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We consider infinitesimal perturbation analysis estimates for the derivative of moments of the system time in an M/M/1
queue in steady state. The unbiasedness of these estimates is established for derivatives with respect to the mean service
time and the arrival rate. A similar result is obtained for the system time of the ith customer in a GI/G/1 queue with

fixed initial conditions.

Perturbation Analysis (PA) is a method for sensi-
tivity analysis of discrete event systems that pro-
vides gradient estimates of performance criteria with
respect to parameters, from a single sample path. This
is achieved by calculating sample path derivatives and
using them to estimate the derivative of the perform-
ance criterion.

The origins of the method are in a paper by Ho,
Eyler and Chien (1979) concerning the problem of
buffer optimization in production lines. Research in
this area has branched in two directions. The first is
that of extending the applicability of the method to as
complicated systems as possible. Since, in that case,
the analytic investigation of the properties of PA
estimates seemed hopeless, extensive simulation stud-
ies were carried out to validate the method (e.g., see
Ho et al. 1984 and the references therein). The second
direction is that of establishing analytic results about
the statistical properties of PA estimates (e.g.,
unbiasedness and consistency). In order to do that, it
was necessary to focus on simple and analytically
tractable systems. In that spirit, Suri and Zazanis
(1988) established the strong consistency of infinites-
imal perturbation analysis (IPA) estimates for the
derivative of the system time of an M/G/1 system
under some conditions. This result was extended in
Zazanis and Suri (1986) for a class of GI/G/1
queueing systems. In both papers, only the mean
system time was considered.

The object of this paper is to clarify further some of
the concepts involved in applying this method to
single server queues, to extend the results to higher
moments, and to demonstrate the unbiasedness of the
estimates obtained, both from sample paths of finite
length and in steady state. The distinction between

unbiasedness in these two cases is stressed here (see
also Zazanis 1987) because many results holding in
the former case may not be valid in the latter (see, for
example Stoyan 1983,“p. 160-165). In this paper,
unbiasedness for finite length estimates is established
for GI/G/1 queues, while unbiasedness in steady state
is established only for the M/M/1 queue by means of
a direct computation. The restrictive Markovian
hypothesis is the price paid for the directness and the
simplicity of the arguments that establish the steady
state result.

IPA estimates are known to be biased for a number
of systems, performance measures and parameters of
interest. For a discussion of this question the reader is
referred to Heidelberger et al. (1988).

1. SYSTEM MODEL

Consider an M/M/1 queue with arrival rate A and
mean service time #, and denote the utilization by
o = M. We will consider the family of systems
obtained when X is fixed and 6 varies in [a, b] where
0 < a < b < 1/\. Starting with an idle system, for any
given value 6, the sequence of system times converges
weakly to the random variable 7. Our performance
measure will be E[T%], the kth moment of the system
time of a customer entering a system in steady state.
It is well known that the steady state system time of a
customer is exponentially distributed

P(T,<x)=1— e/, 1)

The kth moment of this exponential distribution is
given by the expression

E[T}] = k! (1 f ,,> 2
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and thus, by differentiating with respect to (w.r.t.) 6

_d_ k1 = I ____0_]:.1._
EIT{) = k! k

do

In Section 4, we show that the IPA estimate in steady
state is unbiased by computing its expected value and
comparing it with (3).

Similarly, we will consider the family of systems
obtained when 6 is fixed and \ varies in [c, d] with 0
<c¢<d<1/6, and we will show that the IPA estimate
of the derivative of E[T%] w.r.t. \ is also unbiased, by
comparing its expected value in steady state with the
true value

d . 0 k+1
- — I .
— EIT] k.k<1 _p)

A3)

4

2. PERTURBATION ANALYSIS ESTIMATES FOR
SYSTEM TIME MOMENTS

In this section, we obtain IPA estimates by considering
a family of stochastic systems indexed by 6, on the
same probability space in an appropriate way. The
reader is referred to Suri and Zazanis and (1988),
Zazanis and Suri (1986), and Glynn (1987) for a
further discussion of some of the ideas in this section.

Let E;, i = 1, 2, ..., be an 1id. sequence of
exponentially distributed random variables (r.v.) with
unit mean. Let
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and let

Ta,i =X, + maX[O, Tyi-1 — Ai-i],

i=2,3,... (6)

To,1 = Xﬂ,l-

Then T,; represents the system time of the ith cus-
tomer, C;, in an M/M/1 queue in which the service
time of C; is X, ;, the interarrival time between C; and
Ci+11s A;, and C, arrives to an empty system.

