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Abstract

We consider Markov-dependent binary sequences and study various types
of success runs (overlapping, non-overlapping, exact, etc.) by examining
additive functionals based on state visits and transitions in an appropriate
Markov chain. We establish a multivariate Central Limit Theorem for the
number of these types of runs and obtain its covariance matrix by means
of the recurrent potential matrix of the Markov chain. Explicit expressions
for the covariance matrix are given in the Bernoulli and a simple Markov-
dependent case by expressing the recurrent potential matrix in terms of the
stationary distribution and the mean transition times in the chain. We also
obtain a multivariate Central Limit Theorem for the joint number of non-
overlapping runs of various sizes and give its covariance matrix in explicit
form for Markov dependent trials.

Key words: Runs, Markov Chains, Potential Matrix, Central Limit
Theorem for Runs

1. Introduction

In a sequence of binary trials, {ξi} with ξi ∈ {0, 1}, i = 1, 2, . . . , (suc-
cess=1 or failure=0) a success run of length k is the occurrence of k consec-
utive successes. We will not discuss here the vast array of applications of the
analysis of runs and patterns in Statistics and Applied Probability; for this
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we refer the reader to Balakrishnan and Koutras (2002) and Fu and Lou
(2003).

Given a realization of n trials there are several different ways of counting
the number of success runs of length k depending, among other considera-
tions, on whether overlapping in counting is allowed or not. A success run
of length k occurs at position m ≥ k of the binary string ξ1, ξ2, . . . , ξn if

ξm−k+1 = ξm−k+2 = · · · = ξm−1 = ξm = 1. (1)

Counting all the positions m = k, k = 1, . . . , n for which the above condition
holds gives the count Mn,k of the number of success runs with overlapping
allowed. A non-overlapping success run of length k occurs at position m if
(1) holds and no non-overlapping run of length k has already occurred in
positions m − k + 1,m − k + 2, . . . ,m − 1. The number of non overlapping
runs of length k in a string of n trials is denoted by Nn,k. Runs of exact size
k are also of interest, i.e. k consecutive successes flanked on the left and right
by failures. An exact run of size k occurs at position m ≥ k if, in addition
to (1), ξm−k = 0 and ξm+1 = 0. We denote the number of exact runs of size
k in a string of n trials by Jn,k. Note that, when the values of the ξi’s are
revealed sequentially, an exact run that occurs at position m will be counted
when the value of ξm+1 becomes known. Finally, we say that a run of size
greater than or equal to k occurs at position m if (1) holds and ξm−k = 0.
Gn,k, denotes the number of success runs of size greater than or equal to k in
a string of n trials. In a string of consecutive successes of length greater than
k only one run of size greater than k is counted according to this definition.
See Fu and Lou (2003) for further clarifications regarding these definitions.
To illustrate, if n = 13 and k = 2, in the binary string 0111101110110 we
have the following success run counts: N13,2 = 4, G13,2 = 3, M13,2 = 6, and
J13,2 = 1.

In this paper we consider Markov dependent binary trials. We investi-
gate the asymptotic form of the joint distribution of (Nn,k,Mn,k, Gn,k, Jn,k),
as n → ∞ and k is fixed, and show that it obeys a multivariate Central
Limit Theorem (CLT). For this purpose we consider an appropriate Markov
chain and we express the number of success runs of the kind mentioned as
additive functionals based on state visits and state transitions for this chain.
The multivariate CLT follows then from standard results for such function-
als. The covariance matrix of the limiting normal distribution is expressed
in terms of the stationary distribution of the Markov chain and its recurrent
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potential matrix (also known as the fundamental matrix). This allows for the
efficient numerical computation of the covariance matrix for quite general
types of Markovian dependence of the binary trial sequence. In the special
case of simple two-state Markovian dependence (and of course in the case
of Bernoulli trials) we take advantage of the connection that exists between
the potential matrix of the chain and the mean transition times between the
states of the chain. By straightforward, if somewhat involved, calculations
we are able to obtain explicit expressions for the potential matrix, and there-
fore for the covariance matrix itself, in terms of the parameters of the model.
The same technique is used to obtain a multivariate CLT for the number
of non-overlapping runs of different sizes, (Nn,k1 , . . . , Nn,kν ), in Markov de-
pendent trials and to compute the corresponding covariance matrix. Besides
its intrinsic interest and applications in areas including quality control, ran-
domness tests, and reliability, we indicate applications of this result to the
analysis of manufacturing systems with random yield.

Many results exist on the exact distribution of these types of runs for
Bernoulli trials and, in some cases, also for Markov-dependent trials. Impor-
tant unified approaches based on Markov chain techniques include Stefanov
and Pakes (1997) where exact results are obtained for runs and more gen-
eral patterns and Fu and Koutras (1994) which gives the distributions of the
run statistics Nn,k,Mn,k, Gn,k, Jn,k, together with the size of the longest run
for non-homogeneous Bernoulli trials. There are also approximations based
on limit theorems that establish convergence to Poisson or compound Pois-
son limits in certain asymptotic regimes and which are especially important
in applications. For an overview of these approximations see Barbour and
Chryssaphinou (2001).

CLT approximations for the number of runs have a long history. Despite
their limited accuracy they remain an important theoretical and practical
tool in the analysis of runs. Feller (1968) using arguments based on the
Central Limit Theorem for renewal processes, gave an normal approximation
for the number of non-overlapping success runs in i.i.d. trials. Setting

µ =
1− pk

qpk
and σ2 =

qpk − (2k + 1)
(
qpk
)2 − qp3k+1

(1− pk)3
, (2)

he shows that (Nn,k−nµ)/σ
√
n

d→ N (0, 1). The same approach is essentially
used in Fu et al. (2002) in order to obtain the limiting distribution of the
number of successes in success runs of length greater than or equal k in a

3



sequence of Markov dependent binary trials. Fu and Lou (2007) obtain in
the same fashion a CLT approximation for the number of non-overlapping
occurrences of a simple or compound pattern in i.i.d. multi-type trials.

