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The technique of perturbation analysis has recently been introduced as an efficient way to
compute parameter sensitivities for discrete event systems. Thus far, the statistical properties of
perturbation analysis have been validated mainly through experiments. This paper considers,
for an M/G/1 queueing system, the sensitivity of mean system time of a customer to a parame-
ter of the arrival or service distribution. It shows analytically that (i) the steady state value of the
perturbation analysis estimate of this sensitivity is unbiased, and (ii) a perturbation analysis
algorithm implemented on a single sample path of the system gives asymptotically unbiased
and strongly consistent estimates of this sensitivity. (No previous knowledge of perturbation
analysis is assumed, so the paper also serves to introduce this technique to the unfamiliar
reader.) Numerical extensions to GI/G/1 queues, and applications to optimization problems,
are also illustrated.
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1. Introduction

The perturbation analysis technique has recently been developed as an effective
method for sensitivity analysis of complex discrete event systems. It enables the sensi-
tivity of a performance measure to be calculated while observing a single sample path of
the system. It therefore offers computational savings for computer simulations, and it
also has the ability to be applied directly on actual systems. Thus far, much of the
research on perturbation analysis has focused on experimental results demonstrating its
accuracy for various complex systems (further details and references follow below). It is
clear that for a practically useful new approach such as this, it is also important to study
its theoretical properties. As a step in this direction we study here perturbation analysis
applied to an M/G/1 queue. While this is a simple and analytically well understood
system from the viewpoint of queueing theory, it nevertheless is nontrivial, and pro-
vides a good test case for perturbation analysis techniques. Only by understanding the
behavior of perturbation analysis for simpler systems can we hope to study its proper-
ties for more complex cases.

The current paper requires no previous knowledge of perturbation analysis. Indeed,
it is written so as to give the reader an introduction to this technique as well as present
the new results. An overview of our result is as follows. Let y(w, 6) be some performance
measure of a discrete event system, where 6 is a decision parameter and » denotes the
outcome of various random events (formalized later). Examples would be y = through-
put of a system, § = mean service time of a server in the system, w = the values of actual
interarrival and service times that occur during a sample observation on the system. Let
y(0) = E[y(w, 6)] where E(-) denotes expectation w.r.t. . We assume that analytic
expressions are not available for y(6), and the system designer must use Monte Carlo
experiments to study the system. In system design we are often interested in the sensi-
tivity of y(0) to 6, i.e. the value of dy/d#, so that we may optimize the performance with
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respect to 8. Conventionally, this might be estimated by a quantity such as [y(«', 8 + Af)
— y(w, 0)]/A0, where w and ' may or may not be the same (depending on experimental
design). This involves two Monte Carlo experiments. The perturbation analysis ap-
proach shows that an alternative statistic, g(w, ) defined by

_ i Y@, 0+ A8) — y(w, 6)
gl ) = Jm, Y

can be obtained from a single Monte Carlo experiment, the same ‘“nominal” experi-
ment used to obtain y(w, 6). The question then arises, is g(w, ) an unbiased estimate of
dy/db, i.e. does E[g(w, 6)] = dy/df? Note that dy/df involves expectation first, then
differentiation, while E[g(w, 6)] involves the converse. While apparently a simple ques-
tion in conditions for changing the order of operations, this turns out to be quite hard to
answer for general discrete event systems. Here we consider an M/G/1 queue, with A the
parameter of the (Poisson) arrival rate, and 6 a parameter of the (general) service time
distribution. The performance measure is taken to be T(\, §) = steady state value of
mean time spent in the system by a customer. We show analytically that a perturbation
analysis algorithm, implemented on a single sample path of such a queue, gives a
strongly consistent and asymptotically unbiased estimate of dT/df. The same is proved
also for dT/d\.