Also, let us designate by L, ; the index of the cus-
tomer who initiates the busy period in which C;
belongs. (A more explicit definition of L, in terms of
the governing sequences X,, and 4;,, i=1,2, ..., 1s
given in the Appendix). Evidently | < L,; < i, the
equality on the right holds in the case where C; finds
the system empty, and the equality on the left holds
in the case where the system has never emptied since
the arrival of C,. The subscript 6 in X, ;, T;,;, and L,;
is used to indicate that we think of # as varying in
[a, b], while A has a fixed value. When we want to
think of 6 as fixed and A varying in [c, d], we will use
the notation 4, ;, T\;, and L, ;.

An alternative expression for the system time of C;
is given by

i—1

Te,[=Xe,i + 2 (Xo,j—Aj)

J=Le;

(M)

(see Figure 1), with the sum in (7) taken to be équal
to zero if ill-defined. From (6) one can see by induc-

Xp; = 0F;;_ . .
- 2t tion that, for 4 > 0, Ty, > T,,; for all i. Also,
4 = 1 E L2 (5) intuitively it is clear that Ly, < Ly fori=1,2,....
e > (A rigorous argument for that is given in the
Ci
L Aj-g! Aj-3 VA2 A-l Ay { Ait] l
| | |
I 1 ! ! ! l [
I | | : :
o | .
| i !
{ I ]
| ' LTy o |
|
! Zipg———— Ti ——>
| . |
! ' | | |
| | . lI | | | |
boXieg ) Xyo31 | Xj-2 P Xi-1 PXy 0 Xi41 !

Figure 1. For the ith customer, here L, =i — 2, Z, and T} are shown.
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Appendix.) Hence, from (7) we get

T/)+/1‘i - Tﬁ,i

0= 7

i—1

1
= _<X0+h.i =X+ 2 (X0+h,j - AJ-)

h J=Lgwj,i

-2 (XB,j_AJ)> (®)

J=Ly;
with ill-defined sums again taken to be equal to zero.

Also, from (5) we have Xj.,; = X ,;(1 + h/8), and
therefore from (8) we get

Tﬁ+h i 8 i 1 d
— == X
h 0 Jj= IZH—HI i "

1 Lg;—1

+5 2 (Ko=), ©)
hj=1~9+n,i

When i — 0, Loy — Lo, w.p.1. Since L, takes on

only integer values there exists, for almost all w, §(w)

> 0 (depending on i and #) such that Ly, (w) =

Ly (w) for 0 < h < §(w) and thus

lim Z X,,=

h—0

E X,,;, w.p.1
J=Loyn,i J=Lg;
and

1 Ly ;—1

lim— Y (X,,—4,)=0 w.p.l.

h—0 h! Losni

Thus, from (9)

dTy, — lim Toini— Ty,
db h—s0 h

> X,, wp.l. (10)

J=La,

| —

(We omit the case 4 < 0 because it is entirely analo-
gous.) Similarly, if we differentiate 7%, w.r.t. § we get

dTﬂl dT01
do =k T do
ko s

—GT(,‘,- > X,, wp.l (11)
J=Lg;

Define the random variable Z,; to be the age of the
busy period in which C; belongs (see Figure 1). More
precisely, let

Zy: = _2 A;. (12)

Then, from (7)

Z ng’ = Zg’,’ + T/)‘,' (13)

J=Lg;

and from (11) and (13) it follows that
Ty,  k _
—0—10”—’ =3 (TE + T57' Z,.]. (14)

The above equation gives the IPA estimate for
(d/dO)E[T},].

It is not hard to show that this estimate is unbiased,
that is, for all i and &

E[d”"} =4 gy (15)

do
Indeed, we have, as is shown in the Appendix

Tr,;+h,i - Té(,i
h

<X [2 X,J.j] . (16)

Since

E[ 2 X[),j:|k < o
j=1

for all i and all k and

0=<

h—0

llmEli%(Té-H” Tﬂl):| d E[Tr)z]

an appeal to the dominated convergence theorem
establishes (15). (We omit again the case 4 < 0, which
is similar.)