A different approach towards establishing the asymptotic normality of
the number of runs that has been widely used is via the Hoeffding-Robbins
Central Limit Theorem for k-dependent random variables. A CLT for Mn,k

with i.i.d. Bernoulli trials was obtained along these lines by Godbole (1992)
expressing Mn,k as a sum of stationary (k−1)-dependent indicators. Using a
similar approach Hirano et al. (1991) gave explicit results establishing that

(Mn,k − (n− k + 1) pk)/σ
√
n

d→ N(0, 1) where

σ2 = −pk
(
1− pk

)
− 2kp2k +

2pk
(
1− pk

)
q

. (3)

Jennen-Steinmetz and Gasser (1986) also use the CLT for k-dependent ran-
dom variables in order to obtain a multivariate limiting normal distribution
for success and failure runs of various lengths with Bernoulli trials that do
not necessarily have the same probability of success but which obey certain
asymptotic conditions. The same approach is used in Fu and Lou (2007) in
order to obtain normal approximations for the number of overlapping occur-
rences of simple patterns in multi-type i.i.d. trials and in Makri and Psillakis
(2011) which obtains a CLT approximation for Jn,k.

An alternative and far-reaching approach based on exponential families of
random variables has been pioneered by Stefanov (1995) for the analysis of
the number of occurrences of runs and patterns in binary trials. By essentially
constructing an exponential martingale from the transitions of an appropriate
Markov chain, and a stopping time corresponding to the completion of the
pattern in question, he is able to derive both exact distributional results and
CLT approximations for the joint number of success runs of various sizes
and to determine the corresponding limiting covariance matrix. We refer the
reader also to Stefanov (2000) and Stefanov and Pakes (1997) for further
details.

A very rich literature exists on the wider problem of the number of oc-
currences of patterns in strings of multi-type trials, typically independent
or with markovian dependence (see Reinert, Schbath, and Waterman , 2000
for a review). In the study of the joint distribution of pattern frequencies
in strings of multi-type trials in Rukhin (2007) the potential matrix of a
Markov chain whose states are words of a given length is used explicitly in
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order to obtain the asymptotic covariance matrix in the corresponding CLT.
The potential matrix is determined in that case via the pattern correlation
matrix (as opposed to the results of this paper where it is determined using
explicit computations for the mean transition times between states). We refer
the reader also to Rukhin (2001) for a detailed study of pattern correlation
matrices, including their connection to the potential matrix, and to Rukhin
(2010) for explicit formulas involving the potential matrix and asymptotic
results establishing convergence to the multivariate Pòlya-Aeppli law.

2. A Markov chain for success runs

Throughout the paper we examine trials with two possible outcomes, 0
and 1. In this section we will assume that the sequence of trials {ξn;n ∈ N}
is a two-state Markov chain with transition probability matrix

PM =

[
q0 p0
q p

]
(4)

where p0, q0, p, q > 0 and p0 + q0 = p + q = 1. Consider now another
Markov chain {Xn;n ∈ N} with state space S = {0, 1, . . . , 2k} and transition
probability matrix

P =



q0 p0
q p
...

. . .

q p
...

. . .

q p
q p


. (5)

In the above matrix all elements are zero except for Pi0 = q for i = 1, 2, . . . , 2k,
while P00 = q0, P01 = p0, Pi,i+1 = p for i = 1, 2, . . . , 2k − 1, and P2k,k+1 = p.
It is easy to see that {Xn} is irreducible, aperiodic, and positive recurrent.
Its stationary distribution is given by

π0 =
q

q + p0
,

πi =
p0q

q + p0
pi−1 for i = 1, . . . , k, (6)

πi =
p0q

q + p0

pi−1

1− pk
for i = k + 1, . . . , 2k.
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Suppose that P (X0 = 0) = 1. The total number of runs in n trials for each of
the four different types of runs discussed above can be described by counting
the number of visits in various states, or the number of state transitions, of
the Markov chain {Xn;n ∈ N}. In fact

Nn,k =
n−1∑
m=0

1(Xm ∈ {k, 2k}) non-overlapping runs in [0, n− 1] (7)

Mn,k =
n−1∑
m=0

1(Xm ≥ k) overlapping runs in [0, n− 1] (8)

Gn,k =
n−1∑
m=0

1(Xm = k) runs of size ≥ k in [0, n− 1] (9)

Jn,k =
n−1∑
m=0

1(Xm = k,Xm+1 = 0) exact runs in [0, n− 1] (10)

Note that the case of Bernoulli trials is obtained within the above framework
by setting p0 = p and q0 = q in the transition matrix P in (5). We will
discuss the Bernoulli case at several places in this article, both because of its
simplicity and because of the great interest it presents.