This result is of interest because first, it shows that the reversal of operations above is
valid for this system. Second, researchers working on perturbation analysis have en-
countered frequent criticism that their algorithms are derived by using assumptions
that are not valid for sufficiently long sample paths. (This criticism will become clearer
below.) This paper reassures us that, at least for the system under study here, perturba-
tion analysis is indeed valid. We hope that similar results will become available for
more complex systems in due course.

Lastly, this paper also illustrates applications to GI/G/1 queues, in particular to
parameter optimization for these systems. It is seen that perturbation analysis provides
an interesting optimization ability, as well as computational savings, for such cases.

2. Background on Perturbation Analysis

The perturbation analysis approach has its origins in a paper by Ho et al. (1979) for
buffer storage optimization in a production line. Since then, considerable progress has
been made in formalizing as well as extending the basic concepts. It is useful to classify
the perturbation analysis research into two categories: infinitesimal and finite pertur-
bation analysis. While the original paper above, and many other applications (Ho et al.
1983, Suri and Cao 1982, 1983), have produced useful experimental results using finite
perturbation analysis, theoretical understanding of these algorithms is still lacking. In
contrast, the theory of infinitesimal perturbation analysis is much better developed. Ho
et al. (1983) and Ho and Cassandras (1983) derive algorithms for throughput in produc-
tion lines (tandem queues), while Ho and Cao (1983) and Cassandras and Ho (1984)
derive corresponding algorithms for throughput in queueing networks with general
service times and finite buffers. Suri and Dille (1985) apply these algorithms to flexible
manufacturing systems (FMS). Suri (1987) uses infinitesimal perturbation analysis to
derive an algorithm for a general performance measure and general discrete event
system. All these papers show that the sensitivity g(w, 0) as defined above, can be
computed exactly from one sample path (i.e. one observation on the system). However,
the question of equality of E[g(w, 0)] and dy/df is not addressed there, except via
experimental results.

Two earlier papers contain results related to our work here. Cao (1985a) has given
conditions under which perturbation analysis gives unbiased estimates of parameter
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sensitivity. Qualitatively, his results are illuminating, but some of the technical condi-
tions are hard to interpret for practical systems. Ho and Cao (1983) showed that
perturbation analysis is exact (in the expected value sense) for a certain restricted class
of queueing networks, specifically, closed queueing networks with M servers that have
identical service rates, exponentially distributed service times, and unlimited buffer
space, and the customers have equal probability of going to any server next. This could
be considered the first proof that perturbation analysis works for a “classic” discrete
event system. Although reassuring in its results, a possible criticism might be that some
potential error effects in the perturbation analysis estimates cancel out due to the
symmetry of the system. The current paper considers another “classic” discrete event
system, simple yet nontrivial. Certainly no criticism on the basis of symmetry is possi-
ble here, and we show conclusively that the steady state values of the perturbation
analysis estimates of dT/df and dT/d\ are both unbiased.

Since the original writing of this manuscript (1984), Heidelberger et al. (1987) have
also given some results on the consistency of infinitesimal perturbation analysis for
regenerative systems. However, his conditions and assumptions resemble those of Cao
(1985a) discussed above and are equally hard to interpret. Also, Heidelberger et al.
(1987) only consider infinitesimal perturbation analysis. The limitations reported in
that paper can be circumvented by means of more sophisticated techniques. For exam-
ple Ho and Li (1987) report such a sophisticated perturbation analysis algorithm that
gives consistent gradient estimates for a network for which Heidelberger et al. (1987)
show that infinitesimal perturbation analysis estimates are biased. Thus, determining
the class of systems for which consistent perturbation analysis algorithms can be de-
rived, remains an open question. The current paper represents one of the first steps in
verifying consistency for a given class of systems.