The sequence (74, Z;:), i = 1, 2, ... is, for each
6 € [a, b], a discrete time regenerative process (with
regeneration points the indices of customers who ini-
tiate busy periods), and hence, it converges weakly to
the two-dimensional random variable (7,, Z;) (see
Crane and Iglehart 1975). Consequently, the sequence

of random variables dT%,/df, i = 1, 2, ... converges
weakly to

k D
‘27; Kors + 151 2,1 (17)

where = denotes equality in distribution. Equation 17
suggests IPA estimates using a fixed number of cus-
tomers in steady state or a fixed number of regenera-
tive cycles. The reader is referred to Suri and Zazanis
for a detailed treatment of this aspect of IPA.

This is the IPA estimate for the derivative of the
kth moment of the steady state system time. Of course,



the fact that (15) holds for all i does not guarantee
that

drs| _d . ..
E[da}_de E[T%]. (18)

That this is the case for the M/M/1 queue is estab-
lished in the next section by means of a direct com-
putation. For further discussion of these issues, and
for sufficient conditions that guarantee unbiasedness
of steady state IPA estimates, assuming unbiasedness
of finite length estimates, the reader is referred to
Zazanis.

Derivatives w.r.t. the arrival rate A can be obtained
in an entirely analogous fashion. The corresponding
expression of the derivative of T}, w.r.t. X is

ars, k .| '« ko
L= =T Ay | ==T5 Z s 19
d)\ A \i j:g)\.i AJ A N A, ( )
where in the above equation we use (12), and the
convention that a subscript A indicates that 6 is
thought to be fixed and X to vary. It is easy to establish
in the same way that

arr,| .d " .
E L =—F[T%,; =1,2,... 2
[dk] dk [ )\,1]5 l 9~y ( O)
and to see that the sequence of random variables in
(19) converges weakly to

dri ® k .
d—}\}\-‘—‘x Tl; 'Zy. (21)

The above argument can be generalized immedi-
ately to the case where the first customer C, arrives to
a system with an initial workload W, where W} is a
r.v. independent of the sequence E;,i =1, 2, ... and
with distribution F(), which does not depend on 6 or
A. Then (6) becomes

T0,1 = Xo,l + W (22)

and we distinguish three cases. In the first case, where
Ly > 1, all other equations remain unchanged. In
the second case, i.e., Lys; = 1, where the system never
empties because the arrival of the first customer (even
with-h = 0) requires the addition of W, to the left-
hand:side of (7), but no other changes, since we are
only interested in the difference Ty+s; — Ty;. In the
third case, L;; > 1, and Lys; = 1 reduces to the
first for sufficiently small /. Thus, (18) has been estab-
lished for arbitrary initial conditions not depending
on f# or A.

Finally, we have essentially made no use of the fact
that X,; and A; are exponentially distributed. Thus,

Technical Notes | 367

the results of this section can be generalized immedi-
ately to GI/G/1 systems satisfying the following con-
ditions.

i. The service and interarrival time distributions
depend on scale parameters f and A, respectively.

ii. The kth moment of the service time distribution
E[X?] is finite. For derivatives w.r.t \, E[4%] should
also be finite. (We do not need the (k + 1)th moment
since we do not deal with steady state results in this
section.)

iii. Following Whitt (1974), let U, = U,—, + Ay -1,
n=2,3,..., U =0, be the time of the nth arrival
and D, be the time of the nth departure. Let K =
N, Ny_, {| U — Dy| > 0}. Then, the interarrival
and service distributions should be such that P(K) =
1. This guarantees that L,.,,(w) = Ly (w) for
0 < h < 6(w), with 6(w) > 0, for almost all w. In
practice, for GI/G/1 systems, a sufficient condition is
that either the interarrival or the service distribution
be nonatomic.

3. UNBIASEDNESS OF PERTURBATION
ANALYSIS ESTIMATES FOR THE M/M/1
QUEUE IN STEADY STATE

This section consists of two theorems where we show
that, for the M/M/1 queue, Equation 18 and its
counterpart for derivatives w.r.t the arrival rate A hold,
thus establishing the unbiasedness of IPA estimates in
steady state. Henceforth, we drop the subcript 6 from
T, and Z, so that no risk of confusion will arise.

Theorem 1. For an M/M/1 queue in steady state, the
infinitesimal perturbation analysis estimate of the
derivative of the kth moment of the system time w.r.t.
the mean service time, (d/d0)E[T*], is unbiased.

Proof. The proof consists simply in evaluating the
right-hand side of (17) and comparing it with the
value of (d/d0)E[T*] given in (3). To this end, we
need to compute E[T* ' Z]. This computation is not
straightforward because the r.v.’s 7" and Z are not
independent and we proceed as follows.