3. Potential matrices and the central limit theorem for countable
state-space Markov chains

In this section we state for the sake of completeness some standard results
that establish the connection between the recurrent potential matrix for pos-
itive recurrent Markov chains with countable state space and the variance
constant in the Central Limit Theorem for additive functionals of the sample
paths of such chains. Suppose that {Xn;n ∈ N} is a Markov chain with
countable state space S and transition probability matrix P assumed to be
irreducible and positive recurrent. Denote by π the corresponding invariant
distribution. Let, as usual, P n

ij := P (Xn = j|X0 = i) and define the recurrent
potential matrix, Z, (also known as the fundamental matrix) via

Zij =
∞∑
n=1

(
P n
ij − πj

)
+ δij, i, j ∈ S (11)
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where δij is the Kroneker symbol which is equal to 1 if i = j and 0 otherwise.
The convergence of the series in (11) is a standard result (see for instance
Brémaud , 1997). If f : S → R is such that µ :=

∑
i∈S πif(i) <∞ then the

a.s. convergence of 1
n

∑n−1
m=0 f(Xm) to µ is a consequence of the Strong Law of

Large Numbers for Markov chains with countable state space (see Brémaud
, 1997). The corresponding Central Limit Theorem is given in the following

Theorem 1. With the above assumptions on the Markov chain {Xn}, let
f = (f1, . . . , fd) be a function S → Rd such that

∑
i∈S πifk(i) = µk < ∞

and
∑

i∈S πif
2
k (i) <∞ for k = 1, 2, . . . , d, and define the additive functional

{Sn = (Sn,1, . . . , Sn,d);n ∈ N} via Sn =
∑n−1

m=0 f(Xm). Then, with µ =
(µ1, . . . , µd), we have

n−1/2 (Sn − nµ)
d−→ N(0, V )

where the covariance matrix is given by

Vkl =
∑

(i,j)∈S×S

fk(i)Γijfl(j), k, l = 1, . . . , d, (12)

with
Γij = πiZij + πjZji − πiπj − δijπi, i, j ∈ S. (13)

For a proof we refer the reader to Aldous and Fill (1997, Ch.2) and in a
form where the appearance of the potential matrix is implicit in Port (1994,
p.823). When the state space S is finite, say consisting of n elements, the
potential matrix is given by the expression

Z = (I − P + Π)−1 (14)

where

Π :=

 π1 π2 · · · πn
...

...
π1 π2 · · · πn


is a matrix with n identical rows, each equal to the stationary distribution
π, and I is the identity matrix. Equation (14) provides an efficient way for
the computation of the recurrent potential matrix by means of numerical
methods.
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An interesting connection exists between the elements of the potential
matrix and the mean transition times between states of the chain. If Ti :=
inf{n > 0;Xn = i} then the following relations hold.

Zii = πiEπTi, (15)

Zij = Zjj − πjEiTj. (16)

(For a proof we refer the reader to Brémaud , 1997). In (15), (16), EiTj
denotes the expectation E[Tj|X0 = i] whereas EπTi denotes the expectation
of Ti given that X0 is distributed according to the stationary distribution
π. When the transition probability matrix has special structure one may
exploit (15) and (16) in order to obtain the elements of the potential matrix
in closed form. In this paper we will follow this route for Markov dependent
trials with dependence given by (4).

3.1. The transition chain

We now define a new Markov chain with state space S × S, called the
transition chain, by setting Yn := (Xn, Xn+1) for all n. The fact that {Yn;n ∈
N} is a Markov process is immediate. The transition probability matrix of
the new chain is given, in terms of the old one, by P(i1,j1),(i2,j2) = δj1i2Pi2j2 .
Furthermore, the process {Yn} inherits the properties of irreducibility and
positive recurrence from {Xn}. The stationary distribution of the new chain,
{π(i, j); (i, j) ∈ S×S}, is given in terms of the transition probability matrix
and the stationary distribution of the original chain by

π(i, j) = πiPij. (17)

Proposition 2. The potential matrix of the transition chain can be obtained
in terms of that of the original chain as follows:

Z(ij)(kl) = δikδjl − πkPkl + ZjkPkl. (18)

Proof : The proposition follows by a straightforward computation which we
sketch for the sake of completeness. It is simply a matter of evaluating the
infinite series

Z(ij)(kl) =
∞∑
n=1

(
P n
(ij)(kl) − π(k, l)

)
+ δ(i,j)(k,l).
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Note that
P n
(ij)(kl) = P n−1

jk Pkl for n = 1, 2, 3, . . . ,

where, of course, P 0
jk = δjk. Hence

Z(ij)(kl) =

(
δjk − πk +

∞∑
n=1

(
P n
jk − πk

))
Pkl + δikδjl.

From the above (18) follows readily.
Suppose now that g : S × S → Rd is a reward function based on transi-

tions and consider the additive functional

Tn =
n−1∑
m=0

g(Xm, Xm+1).

If ν :=
∑

(i,j)∈S×S πiPijg(i, j) exists then we have the Strong Law of Large

Numbers 1
n
Tn → ν w.p. 1. The corresponding CLT for the transition chain

is given in the following

Theorem 3. With the above assumptions on the Markov chain {Xn}, sup-
pose that

∑
(k,l)∈S×S πkPklg

2
i (k, l) <∞ for i = 1, . . . , d. Then

n−1/2(Tn − nν)
d−→ N(0,Υ),

where

Υij =
∑

(l1,l2),(k1,k2)∈S×S

gi(l1, l2)Γ(l1,l2),(k1,k2)gj(k1, k2), i, j = 1, . . . , d. (19)

and

Γ(l1,l2),(k1,k2) = π(l1,l2)Z(l1,l2),(k1,k2) + π(k1,k2)Z(k1,k2),(l1,l2) (20)

−π(l1,l2)π(k1,k2) − δ(l1,l2),(k1,k2)π(l1,l2).

This is of course a direct restatement of theorem 1 for the transition chain
and its proof is omitted.