3. Definitions
3.1. System Model

Consider the M/G/1 queueing system (Kleinrock 1975) with the following notation.
The arrival process is Poisson with rate \. We use the dummy variable x to represent a
particular value of the service time. The (cumulative) service time distribution is
F(x, 6). Note that the service time distribution depends on a parameter 6. The idea here
is that 8 is a decision parameter that could be chosen by a designer/operator of the
system. In general 6 could be a vector. Also there are some restrictions on 8. These
points will be elaborated later. The first two moments of this distribution are X and x?
(which therefore, also depend on ). We are interested in the mean system time of a
customer, in steady state, given by the Pollaczek-Khinchin, or P-K, formula (Kleinrock
1975)

A2
2(1 =A%)
The sensitivity of this mean system time to 6 is then obtained by straightforward
differentiation to be

T\, 0) = x + 3.1)

ar _dx A dx? Nx? 4

%‘%Ua—m"&o‘%u—mz%' 3.2)
Similarly, the sensitivity with respect to A is
dr x?
dn 21— )P G-3)

These are the two sensitivities that will be estimated in an alternative way using pertur-
bation analysis.
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We assume that X, F, dx/db, dF/dﬁ all exist and are finite at the given value of §. We
will also need to define the inverse mapping (dependent on 6)

Fi'(u) = inf {x: F(x, 0) = u} for O=<u<lI. 3.4

The use of this mapping will become apparent below.
Throughout the paper, we use the notation C; to denote the kth customer.

3.2. Nominal and Perturbed Sample Paths

Let x(w, 0) be the value of the service time for a particular customer. For clarity of
later analysis, it is necessary to define precisely what we mean by x(w, 6 + A#f), i.e. the
“same realization” but for a random variable with different parameters. This section is
based on some concepts in Suri (1983), and should be intuitively obvious to anyone
familiar with discrete event simulation. However, since perturbation analysis applies
equally to actual systems as to computer simulations, Suri (1983) justifies these con-
cepts for experiments on actual systems as well.

Since we are concerned here only with the M/G/1 queue, we will specialize our
definitions for this case. Formally, we define a realization w to be a pair of infinite
sequences

w = [y, Uiz, ... 5 Uap, Upa, =+ 7] (3.5)

where each u; is an independent realization of a random variable (r.v.) uniformly
distributed in [0, 1]. For a given value of 4, a map from a value of w to a sample path
of the M/G/1 queue is obtained by the following correspondence. For customer C;,
(—1/X) log (uy)) is the value for the inter-arrival time, and F;'(uy;) the value for the
service time. It is well known that this procedure gives rise to the correct distributions,
e.g. see Fishman (1978). We call the sample path so generated the nominal sample path.
A perturbed sample path, obtained when the parameter is § + A8, would then simply be
generated by letting the service time of C; be Fylauz)) instead. Similarly, another
perturbed sample path, for the case where the arrival parameter is A + AM, is generated
by letting the interarrival time of C; be [—1/(A + AN)] log (1, ;). The point to be noted is
that this procedure separates the realization (which is now independent of the parame-
ter values) from the (parameter dependent) sample paths of the queueing system (see
Suri 1983).

3.3. Performance Measures

Formally, a performance measure is a real-valued map on the detailed sample path
(Suri 1987). Various performance measures can be defined for the system being stud-
ied. In the present case we deal only with the average time spent in the system by an
arriving customer, in steady state. Use of Little’s Law (Kleinrock 1975) allows this to be
extended to expected queue lengths as well. Other performance measures are discussed
in Suri (1987).

We consider first, a finite time sample path, consisting of M busy periods. (A busy
period is the period between successive times when the system is empty.) Suppose N
customers pass through the system during this time. Their interarrival times and service
times are given via the first N values of each of the two infinite sequences in (3.5), using
the mappings as above. For these values of arrival and service times, we simulate the
system and observe s; = system time of C; (time from arrival to departure). We define
our performance measure to be

1 N
T(w, N\, 0, M) =— 3 s,. (3.6)
N s

Note that N depends implicitly upon the evolution of the queue, and on M, i.e. we
should write Mw, A, 6, M) to be rigorous.
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We assume that the system is ergodic (implied by Ax < 1), so that w.p. 1
lim T(w, \, 0, M) = T(\, 0), (3.7)

where the RHS is the steady state value, which no longer depends on w. In practice, we
can only observe finite sample paths, so we use (3.6) with large M to estimate the RHS
of (3.7). As discussed later, using other well-known techniques we can also estimate the
variance of our estimator for a given observation.

