is clearly strongly consistent+ The
limit ~6! is immediate if we divide both the numerator and denominator by the num-
ber of cycles n and appeal again to the Strong Law of Large Numbers+ Thus, to
establish the strong consistency of the overlapping estimator, it suffices to show
~7!+ Indeed, the numerator on the left-hand side of ~7! is

E�QV � (
l�1

Q�1

lUl� � EQEV � EUE�(
l�1

Q�1

l�
~where we have used the independence of $Ul % , V � UQ, and Q!+ Hence, the left-
hand side of ~7! becomes

EV � EU
E @Q~Q � 1!#

2EQ
+ (8)

Since the descending factorial moment of order m of the geometric distribution is
given by

E @Q~Q � 1!~Q � 2! + + + ~Q � m � 1!# �
m!qm�1

pm
, (9)

we easily see from ~8! and ~9! that

E�QV � (
l�1

Q�1

lUl�
EQ

� EV �
q

p
EU+ (10)

The above, together with ~3!, establishes ~7! and, hence, the strong consistency of
the overlapping estimator+ �

Proposition 1 is established in Singh and Sutton @16# by means of a heuristic
argument and in Bertsekas and Tsitsiklis @1# + It is included here for the sake of
completeness of the discussion+

4. ASYMPTOTIC VARIANCE COMPARISON OF THE TWO ESTIMATORS

We now proceed to compare the two estimators in terms of their respective asymp-
totic variances+ For the simple estimator, we have Var~Fn!� ~10n!Var~W ! ~due to
the independence of cycles! and, hence,
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sF
2 :� lim

nr`
n Var~Fn !� Var~W !� Var�V � (

l�1

Q�1

Ul�+
Using the independence of $Ul % , V, and Q, we have

Var�V � (
l�1

Q�1

Ul� � Var~V !� Var~U !E~Q � 1!� ~EU !2 Var~Q!,

and since Q is geometrically distributed,

sF
2 � Var~V !�

q

p
Var~U !�

q

p2
~EU !2+ (11)

Thus, we conclude that the simple estimator is unbiased and its asymptotic variance
constant is given by the above expression+

We now turn our attention to the overlapping estimator, which is a ratio esti-
mator+ We saw in Section 3 that it is strongly consistent+ The following theorem
~which is an adaptation of a classic result regarding asymptotic statistics; e+g+, see
Cramér @5, p+ 353# and Prakasa Rao @13, p+ 146# ! shows that it is also asymptoti-
cally unbiased and gives its asymptotic variance+

Theorem 1 ~Ratio estimator!: Let ~jk,zk! , k � 1,2, + + + , be i.i.d. vectors such that,
for some d� 0, P~6z6� d!�1 and Ez� 0. We assume that both j and z have finite
second moments. Then, as nr `, the ratio estimator

Rn �

(
k�1

n

jk

(
k�1

n

zk

converges with probability 1 to

r :�
Ej

Ez
+

Furthermore, Rn is asymptotically unbiased and its bias is O~n�1!; in fact,

lim
nr`

n~ERn � r! � r�Var~z!

~Ez!2
�

Cov~j,z!

EjEz
�+ (12)

Finally, the limit

lim
nr`

n Var~Rn ! �: s 2 (13)
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exists and is given by the expression

s 2 �
Var~j!� r 2 Var~z!� 2r Cov~j,z!

~Ez!2

�
E @j 2 #� r 2E @z 2 #� 2rE @jz#

~Ez!2
+ (14)

The limit ~13! is the asymptotic variance constant and it characterizes the behav-
ior of the estimator when the number of cycles is large, since, in that case,Var~Rn!�
~s 20n!� o~10n!+ Based on Theorem 1, and in view of the fact that MSE � ~bias!2 �
variance, we realize that the contribution of the bias term to the MSE is asymptot-
ically negligible compared to that of the variance+ Thus,we can ignore the bias term
in our comparison of the two estimators+

We now turn our attention to the asymptotic variance of the two estimators+

Theorem 2: In any irreducible, positive recurrent Markov chain with countable
state space, the simple estimator of the mean passage time for any pair of states i
and j is superior to the overlapping estimator in terms of asymptotic variance and
in fact it holds that the asymptotic variance ratio (AVR) is given by

AVR :�
sC

2

sF
2

� 1 � q, (15)

where sC
2 :� limnr` n VarCn and q is given by (2).