If we use the expressions for π(l1,l2) and Z(l1,l2),(k1,k2) in (17) and (18) we
can express the matrix Γ of the transition chain in terms of the transition
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probabilities and stationary distribution of the original Markov chain as fol-
lows

Γ(l1,l2),(k1,k2) = πl1Pl1l2 (Pk1k2Zl2k1 − πk1Pk1k2) + πk1Pk1k2 (Pl1l2Zk2l1 − πl1Pl1l2)
−πl1πk1Pl1l2Pk1k2 , for (l1, l2) 6= (k1, k2) (21)

Γ(l1,l2),(l1,l2) = 2πl1Pl1l2 (1− πl1Pl1l2 + Pl1l2Zl2l1)− (πl1Pl1l2)
2 − πl1Pl1l2 . (22)

We close this section with the consideration of the joint asymptotic dis-
tribution of two additive functionals, one based on state visits and the other
based on state transitions. Let f : S → R and g : S × S → R and consider
two such Sfn , and Sgn defined by

Sfn :=
n−1∑
m=0

f(Xm), Sgn :=
n−1∑
m=0

g(Xm, Xm+1). (23)

Clearly, by defining the function f̃ : S × S → R via f̃(i, j) = f(i) for all
(i, j) ∈ S × S the above case is covered by theorem 3. Nevertheless, from
a computational point of view, it is worthwhile to examine this case sepa-
rately, from first principles. The above argument shows that a CLT holds for
(Sfn , S

g
n) and the asymptotic variances of Sfn and Sgn can be obtained from the-

orems 2 and 3 respectively, so the only remaining issue is the determination
of the asymptotic covariance. This is given in the following

Proposition 4. Let Sfn, Sgn be defined as in (23) and suppose that∑
i∈S f

2(i)πi <∞ and
∑

i,j∈S g
2(i, j)π(i, j) <∞. Then

lim
n→∞

1

n
Cov(Sfn , S

g
n) =

∑
i,j,k∈S

g(i, j)f(k) (πiPijZjk + πkZkiPij − 2πiPijπk) .

(24)

Proof: Begin by expressing the asymptotic covariance as

lim
n→∞

1

n
Cov(Sfn , S

g
n) = lim

n→∞

1

n
Eπ(SfnS

g
n)− (EπS

f
n)(EπS

g
n),

where Eπ denotes expectation with respect to the stationary distribution.
From (23) we can see that

Eπ(SfnS
g
n) =

n−1∑
m=0

n−1∑
l=m+1

∑
i,j,k∈S

g(i, j)f(k)πiPijP
l−m−1
jk

+
n−1∑
m=0

m∑
l=0

∑
k,i,j∈S

f(k)g(i, j)πkPijP
l−m
ki .
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Also, (EπS
f
n)(EπS

g
n) = n2

∑
i,j,k∈S g(i, j)f(k)πkπi,j. Thus, subtracting, we

have

Cov(Sfn , S
g
n) =

∑
i,j,k∈S

n−1∑
m=0

n−1∑
l=m+1

g(i, j)f(k)
(
πiPijP

l−m−1
jk − πiPijπk

)
+
∑
k,i,j∈S

n−1∑
m=0

m∑
l=0

f(k)g(i, j)
(
πkPijP

l−m
ki − πkπiPij

)
.

Now the following limits can be easily evaluated in terms of the fundamental
matrix Z in view of its definition in (11).

lim
n→∞

1

n

n−1∑
m=0

n−1∑
l=m+1

πiPij
(
P l−m−1
jk − πk

)
= πiPijZjk − πiPijπk, (25)

lim
n→∞

1

n

n−1∑
m=0

m∑
l=0

πkPij
(
P l−m
ki − πi

)
= πkZkiPij − πiPijπk. (26)

Taking these into account we obtain (24).

4. The potential matrix for Bernoulli trials

In this section, for the sake of simplicity of exposition and due to its
intrinsic interest, we will present the analysis for Bernoulli trials. The cor-
responding results for Markov dependent trials with dependence given by
(4) are sketched in the appendix. The transition probability matrix for the
process examined in this section is the matrix (5) modified in its first row by
setting p0 = p, q0 = q. Conditioning on the first transition one easily obtains
the mean transition times mij := EiTj and EπTj =

∑2k
i=0 πimij. Using (15)

and (16) we obtain the following expressions for the elements of the potential
matrix.

Zjj =


1− jqpj, if 0 ≤ j ≤ k,

1

1− pk
− jqpj

1− pk
− kqpk+j

(1− pk)2
, if j > k.

(27)
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Zij =



−jqpj + pj−i, if i < j, j ≤ k,

−jqpj, if i > j, j ≤ k,

pj−i − jqpj

1− pk
− kqpk+j

(1− pk)2
, i < j, j > k,

pk+j−i − jqpj

1− pk
− kqpk+j

(1− pk)2
, if i > j, j > k.

(28)

5. Explicit expression for the covariance matrix in terms of the
stationary distribution and the potential matrix

In this section we evaluate the elements of the covariance matrix in the
multivariate CLT for the various types of runs based on the ideas of section 3
and the results of section 4. The analysis is presented here again for Bernoulli
trials and the corresponding results for two-state Markov dependent trials are
relegated to the appendix. In subsection 5.1 we give results for the asymptotic
variances and covariances of Mn,k, Gn,k, and Nn,k whereas in subsection 5.2
we present the results for the asymptotic variance of Jn,k and its asymptotic
covariance with the other types of runs.

5.1. Runs expressed in terms of state visits

Let us use the CLT of Theorem 1 for additive functionals of the form
Sfn =

∑n−1
m=0 f(Xm) with f(x) = 1A(x) where A is an appropriate set of

states. The asymptotic variance, as given by (12), taking into account (13)
becomes

lim
n→∞

1

n
Var(Sn) = 2

∑
i,j∈A

πiZij −
∑
i∈A

πi −
∑
i,j∈A

πiπj. (29)

Equations (7), (8), and (9) show that, by choosing appropriately the set A
we can obtain the asymptotic variances of the number of success runs Nn,k,
Mn,k, and Gn,k.
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Asymptotic Variance of Nn,k. Taking (29) with A = {k, 2k} we obtain

lim
n→∞

1

n
Var(Nn,k) = 2 (πkZk,k + π2kZ2k,2k) + 2 (πkZk,2k + π2kZ2k,k)

−πk(πk + 1)− π2k(π2k + 1)− 2πkπ2k

=
qpk

(1− pk)3
(
1− (2k + 1)qpk − p2k+1

)
which agrees with (2).