4. Stochastic Derivatives and Service Time Perturbations

As we saw in the previous section, according to the perturbation analysis model, a
change Af in a parameter 6 of the service time distribution results in perturbation in the
service time of C; equal to

Xj(w, 0 + A) — x;j(w, 0) = Fylagf(uz)) — F5''(u2)). 4.1)

A necessary assumption for infinitesimal perturbation analysis is that small changes in 8
introduce small changes in the r.v.’s of interest to the system (Ho and Cassandras 1983,
Ho and Cao 1983, Suri 1987). Here we will be thinking of Af as vanishingly small and
hence, we will examine the limit

a;

R 4.2)

. 1
};TO Zg [Xj(w, 6+ Aa) - xj(w, 0)] =
To this extent we will make the following

Assumption Al. Fy'(u,)) is a differentiable function of 8 for almost all u,;.

Under Al, according to the perturbation analysis model (as expressed in (4.1)) the
derivative w.r.t. 6 of the service time of the jth customer is a well defined r.v. given by

dx:

S = lim  (Filuln) ~ F'a)] ae. (43)
(For those values of u, ; where F;'(u)) is not differentiable we can arbitrarily ascribe to
dx;/df the value zero. We need not worry about them since by A1 they constitute a set
of measure zero.)

In (4.3), dx;/df is defined as a function of the random variable u,; which we will not
assume to be an observable quantity even though this may be the case when we
simulate the system (Suri 1983). We would like to express dx;/df as a function of x;
which is an observable quantity. So we will introduce the following

Assumption A2. The derivative dx;/df as defined in (4.3) depends only on the value
of the service time x;, i.e. it can be put in the form

dx;
=) (44)
where ¢( ) is a deterministic function that may depend on 6.

The introduction of this assumption does not constitute a serious restriction to the
range of applicability of the method since a wide class of parameters and distributions
satisfy it. In particular, as we show in Theorem A at the end of this section, A2 is
satisfied whenever 6 is a location or a scale parameter of any distribution.

As another example, consider the class of distributions F(x, 6) which are strictly
increasing in some interval [a(6), b(0)], where a(f) = 0, with F(a(f), §) = 0 and F(b(0), )
= 1 (or in some interval [a(f), c0) with F(a(f), ) = 0) and for which the limit in (4.3)
exists. This class of functions satisfies A2 because then, as it can be easily seen, the
equation u,; = F(x;, 0) specifies a unique value of u,; from a given x;. As a result, (4.3)
can be written as
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s, . 1 ___
= lim o [Fila P, 6) — ) “.5)
which is a relation of the form (4.4).

A case of particular interest is the one where F(x, ) is a differentiable function of
both x and 6 for almost all x. According to the perturbation analysis model, for any
given Af the nominal and the perturbed values of service times must obey

F(xj(w, 0 + A9), 6 + A8) = F(x;(w, 6), 6) (4.6)

since they both equal u,;. Using the formula for differentiating implicitly defined

functions, we have
@ _ dF /00

db oF, / 0x (x),6)

4.7)

provided that 9F, 10x(x;, ) # 0. (Notice that (4.7) is the value of the limit in (4.3) when
dF/dx and dF/90 exist and are continuous. Also notice that in this case A2 is satisfied
since (4.7) defines dx;/df as a function of x;). Although (4.7) is very useful when dealing
with “smooth” distribution functions, sometimes only (4.3) is applicable as is shown in
the following

EXAMPLE 4.1. Consider the deterministic distribution

0 0 if x<@é,

Flx. 6) [1 if  x=8.