Proof: Applying Theorem 1 ~which guarantees the existence of sC! and taking
into account Proposition 1, we obtain

sC
2 �

E��V � (
l�1

Q�1

lUl�2�� r 2E @Q2 #� 2rE�QV � Q (
l�1

Q�1

lUl�
~EQ!2

, (16)

with

r � EV �
q

p
EU+ (17)

In order to be able to compare directly the asymptotic variance constant of the over-
lapping estimator, sC2 , with that of the simple one, given in ~11!, we need to express
~16! in terms of p and the moments of U and V+ Since Q is geometric, we have

E @Q2 # �
1 � q

p2
+ (18)
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The “covariance” term in ~16! can also be easily computed taking into account the
independence of Q, V, and $Ul % as follows:

E�QV � (
l�1

Q�1

lUl� � E @Q2V #� E�Q (
l�1

Q�1

lUl�
� E @Q2 #EV � EUE�Q

1

2
Q~Q � 1!� +

Writing 1
2
_ E @Q2~Q � 1!# � 1

2
_ E @Q~Q � 1!~Q � 2!# � E @Q~Q � 1!# and using ~9!,

we find

E�QV � Q (
l�1

Q�1

lUl� �
1 � q

p2
EV �

q~2 � q!

p3
EU+ (19)

Finally,

E�QV � (
l�1

Q�1

lUl�2

� E~QV !2 � 2E�QV (
l�1

Q�1

lUl�� E�(
l�1

Q�1

lUl�2

+ (20)

Let us examine each of the three terms on the right-hand side of ~20!+ For the first,
we have

E~QV !2 � E @V 2 #E @Q2 #� E @V 2 #
1 � q

p2
; (21)

for the second,

E�QV (
l�1

Q�1

lUl� � ~EV !~EU !E�Q (
l�1

Q�1

l�
� ~EV !~EU !E� 1

2
Q2~Q � 1!�

� ~EV !~EU !
q~2 � q!

p3
, (22)

and, finally, for the third,

E��(
l�1

Q�1

lUl�2� � E�(
l�1

Q�1

l 2Ul
2�� 2E�(

l�2

Q�1

(
m�1

l�1

lmUl Um� + (23)
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The first term on the right-hand side of ~23! is equal to

E @U 2 #E�(
l�1

Q�1

l 2� � E @U 2 #E� 1

3
Q~Q � 1!~Q � 2!�

1

2
Q~Q � 1!�

� E @U 2 #
q~1 � q!

p3
, (24)

where we have used, once more, the expression for the descending factorial moments
of the geometric distribution ~9!+ The second term on the right-hand side of ~23! is

2~EU !2E�(
l�2

Q�1

l (
m�1

l�1

m� � ~EU !2E�(
l�2

Q�1

l~l � 1!~l � 2!� 2l~l � 1!�
� ~EU !2� 1

4
E @Q~Q � 1!~Q � 2!~Q � 3!#

�
2

3
E @Q~Q � 1!~Q � 2!#�

� ~EU !2�4!q3

4p4
� 2

3!q2

3p3 �
� ~EU !2

2q2~2 � q!

p4
(25)

Hence, from ~20!–~25!, we have

E�QV � �(
l�1

Q�1

lUl�2� � E @V 2 #
1 � q

p2
� 2EVEU

q~2 � q!

p3

� E @U 2 #
q~1 � q!

p3
� ~EU !2

2q2~2 � q!

p4
+ (26)

Thus, using ~16!–~26!, after carrying out the necessary simplifications we obtain
the following expression for the asymptotic variance:

sC
2 � Var~U !

~1 � q!q

p
� Var~V !~1 � q!� ~EU !2

q~1 � q!

p2
+ (27)

Comparing the above expression for the asymptotic variance constant of the
overlapping estimator with that of the simple estimator, given in ~11!, we obtain
~15!+ �

Thus, for the mean passage time estimation, the simple estimator is always
superior to the overlapping one in terms of asymptotic variance, despite the fact
that it might appear more wasteful+Although the overlapping estimator obtains more
measurements over any given sample path than the simple estimator, these mea-
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surements are obviously strongly correlated+ When q is close to zero ~i+e+, when
returning to i before visiting j is very unlikely!, the two estimators are essentially
the same and their asymptotic variances are nearly equal+When, on the other hand,
q is close to 1, then the overlapping estimator has asymptotic variance that is nearly
twice that of the simple estimator+