Asymptotic Variance of Mn,k. Taking (29) with A = {k, k + 1, . . . , 2k} we
obtain

lim
n→∞

1

n
Var(Mn,k) =

1 + p

q
pk(1− pk)− 2kp2k.

Indeed, this agrees with (3) given in Hirano et al. (1991).

Asymptotic Variance Gn,k. Taking (29) with A = {k} we obtain

lim
n→∞

1

n
Var(Gn,k) = 2πkZkk − πk(πk + 1)

= qpk
(
1− (1 + 2k)qpk

)
.

When k = 1 then the random variable Gn,1 denotes the total number of
success runs of length 1 in sample of size n. In this case we have

lim
n→∞

1

n
Var(Gn,1) = qp(1− 3qp)

which is the expression obtained in Theorem 4 in (Fu and Lou , 2007, pg.
201).

We next obtain the asymptotic covariances. From Theorem 1 the asymp-
totic covariance of Sfn =

∑n−1
m=0 f(Xm) and Sgn =

∑n−1
m=0 g(Xm) when f(x) =

1A(x) and g(x) = 1B(x) is given by

lim
n→∞

1

n
Cov(Sfn , S

g
n) =

∑
i∈A, j∈B

(πiZij + πjZji) −
∑
i∈A∩B

πi

−

(∑
i∈A

πi

)(∑
j∈B

πj

)
, (30)

where we have again taken into account (13).
Again, by appropriate choice of the sets A and B we can obtain the

asymptotic covariances for the number of these types of runs.
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Asymptotic Covariance of (Mn,k, Nn,k). Using (30) with A = {k, 2k} and
B = {k, k + 1, . . . , 2k} we obtain

lim
n→∞

1

n
Cov(Mn,k, Nn,k) = −

(
1 +

2k∑
i=k

πi

)
(πk + π2k)

+
2k∑
i=k

(πiZik + πkZki + πiZi,2k + π2kZ2k,i)

= pk − kqp2k

1− pk
.

Asymptotic Covariance of (Gn,k,Mn,k). Using (30) with A = {k} and B =
{k, k + 1, . . . , 2k} we obtain

lim
n→∞

1

n
Cov(Gn,k,Mn,k) = −

2k∑
i=k+1

πiπk − πk(πk + 1) + 2πkZkk

+
2k∑

i=k+1

(πiZik + πkZki)

= pk(1− pk)− 2kqp2k.

Asymptotic Covariance of (Nn,k, Gn,k). Using (30) with A = {k, 2k} and
B = {k} we obtain

lim
n→∞

1

n
Cov(Nn,k, Gn,k) =

qpk

1− pk

(
1− (k + 1)qpk − kqpk

1− pk

)
.

5.2. Runs expressed in terms of state transitions

Here we apply Theorem 3 on the functional Sgn :=
∑n−1

m=0 g(Xm, Xm+1)
with g : S × S → R an indicator function, namely g(x, y) = 1A(x, y) where
A ⊂ S × S. Using (20) we have

lim
n→∞

1

n
Var(Sgn) =

∑
(l1,l2),(k1,k2)∈S×S

1A(l1, l2)Γ(l1,l2),(k1,k2)1A(k1, k2)

= 2
∑

(l1,l2),(k1,k2)∈A

π(l1,l2)Z(l1,l2),(k1,k2) −

 ∑
(l1,l2)∈A

π(l1,l2)

2

−
∑

(l1,l2)∈A

π(l1,l2).
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We now express the quantities referring to the transition chain in terms of the
stationary distribution and the potential matrix of the original chain using
(18) to obtain

lim
n→∞

1

n
Var(Sgn) = 2

∑
(l1,l2),(k1,k2)∈A

πl1Pl1l2Zl2k1Pk1k2 − 3

 ∑
(l1,l2)∈A

πl1Pl1l2

2

+
∑

(l1,l2)∈A

πl1Pl1l2 .

The above applies immediately to Jn,k, which denotes the number of runs of
exact length k, in a set of length n, with A = {(k, 0)}. Hence we have

Asymptotic Variance Jn,k.

lim
n→∞

1

n
Var(Jn,k) = 2πkP

2
k0Z0k − 3π2

kP
2
k0 + πkPk0

= q2pk + (2p− q(2k + 1))q3p2k.

This agrees with the results of (Makri and Psillakis , 2011, Theorem 2.3).
In order to obtain the asymptotic covariance of Jn,k with the other types

of runs we will use proposition 4 with f(x) = 1A(x), g(x, y) = 1B(x, y), where
A and B are appropriate sets of states and transitions respectively A ⊂ S,
B ⊂ S × S. Then

lim
n→∞

1

n
Cov(Sfn , S

g
n) = −2

 ∑
(i,j)∈B

πiPij

(∑
k∈A

πk

)
(31)

+
∑

(i,j)∈B,k∈A

(πiPijZjk + πkZkiPij) .

Asymptotic Covariance (Gn,k, Jn,k). Using (31) with A = {k} and B =
{(k, 0)} we have

lim
n→∞

1

n
Cov(Gn,k, Jn,k) = −2π2

kPk0 + πkPk0Z0k + πkZkkPk0

= q2pk
(
1− pk(2qk + 2q − 1)

)
.
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Asymptotic Covariance (Mn,k, Jn,k). Using again (31) forA = {k, k+1, . . . , 2k}
and B = {(k, 0)} we obtain

lim
n→∞

1

n
Cov(Mn,k, Jn,k) = −2πkPk0

2k∑
i=k

πi +
2k∑
i=k

(πkPk0Z0i + πiZikPk0)

= q2pk
(
1− pk(1 + 2k)

)
.