(In all the examples we will use x to denote x; and u to denote u,;.) Obviously neither
(4.7) nor (4.5) is applicable. ((4.5) fails because the equation u = F(x, 6) does not specify
a unique u for a given x.) However it is easy to see that the inverse mapping is given
by x = Fy'(u) = 6 for all u, which is obviously differentiable w.r.t. . Hence by (4.3),
dx;/df = 1.

Let us finally introduce one additional assumption concerning some statistics of the
r.v. dx;/df defined above.

Assumption A3.. The random variables dx;/df and dx?/df are integrable and satisfy
the relations:

(i) Eldx;/d8) = dE(x)/db,

(i) E(dx?/d6) = dE(x?)/db,

(ili) E(dx;/df)* < oo.

The validity of the interchange of expectation and differentiation which is assumed in
A3 can be verified for many distributions used in practice, e.g. exponential, uniform,
deterministic, etc. It was also pointed out to us by a referee that this interchange can be
ensured whenever dF/d0 exists by the following condition: (e.g. see Bickel and Doksum
1977)

f - |0F/d0(x, 6)ldx  and f - x|0F/36(x, 0)|dx
0 0

must be continuous functions of 4 for § € © where O is the parameter space. This test
however fails whenever the density dF/d0 does not exist as is the case for the determin-
istic distribution. In these cases the more direct approach described in Examples 4.1
through 4.4 can be very effective. For a further discussion of the mathematical ques-
tions arising from our definition of dx/df in (4.3) the reader is referred to Glynn (1987).

The above three assumptions, Al, A2, and A3, are necessary for infinitesimal per-
turbation analysis of the M/G/1 queue.

DEFINITION (also see Suri (1987)). A parameter 0 is called admissible if
F(x, 0) satisfies A1, A2, and A3.
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A number of instances of admissible parameters for many common distributions are
given below. We end this section by giving some examples illustrating Assumptions A1
through A3.

ExXAMPLE 4.2: Exponential Distribution. Let 6 be the mean of the distribution.
Then u = F(x, §) = 1 — e (x = 0). Hence F;'(u) = —6 log (1 — u), and

d
db

so Al and A2 are satisfied at any given § > 0. (We can also see that (4.7) applies.) Now
let us illustrate A3. By deﬁnition, dx;/df = dF;'(u)/d6 and so dx(w, 0)/d = x/8. Now
Eldx(w, 0)/df] = E[x/0] = 1 = dx/df, which illustrates the first part of A3. Next,
E[dx?/d8] = E[2xdx/db] = 2E[x(x/0)] 2x?%/6 = 48, using the fact that x* = 26 for the
exponential distribution. Also from this fact we have dx?/df = 46, and thus the second
part of the assumption is verified. Finally, E(dx/df)* = E[x?/6*] = 2/6'2 2 < oo. Thus
any 6 > 0 is admissible.

EXAMPLE 4.3: Uniform Distribution. Let x be uniformly distributed in [ — 4,
0 + 6]. Here we have two parameters, the mean 6 and the spread 6, with F(x, 6, 6) = 1
+ (x — 6)/25 for § — 6 < x < 0 + 6 (F is identically zero below this range, unity above
it). So Fy3(u) = 6 + (2u — 1)6 and Al is satisfied for both parameters. A2 is also satis-
fied since F(x, 6, 6) is continuous in x. Moreover, (4.7) applies in (6§ — 4, 6§ + &), as
F(x, 0, 6) is clearly well behaved in this range. Finally, one can verify easily A3 proving
that both 6 and 6 are admissible.

EXAMPLE 4.4: A Discrete Distribution. Let this have probability mass p at 6, and
1 — p at #,. Now there are three parameters, § = (6,, 6,, p), and

0 if x<01,
Flx,0)=1{p if 0, <x<0,,

—x/0 —

— F7'(u) = —log (1 —u) = —log e E

1 if 0, < x.