T is the system time of a customer C who upon
arrival finds the system in steady state, and Z is the
age of the busy period to which C belongs. For an
M/M/1 queue, when the number of customers in the
system, N, is known, the future is conditionally inde-
pendent of the past. To evaluate E[T*'Z], let us
condition the expectation upon the number of cus-
tomers, say N = n, that C, upon arrival, already finds
in the system. Because of the Markovian character of
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the system, as we argue above, T and Z are condition-
ally independent given N. Hence

E[T*'Z|N = n]
= E[T*'|N = n]E[Z|N = n]. (23)

Now T, given N = n, is the sum of # + 1 independent
exponential r.v.’s with mean 6. Thus the distribution
of T is Erlang with n + 1 stages. Hence

E[T'|N = n]
=J; Xkt @%(%f) e dx
—_ !
_prk- D i' DY g, (24)

Computing E[Z|N = n] would be difficult if the
system were not Markovian. Here, however, we can
take advantage of the reversibility of the M/M/1
queue and note that the distribution of Z given that
N = n, is that of the length of a busy period starting
with # customers. Moreover, the length of a busy
period starting with # customers can be seen as the
sum of 7 i.i.d. random variables each being the length
of an ordinary busy period (e.g., see Cox and Smith
1961). Since the expected length of a busy period is
8/(1 — p) (e.g., Cox and Smith), we have

E[Z|N=n]=n1_p. (25)
From (23), (24) and (25) we get

- o (ntk=1)! ¢
E[T* Z|N—n]—————————(n_l)! =, (26)

Taking the expectation w.r.t. NV, and using the fact
that the steady state probability N = nis (1 — p)p”,
we have

E[T*'Z]= Y (1=p)p"E[T*'Z|N=n] (27)
n=0

which, using (26), gives

E[T*'Z]

o

=0*Y nn+1)...(n+k—1)p"

n=0

Cdq (1
-0 g () 9
or
E[T*'Z] = k! 6 —2— (29)

(1 = p)y!

From (2), (17), and (29) we get

dT”
E[W]
k ak ka
] (k' T T p)k“>
okfl
= | [ —
kel (30)

Comparing (3) and (30) we establish that the IPA
estimate is unbiased.

A similar analysis, given in the proof of the next
theorem, shows that the IPA estimate for the deriva-
tive w.r.t the arrival parameter is unbiased as well.

Theorem 2. For an M/M/1 queue in steady state, the
IPA estimate of the derivative of the kth moment of
the system time w.r.t. the arrival rate is unbiased.

Proof. We must establish the equality of the expected
value of (21) with (4). We have

dr*| _k -
E[ d}\} =3 E[T'Z]. 31
But the right-hand side of (31) has been computed in
(29). From (29) and (31) we get

cij“k 6k+1
|- .

Comparing (32) with (4) concludes the proof of
Theorem 2.

APPENDIX
We start with a more precise definition for L,;. Let
i—1
L,; = argmax { X — A,} (A1)
ke, | j=k

that is, let Ly, be the value of k which maximizes the
sum Yz} (X,,; — A4;) with the convention that an ill-
defined sum is equal to zero. (If the maximum is
reached for more than one index, a null event for the
M/M/1 system, then we will choose the smallest such
k). From Figure 1, we can see that this definition is
equivalent to the more intuitive one given in Section
2. From (A1) it follows that L., ; < L, for all w and
A > 0, and hence, by definition of L, that

i—1

Y Xy—4)s< X (X, —A4)

J=Loin, J=Lo;



or

S (- 4) <0 (A2)

J=Lgtp,

with equality holding only in the case where the above
sum is ill-defined.
From (A2) and (9) it follows that

1
0= Z (Towni — To1)

-
SE Z XM.

J :Ly+h,i

We reinforce the above inequality as
1 1
0<7(Trni=To)<7 2 Xij. (A3)
h 6,2
We are ready to establish (16). We start with

1
0<—[Thni—T§,)
h
1 ‘« m k—m—1
<;l 2 Teni Ty, WTowni— T5.:]
m=0

1
<kT};' 7 [Tosni— Tl (A4)
where, in the above inequalities, we have used the fact
that T, < Tpis; < T}, for all w, when 6 + h < b. Also,
from (7) we obviously have

T,:< Y X, (AS)
j=1

From the above and (9) then, (16) follows.
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