Asymptotic Covariance (Nn,k, Jn,k). Finally (31) with A = {k, 2k} and B =
{(k, 0)} gives

lim
n→∞

1

n
Cov(Nn,k, Jn,k) = −2πkPk0(πk + π2k) + πkZkkPk0 + πkPk0Z0k

+π2kZ2k,kPk0 + πkPk0Z0,2k

=
q2pk

1− pk
(
1− 2qpk

)
− kq3p2k

(1− pk)2
(2− pk).

6. The Central Limit Theorem for the joint number of runs

Define an additive functional of the transitions and the state visits of the
Markov chain {Xn} via a function f = (f1, f2, f3, f4) : (S, S, S, S × S)→ R4

so that
∑n−1

m=0 f(Xm) = (Nn,k,Mn,k, Gn,k, Jn,k). The Strong Law of Large
Numbers for Markov chains gives

1

n

(
n−1∑
m=0

f1(Xm),
n−1∑
m=0

f2(Xm),
n−1∑
m=0

f3(Xm),
n−1∑
m=0

f4(Xm, Xm+1)

)
−→ µ w.p. 1.

where µ = (µ1, µ2, µ3, µ4) with µ1 =
∑

i∈S πif1(i) = πk + π2k = qpk

1−pk ,

µ2 =
∑

i∈S πif2(i) =
∑2k

i=k πi = pk, µ3 =
∑

i∈S πif3(i) = πk = qpk, µ4 =∑
i∈S πi,jf4(i, j) = πk0 = qπk = q2pk. Then we can summarize the results of

this paper for Bernoulli trials in the following

Theorem 5. With the above definitions the following Central Limit theorem
holds for the number of the types of success runs of size k considered.

1√
n

n−1∑
m=0

 f1(Xm)
f2(Xm)
f3(Xm)
f4(Xm, Xm+1)

−
 µ1

µ2

µ3

µ4

 d−→ N(0, V )

where V is the variance-covariance matrix whose elements were determined
in the previous sections.
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A corresponding CLT holds for Markov dependent trials. The elements of
the covariance matrix for dependence of the form given in (4) are those given

in the Appendix. The corresponding means are given by µ1 = qp0pk−1

(q+p0)(1−pk) ,

µ2 = p0pk−1

q+p0
, µ3 = qp0pk−1

q+p0
, µ4 = q2p0pk−1

q+p0
.

An application to manufacturing processes with random yield.

Consider an unreliable manufacturing cell where an item is produced
when the machine successfully completes k consecutive steps, each requiring
a unit of time. If a failure occurs at any given step, no item is produced
and the process starts again from scratch. Thus the total number of non-
overlapping runs, Nn,k gives the number of items produced in a period of n
time units. Considering this cell as part of a manufacturing process, we are
also interested in the flow of items downstream from the cell, to the next stage
of the process. If items produced consecutively, with no failures intervening,
are batched together then a stream of batches of random size, with random
interarrival intervals arrives at the next station. Since the total number of
batches in a time period of n units is Gn,k, knowledge of the asymptotic joint
distribution of (Gn,k, Nn,k) can be used to obtain approximations for the
production rate and flow times in such processes. Note that, while Var(Nn,k)
gives the variability of the total number of arrivals at the downstream station
in the time period in question, Cov(Gn,k, Nn,k) and Var(Gnn, k) can be used
to characterize in an aggregate fashion the temporal smoothness of the arrival
process which also affects queueing aspects and delays significantly.

7. A general Markov dependent model

Let {ξn;n ∈ N} be a Markov chain with finite state space S and irre-
ducible transition probability matrix PB. We partition the state space S
into two disjoint sets, S0 and S1, such that S = S0 ∪S1 and correspondingly
partition PB into a block matrix

PB =

[
Q0 P0

Q1 P1

]
. (32)

Q0, P1, are square matrices of dimension m0 := |S0| and m1 := |S1| respec-
tively while P0 and Q1 are rectangular m0 ×m1 and m1 ×m0 matrices. In
order to simplify the analysis we will assume that the substochastic matrix
P1 is strictly positive, i.e. that it contains no zero entries.
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We now consider the process {1S1(ξn);n ∈ N} which is a sequence of
dependent binary trials and use the approach of the previous sections in order
to obtain approximations for the number of success runs of various types
based on the Central Limit Theorem. Suppose we are interested in success
runs of size k. Let {Xn;n ∈ N} be a Markov chain with state space consisting
of m0 + 2km1 elements. It will be convenient to label its states as {(i, r); i =
0, 1, 2, . . . , 2k; r = 1, 2, . . . ,m0 if i = 0 and r = 1, 2, . . . ,m1 if i > 0} and to
order them lexicographically. The transition probability matrix of {Xn} is

P =



Q0 P0

Q1 P1
...

. . .

Q1 P1

Q1 P1
...

. . .

Q1 P1

Q1 P1


. (33)

Under the assumption of the irreducibility of the matrix PB and the addi-
tional assumption of strict positivity of P1, the matrix P is again irreducible
and aperiodic. The stationary distribution can be obtained by solving the
system π = πP together with the normalization condition. It will be conve-
nient to partition the stationary distribution as π = [π0, π1, . . . , πk] where
π0 is a 1 × m0 row vector and πi, i = 1, . . . , 2k, are 1 × m1 row vec-
tors. We will denote these row vectors as π0 := [π0,1, π0,2, . . . , π0,m0 ] and
πi := [πi,1, πi,2, . . . , πi,m1 ], i = 1, 2, . . . , 2k.