Accordingly, F;'(u)is 6, if u < p and 0, if u > p. Here, as in the case of the deterministic
service time, we can see that 6, and 6, both satisfy A1, A2 and A3 and hence are
admissible. Let us verify, for instance, A3 for 0;: dx/df, is 1 if x = 8, and 0 if x = 6, and
thus E[dx/d6,] = p = dE[x]/db,. Also,

do

Now consider the parameter p. We see that F, ! is discontinuous only at the point u = p.
Hence it is differentiable almost everywhere with derivative dx/dp = 0 and Al is
satisfied. However it is very easy to check that A3 is violated (notice that dx/dp # 0
= E[dx/dp]), hence p is not admissible. This example thereby illustrates a common
distribution which has both admissible and non-admissible parameters

We now close this section with a theorem showing that a large class of parameters
interesting in applications are admissible.

2
%]:zf[ d"] 29, = 4 1o+ (1 - p)o3] = E[x21

THEOREM A. Location and scale parameters of distributions which have finite
second moments are admissible.

PROOF. We start with the case where 6 is a location parameter. Then F(x, 0) = F(x
— 0) and using (3.4),

Fy'(w) = inf {x: Fi(x — 0) = u} = 6 + inf {x — 6: F\(x — 0) = u}
=0+ inf{y: Fi(y) = u} =0+ lj(w) (4.8)
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where /;(1) does not depend on 6. From the definition in (4.3) we have
. 1
/}g_rflo ) [Falau) — Fy'(w)] = 1,

dx
B d(x) = 1. 4.9)

Thus, A1 and A2 are satisfied. One can easily see that A3 is satisfied as well. Notice that
since 6 is location parameter, E[x] = 0 + ¢, and E[x?] = % + 20c, + ¢, where ¢, and c,
are constants not depending on 6. Thus dE[x]/df = 1 = E[dx/db]. Also,

dx*] dx] _ _ _4
Har| =2 @) =2 =200 = e

Finally, since dx/df is a constant, the third part of A3 is trivially satisfied. This con-
cludes the proof for the case of a location parameter.

The case where 0 is a scale parameter of F(x, ) is completely analogous. In this case,
F(x, 0) = Fy(x/0) and working in the same way as above we have that

F7'(u) = 0 inf {y: Fx(y) = u} = 0l(u) (4.10)
where (1) does not depend on 6. From (4.3) and (4.10),

dc .. 1 Fyl(w) x
2 im — - = = =z
B am [(0 + A0)Ly(u) — 0L, (w)] = L(u) 7 R
Thus we can again see that A1 and A2 are satisfied and that
dx X
Ea—— (X)—E. (4.11)

Checking the validity of A3 can easily be done in the same way as above.

As a consequence of the above theorem we can see that the parameters of the
commonly used distributions we state below are admissible: the mean (and rate) of the
exponential distribution, the mean and spread of the uniform distribution, the scale
parameter of the gamma distribution, the constant that characterizes the deterministic
distribution, the scale parameter of the Weibull distribution. Finally let us give some
more examples of admissible (and nonadmissible) parameters of common distribu-

tions. Let p; 2 0,i = 1,2, ..., nand 2%, p; = 1. Then, for the general discrete
distribution F(x; 0, ..., 0,5 D1, ..., Pn) = Z{i:x<oy D: the parameters 6,, .. ., 0, are
admissible whereas p,, . .., p, are not. For the hyperexponential distribution F(x; 6,,

0D, ., D) =1 — 28 pie™i 6, ..., 0,are admissible parameters, while
Di, ..., D, are not. Both parameters of the Beta, the Weibull and the lognormal

distribution are admissible.
5. Perturbation Analysis Algorithm for Service Time in G/G/1 Queue

Next we develop a perturbation analysis algorithm to compute the sensitivity of
mean time in system w.r.t the service time parameter 6. Since application of perturba-
tion analysis does not require the Markovian (“M”) assumption for arrivals, in this
section we may as well develop the algorithm for the GI/G/1 queue. This algorithm is a
special case of the general technique in Suri (1987), or the network algorithm in Ho and
Cao (1983), but for the GI/G/1 queue it is easily derived from first principles, which we
do here for the benefit of the unfamiliar reader.
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5.1.  Derivation of Algorithm