We should point out that the above analysis is asymptotic and might not pro-
vide the complete picture if one is interested in the small sample behavior of the
two estimators+ In that case, one could use the mean squared error as a comparison
criterion+ For the simple estimator,which is unbiased, this is equal to Var~Fn!+How-
ever, for the overlapping estimator,which is only asymptotically unbiased and whose
variance was obtained asymptotically using Theorem 1, the situation is more com-
plicated+ Some results on this are provided in Singh and Sutton @16# and Bertsekas
and Tsitsiklis @1, p+ 186# +

5. ESTIMATING THE DISTRIBUTION OF THE PASSAGE TIME

Consider now the same problem where the object is to estimate the probability that
the passage time exceeds a given threshold, n� N @i+e+, the probability Pi~T j � n!# +
Using the simple estimator, this is estimated by

Fn �
1

n (k�1

n

1~W1, k � n!,

whereas the overlapping estimator is given by

Cn �

(
k�1

n

(
l�1

Qk

1~Wl, k � n!

(
k�1

n

Qk

+

It will be convenient to use the notation

jl, k � 1~Wl, k � n!+ (28)

Also, as in the previous sections, in order to simplify the notation we will drop the
subscript designating the cycle when not necessary+ Thus, for instance, jl can be
used instead of jl, k+ Clearly, from the Strong Law of Large Numbers,Fn is a strongly
consistent estimator of

r :� Ej1 � P~W1 � n!+ (29)

Also, let

bm :� E @j16Q � m#� E�1�(
l�1

m�1

Ul � V � n�� , m � 1,2, + + + + (30)
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Then E @jl 6Q � m#� bm�1�l , where l � 1,2, + + + ,m+ Note in particular that

r � (
m�1

`

pqm�1bm + (31)

Finally, define the generating function B~x! :�(m�1
` x mbm + Note in particular that

B~q!� qp�1(m�1
` pqm�1bm � qp�1r+

Theorem 3: With the above definition, we have the following:

(i) Cn is also a strongly consistent estimator of r.
(ii) The AVR of the two estimators is given by

AVR :�
sC

2

sF
2

�
1 � q � pr � 2p2B '~q!

1 � r
+ (32)

(iii) An alternative expression for the AVR is

AVR � p � 2q
1 � Ir

1 � r
, (33)

where Ir :� (m�2
` ~m � 1!p2qm�2bm.

Proof: By virtue of the Strong Law of Large Numbers, we have, as nr `,

Cnr

E(
l�1

Q

jl

EQ
w+p+ 1+ (34)

The numerator of the right-hand side of ~34! can be computed by conditioning on Q
as follows:

(
m�1

`

pqm�1 (
l�1

m

E @jl 6Q � m# � (
m�1

`

pqm�1 (
l�1

m

bm�l�1

� (
l�1

`

pql�1 (
m�l

`

qm�lbm�l�1

� p�1 (
m�1

`

bm pqm�1

� p�1r,

the last equation following as a result of definitions ~30! and ~29!+ This, together
with the fact that EQ � p�1 , establishes the strong consistency of the overlapping
estimator+ Regarding the asymptotic variances, we first note that

n Var~Fn ! � r~1 � r!+ (35)
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On the other hand, the asymptotic variance of the overlapping estimator can be
computed as in Section 4 by first computing EY 2 and EYQ,where Y �(l�1

Q jl + This
is accomplished by first conditioning on Q, as follows:

E @Y 2 6Q � m# � E�(
l�1

m

jl (
l '�1

m

jl ' 6Q � m�
� E�(

l�1

m

jl
2 6Q � m�� 2E�(

l�2

m

(
l '�1

l�1

jl jl ' 6Q � m�
� E�(

l�1

m

jl 6Q � m�� 2E�(
l�2

m

(
l '�1

l�1

jl 6Q � m�
� E�(

l�1

m

~2l � 1!jl 6Q � m�
� (

l�1

m

~2l � 1!E @jl 6Q � m#

� (
l�1

m

~2l � 1!bm�l�1+ (36)

In the above string of equalities, the third follows from the fact that jl takes only the
values zero and one and also from the fact that for l ' � l, $Wl � n%� $Wl ' � n% and,
thus, jl jl ' � jl + Therefore, taking expectation with respect to Q in ~36!, we have