If u0 is a m0×1 column vector with all entries equal to 1, and u1 a m1×1
column vector with all entries equal to 1, then the normalization condition
can be written as

π0u0 +
2k∑
i=1

πiu1 = 1. (34)
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The stationary equations are

π0 = π0Q0 +
k∑
i=1

πiQ1, (35)

π1 = π0P0, (36)

πi = πi−1P1, i = 2, 3, . . . k, and i = k + 2, . . . , 2k, (37)

πk+1 = πkP1 + π2kP1. (38)

From (36), (37), and (38) we obtain

πi = π0P0P
i−1
1 , i = 1, 2, . . . , k, (39)

πi = π0P0P
i−1
1 (I − P k

1 )−1, i = k + 1, k + 2, . . . , 2k, (40)

and thus

2k∑
i=1

πi = π0P0

(
I + P1 + · · ·+ P k−1

1

)
+ π0P0

(
P k
1 + · · ·+ P 2k−1

1

)
(I − P1)

−1

= π0P0(I − P k
1 )(I − P1)

−1 + π0P0P
k
1 (I − P k

1 )(I − P1)
−1(I − P k

1 )−1

= π0P0(I − P1)
−1,

where we have used the fact that (I−P1)
−1 and (I−P k

1 )−1 commute. Hence
(35) becomes

π0 = π0
(
Q0 + P0(I − P1)

−1Q1

)
. (41)

The normalization condition (34) becomes

π0u0 + π0P0(I − P1)
−1u1 = 1. (42)

Note that PW := Q0+P0(I−P1)
−1Q1 is in fact an m0×m0 stochastic matrix

which gives the transition probability matrix of the chain {ξn} watched in
the set S0. (Indeed, if one defines a sequence of stopping times {Wn} with
W0 := inf{n ≥ 0 : ξn ∈ S0} and Wn := inf{n > Wn−1 : ξn ∈ S0} the process
{Yn;n = 0, 1, 2, . . .} defined via Yn := ξWn is a Markov chain with transition
probability matrix given by PW .) The stochastic matrix PW inherits its
irreducibility from that of PB and thus (41) has an essentially unique positive
solution, within a multiplicative constant which can be determined so that
(42) is satisfied.

In general, the stationary distribution can be computed numerically from
the above equations while the recurrent potential matrix can be computed
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numerically using (14) where Π is the (m0 + 2km1) × (m0 + 2km1) matrix
with constant rows. Its elements, (Π)ij, i, j = 1, 2, . . . ,m0 +m12k, are given
by (Π)ij = π0,i if 1 ≤ i ≤ m0 and (Π)ij = πl,i−m0−lm1 if m0 + (l− 1)m1 < i ≤
m0 + lm1, l = 1, 2, . . . , 2k.

The number of the various kinds of runs considered can be expressed
as additive functionals of the Markov chain {Xn} given by the following
expressions.

Nn,k =
n−1∑
j=0

m1∑
r=1

1(Xj = (k, r)) + 1(Xj = (2k, r))

Mn,k =
n−1∑
j=0

2k∑
i=k

m1∑
r=1

1(Xj = (i, r))

Gn,k =
n−1∑
j=0

m1∑
r=1

1(Xj = (k, r))

Jn,k =
n−1∑
m=0

m1∑
r=1

m0∑
l=1

1(Xm = (k, r), Xm+1 = (0, l))

The multivariate CLT follows then again by Theorems 1 and 3 while the
covariance matrix is obtained as in section 5. The sets A and B that appear
there are of course more complicated due to the two-dimensional representa-
tion of the state space as is clear from the above expressions for the number
of runs.

8. Joint asymptotic distribution of non-overlapping runs of differ-
ent sizes

In this section we illustrate the generality of the method we propose by
obtaining the joint asymptotic distribution of non-overlapping success runs of
different lengths. This problem has been considered by Jennen-Steinmetz and
Gasser (1986) as mentioned in the introduction. Here we obtain analogous
results for Markov dependent trials with dependence given by (4).

Let {Xn} be a Markov chain with countable state space S := {0, 1, 2, . . .}
and transition probability matrix P given by P00 = q0, P01 = p0, Pi,i+1 = p,
Pi0 = q and all other entries equal to zero. This chain is clearly irreducible,
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aperiodic, and positive recurrent with stationary distribution given by

π0 =
q

p0 + q
, πi =

q

p0 + q
p0p

i−1, i = 1, 2, . . . . (43)

The corresponding potential matrix can be obtained from (15), (16), by
means of elementary calculations similar to those of section 4.

Zij = −qp0p
j−1

p0 + q

(
p− p0
p0 + q

+ j

)
+ 1(i ≤ j)pj−i. (44)

If ki, i = 1, 2, . . . , ν, are fixed positive integers with 0 < k1 < k2 < · · · < kν
we are interested in determining the joint asymptotic distribution of the
number of non-overlapping runs (Nk1,n, Nk2,n, . . . , Nkν ,n), as the number of
trials n→∞. Since

Nki,n =
∞∑
m=0

1(Xm ∈ Ai) with Ai = {lki, l = 1, 2, . . .} (45)

the joint asymptotic distribution will be multivariate Normal by the CLT
for additive functionals of Markov chains in Theorem 1. The asymptotic
variances have already been determined in section 5 for Bernoulli trials and
in the Appendix in the Markov dependent case. Therefore the only remaining
issue is the determination of the asymptotic covariance between, say, Nk1,n

and Nk2,n. Using (30) and taking into account (45) we have

lim
n→

1

n
Cov(Nk1,n, Nk2,n) =

∞∑
j=1

∞∑
i=1

πik1Zik1,jk2 + πjk2Zjk2,ik1 (46)

−
∞∑
i=1

πi·lcm(k1,k2) −
∞∑
i=1

πik1

∞∑
j=1

πjk2 ,

where lcm(k1, k2) stands for the least common multiple of k1 and k2. The
evaluation of the asymptotic covariance using the expression for the station-
ary distribution (43) and the potential matrix (44) is straight forward. The
only term that complicates matters is a term of the form