The basic idea of (infinitesimal) perturbation analysis is to consider what would have
happened to a given (nominal) sample path, if # had been 6 + Af instead. We are
interested in particular in the case where Af becomes infinitesimally small. The service
time of C; would then be changed by the amount Ax; = dx;A0/df (=¢(x;)Af whenever
A2 applies). Now let us see how such changes would affect the system time of all
customers. The standard assumption that makes infinitesimal perturbation analysis
easy to implement is that the order of events in the nominal and perturbed paths
remains the same. (As we will see later, for the GI/G/1 system we need only worry about
the possibility that in the perturbed path two busy periods may coalesce because of
accumulated perturbations, or conversely, that one busy period may split into two.) So
we will make the following assumption.

Assumption of Infinitesimal Perturbations (AIP). The set of indices () of customers
(C)) that initiate busy periods are the same for the nominal and perturbed paths.

In other words we assume that if C; initiates a busy period in the nominal path then,
and only then, does C;initiate a busy period in the perturbed path. This assumption will
be discussed below, but it is typical of infinitesimal perturbation analysis. (Notice that
the above assumption (AIP) expresses a way of thinking in order to derive an algorithm
and does not constitute a premise of the analysis in §6.)

Now we look at the start of a busy period initiated by (say) Ci.;, and by (AIP) it
follows that in the perturbed path Ci.,; would also find the system idle. Suppose #
customers Ciq, . . ., Crsn are served during this busy period. Then, in the perturbed
path, Cy,; would spend an additional time AXx;.; (with value as above) in the system.
Ci+2 would spend an additional time Axg.; + AXge, in the system—an additional
AXy+ waiting for C; and an additional A x,, for its own service time. In general then,

additional time for Civi = 2 AXpej (1 =<i<n). 5.1
j=1

Now suppose there are M busy periods observed, during a total time ¢, to get the
estimate T as in (3.6). Assuming still that (AIP) holds, the effect of A6 on T is

1 M nm i 1 M ny dka+]
AT == 2 2 2 AXpyej= Z > Z Af (5.2)
N 21 i=1j=1 Npliisij=1 do

where 7, is the number of customers served during the mth busy period, k,, + 1 is the
index of the customer initiating this busy period (k; = 0), and N = 2%, n,,. Dividing by
A6 we get our estimate

daTr AT 1M"'" dx
zzz i)

d0 est A0 mlxljl da
Note first, that to calculate (5.3), values of dxy,,+;/df are determined from the nominal
observations of x;,,+;, by evaluation of (4.3) (or (4.7) if applicable). In other words, this
estimate can be obtained without observing the perturbed path. Second, the notation
“est” above reminds us that this is an estimate, with as yet no proven relation to the true
value dT/db.

It is illustrative to write this calculation down in algorithmic form, to see the basics of
perturbation analysis implemented during observation of a single sample path: this is
shown in Algorithm 1. The value EST in Algorithm 1 is the perturbation analysis
estimate of d7/d6.

Even this simple algorithm illustrates the three basic elements of perturbation analy-
sis, namely

(5.3)
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Algorithm 1.

Initialize:
0. DXSUM =0
DTSUM =0

At end of service of customer j:

1. DXDTHETA = ¢(x;) [x; is observed]
2. DXSUM = DXSUM + DXDTHETA

3. DTSUM = DTSUM + DXSUM

4. If server is now idle, then DXSUM = 0

At end of M busy periods (with N customers served):
5. EST = DTSUM/N

6. Stop

(i) Perturbation Generation. In step 1, the effect of A on the outcome of a single
random variable is calculated.

(ii) Perturbation Propagation. In step 2, we “propagate” the effects of a change in
time of a current event to the times of future events. Also, step 4 takes into account the
fact that perturbations do not propagate across idle periods.