EY 2 � (
m�1

`

pqm�1 (
l�1

m

~2l � 1!bm�l�1

� (
l�1

`

~2l � 1!pql�1 (
m�l

`

bm�l�1 qm�l

� �2

p
� 1�p�1 (

n�1

`

bn pqn�1

�
2 � p

p2
r+ (37)
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Also,

E @QY # � (
m�1

`

pqm�1m(
l�1

m

E @jl 6Q � m#

� (
m�1

`

pqm�1m(
l�1

m

bm�l�1

� (
l�1

`

pql�1 (
m�l

`

qm�lmbm�l�1

� (
l�1

`

pql�1 (
m�l

`

qm�l~m � l � 1!bm�l�1 �(
l�1

`

~l � 1!pql�1 (
m�l

`

qm�lbm�l�1

� B '~q!� E @Q � 1#p�1 (
n�1

`

pqn�1bn

� B '~q!� r
1 � p

p2
+

From Theorem 1 we have

lim
nr`

n Var~Cn ! �
1

~EQ!2
~EY 2 � r 2EQ2 � 2rEYQ!, (38)

where r � EY0EQ, EQ � 10p, and EQ2 � ~1 � q!0p2 + Substituting the above into
~38!, we obtain

lim
nr`

n Var~Cn ! � r~1 � q!� pr 2 � 2rp2B '~q!+ (39)

Thus, dividing the above expression by r~1 � r!, we establish ~32!+
The alternative expression for AVR is obtained by straightforward algebraic

manipulations, which we omit+ �

In closing this section we should point out the significance of Ir in ~33!+ It is
obtained by averaging the bm’s not with the geometric distribution with probability
of success p ~which is the distribution of Q! as in ~31!, but with a negative binomial
distribution,which expresses the sum of two such geometric random variables+ Since
bm is increasing in m, as can be seen by its definition, it follows from a simple
stochastic ordering argument that Ir � r and, hence, that ~1 � Ir!0~1 � r! � 1+ Thus,
we have

AVR � 1 � q+

PASSAGE TIME ESTIMATORS 231



This should be compared with the corresponding equality ~3! of Theorem 2+As we
will see in Section 6 by means of an example, there are situations where AVR , 1,
thus making the overlapping estimator more efficient than the simple estimator for
large samples, unlike the situation where one tries to estimate the mean passage
time+

Finally,we point out that the above results can readily be extended to continuous-
time Markov chains and to Markov-renewal processes+Also, the target state j could
easily be replaced by a set of states, J+

6. A TWO-STATE MARKOV CHAIN

To obtain more insight into this situation, consider a caricature of the problem we
have examined, namely a discrete-time Markov chain with state space S � $0,1%
and transition probability matrix

P � �q p

1 0
� +

We want to estimate the mean passage time from zero to one, which, in this case, is
a geometric random variable with probability of success p+ Therefore, the variance
constant for the simple estimator is

sF
2 �

q

p2
+ (40)

For the overlapping estimator we have

r �
E @Q~Q � 1!#

2EQ
�

1

p

and the asymptotic variance constant is given by

sC
2 �

1

4
E @Q2~Q � 1!2 #�

1

p2
E @Q2 #� 2

1

2p
E @Q2~Q � 1!#

~EQ!2
+

Using again the expressions for the moments of the geometric distribution,we obtain,
after some algebraic manipulations,

sC
2 �

q~1 � q!

p2
+ (41)

We see that the ratio of ~40! to ~41! satisfies ~15!+
However, it should be pointed out that although the overlapping estimator for

the mean passage time is inefficient, the situation is different if the object is to
estimate the distribution of the passage time+ For instance, suppose that we are inter-
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ested in the probability that the time required to make the transition from zero to
one is strictly greater than n+ In this case, W1 � Q and

r � P~W1 � n!� P~Q � n!� qn+

Also, bm � P~W1 � n6Q � m!� 1~m � n� 1! and B~x!� ~1 � x!�1x n�1 + In that
case straightforward algebraic manipulations give the following expression for the
value of the AVR:

AVR � 1 � q �
2npqn

1 � qn
+ (42)

Figure 3 shows plots of the ratio as a function of n for various values of p+ As we
can see, for small values of n and small values of p, the value of the ratio in ~42! is
less than one and thus the overlapping estimator has a smaller asymptotic variance
than the simple estimator+
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