∑∞
j=1

∑∞
i=1 1(ik1 ≤

jk2)p
jk2+1(jk2 ≤ ik1)p

ik1 which arises due the presence of the indicator func-
tion in (44) and which requires separate consideration according to whether
k1 divides k2, and if not, according to whether the remainder of the integer
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division of k2 by k1 divides k1. (We thus have three separate expressions
corresponding to these three cases.)

lim
n→

1

n
Cov(Nk1,n, Nk2,n) = −

(
qp0p

−1

q + p0

)2
pk1+k2

(1− pk1)(1− pk2)

×
(

1 + p− p0
p0 + q

+
1

1− pk1
+

1

1− pk2

)
+
qp0p

−1

q + p0
· J (47)

where

J =



pk2

1−pk2

(
k2
k1

1
1−pk2 + 1

1−pk1 − 1
)

if k2 = ak1

apk2

(1−pk2 )2 + 1
1−pk1(ac+1)

(
pk1a−pk1a(c+1)

(1−pk1 )(1−pk1a) − p
k1(ac+1)

)
if

k2 = ak1 + b,
k1 = bc

apk2

(1−pk2 )2 + 1
(1−pk1 )(1−pk1a)

(
pk1a − pk1ca(1−pk1 )

1−pk1(ca+1)

)
− plcm(k1,k2)

1−plcm(k1,k2)
if

k2 = ak1 + b,
k1 = bc+ d.

A. Explicit expressions for Markov dependent trials

Here we present the results for Markov dependent trials that follow (4).

A.1. The elements of the potential matrix Zij for Markov dependent trials

Zjj =



1
p0p−1 − q(p−p0)

(q+p0)2
, if j = 0,

1 + (1−j)qp0pj−1

q+p0
− qp0pj−1

(q+p0)2
, if 1 ≤ j ≤ k.

1
1−pk −

qp0pj−1

(q+p0)(1−pk)

(
j + p−p0

q+p0

)
− kqp0pk+j−1

(q+p0)(1−pk)
2 , if j > k.

Zij =



p0pj−1+(1−j)qp0pj−1

q+p0
− qp0pj−1

(q+p0)2
, if i = 0, 1 ≤ j ≤ k,

(q+p0)pj−i+(1−j)qp0pj−1

q+p0
− qp0pj−1

(q+p0)2
, if 1 ≤ i < j ≤ k

q(p0−p)
(q+p0)2

, j = 0

(1−j)qp0pj−1

q+p0
− qp0pj−1

(q+p0)2
, if i > j, 1 ≤ j ≤ k.
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Zij =



p20p
j−1+(1−j)(q+p0)qp0pj−1

(q+p0)2(1−pk)
− kqp0pk+j−1

(q+p0)(1−pk)
2 , if i = 0,

pj−i

1−pk + (1−j)qp0pj−1

(q+p0)(1−pk)
− qp0pj−1

(q+p0)2(1−pk)
− kqp0pk+j−1

(q+p0)(1−pk)
2 if 1 ≤ i < j, j ≥ k + 1,

pk+j−i

1−pk + (1−j)qp0pj−1

(q+p0)(1−pk)
− qp0pj−1

(q+p0)2(1−pk)
− kqp0pk+j−1

(q+p0)(1−pk)
2 if i > j, j ≥ k + 1.

A.2. The elements of the covariance matrix for Markov dependent trials

lim
n→∞

1

n
Var(Nn,k) =

qp0p
k−1

(p0 + q)(1− pk)2

(
1− pk−1 q

2(q − q0)− p20
(p0 + q)2

− k 2qp0p
k−1

(p0 + q)(1− pk)

)

lim
n→∞

1

n
Var(Mn,k) =

p0p
k−1

p0 + q

(
2− q
q
− p0p

k−1

q + p0

(
2p− q
q

+
2

q + p0

))

lim
n→∞

1

n
Var(Gn,k) =

qp0p
k−1

p0 + q

(
1− qp0p

k−1

(p0 + q)2
(2(p0 + q)k + p+ q0)

)

lim
n→∞

1

n
Var(Jn,k) =

q2p0p
k−1

p0 + q
+
q3p20p

2k−2

(q + p0)2

(
2p0
q + p0

− (2k + 1)q

)

lim
n→∞

1

n
Cov(Mn,k, Nn,k) =

p0p
k−1

(p0 + q)(1− pk)

(
1− p0p

k−1

(p0 + q)2
(p0 + q + 2p(p− p0))

+k
qpk−1

1− pk

(
p− p0

p0 + q
(2− pk)

))

lim
n→∞

1

n
Cov(Gn,k,Mn,k) =

p0p
k−1

p0 + q

(
1− qp0p

k−1

p0 + q

(
2k +

p

q
+
p+ q0
p0 + q

))

lim
n→∞

1

n
Cov(Nn,k, Gn,k) =

qp0p
k−1

(p0 + q)(1− pk)

(
1− q(p+ q0)p0p

k−1

(p0 + q)2
− k qp0p

k−1(2− pk)
(p0 + q)(1− pk)

)

lim
n→∞

1

n
Cov(Gn,k, Jn,k) =

q2p0p
k−1

q + p0
− q2p20p

2k−2

(p0 + q)2

(
2kq +

q − p0
q + p0

)
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lim
n→∞

1

n
Cov(Mn,k, Jn,k) =

q2p0p
k−1

p0 + q

(
1− p0p

k−1

p0 + q

(
2k +

p+ q0
p0 + q

))

lim
n→∞

1

n
Cov(Nn,k, Jn,k) =

q2p0p
k−1

p0 + q

(
1− p0p

k−1

(p0 + q)(1− pk)

(
2− pk

1− pk
qk +

q − p0
q + p0

))
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