(iii) Effect on Performance. Step 3 reflects how the perturbation in time of a specified
event contributes to perturbations in the overall performance measure.

In the example here, these three elements are quite simple, but for complex systems
their calculation can be more involved, although still relatively efficient (Suri 1987). In
concept, all the references cited on infinitesimal perturbation analysis just use these
three steps above.

Thus, if we perform a computer simulation of a GI/G/1 queue, in the usual way, to
get an estimate of T (e.g. Meketon and Heidelberger 1982), then, with the above
calculations included, we will get estimates of both T and d7/df from a single simula-
tion. Also note that there is no requirement that the nominal sample path be generated
from a simulation—we could be observing an actual queue—in which case our ability to
estimate d7/df without repeating the experiment is a rather interesting capability of
perturbation analysis! Finally notice how simple Algorithm 1 becomes when 6 is either
a location or a scale parameter. In this case, as we can see from (4.9) and (4.11), ¢(x;) is
equal to 1 or to x;/6 respectively and step 1 does not involve any computation at all.

Extension of this method for the case of a vector of parameters 8 = (6, ..., 6,) is
immediate. Let ¢;(x;) = dx;/df;. In Algorithm 1 we use p-dimensional arrays for the
variables, and the extended algorithm just requires some “loops” to be added: see
Algorithm 2. The value EST[i] in Algorithm 2 is the perturbation analysis estimate
of 9T/96;.

So perturbation analysis gives us the capability to compute the gradient of a perfor-
mance measure with respect to p parameters from a single sample path. To do that by
conventional approaches would require p + 1 sample paths.

5.2. Application to M/G/1 Queue

Returning to our original scalar case, from (5.3) we see that for the mth busy period,
perturbation analysis calculates 4,, defined by

(5.4)



M/G/1 QUEUE AND PERTURBATION ANALYSIS 49

Algorithm 2.
Initialize:
0. For i:=1 to p do DXSUM[i] =0
For i:=1to pdo DTSUM[i] =0
At end of service of customer j:
For i:=1to pdo
begin
DXDTHETA[:] = ¢:(x;) [x; is observed]
DXSUM]i] = DXSUM][i] + DXDTHETA[:]
DTSUM][{] = DTSUM[i] + DXSUM[i]
If server is now idle, then DXSUM]i] = 0

end
At end of M busy periods (with N customers served):

5. For i:=1 to p do EST[i] = DTSUMI{]/N
6. Stop

Using A,,, we can write (5.3) as

daT 1 M 1 M
E:lest B [H m§=:1 hm]/[ﬁ mz=l nm] : (55)
The first bracket is the average value of 4, for a busy period, and the second is the

average number of customers served in a busy period. Thus by the strong law of large
numbers

bl o

dT] _ Elhy] w.p. 1. (5.6)

Ml—»oo b | Eln,)

(The existence of E[A,,] is established in the Appendix.) Our aim here is to derive an
analxtic expression for the RHS of this equation, and compare it with the known value
of dT/db for an M/G/1 queue, namely equation (3.2).

5.3. Remark on the Analysis

The reader may wonder at this point whether we are simply undertaking an exercise
in algebra, to derive a known result in a roundabout way. This is not so! Recall that for
our derivation of the perturbation analysis algorithm above we required the assumption
(AIP), namely, that if C; initiates a busy period in the nominal path, then Cj also
initiates a busy period in the perturbed path (and vice versa). A similar assumption is
required for all infinitesimal perturbation. analysis algorithms (Ho and Cassandras
1983, Ho and Cao 1983, Suri 1987). A justification of such an assumption is that it can
be replaced by the alternative (Suri 1987),

Assumption (AIP'). Two events do not occur at the same instant in time, and the
number of events in a sample path of finite length is finite with probability one.

Then, within this observation period, we will have a finite value f,;, which is the
minimum time separating two events. So, from Assumption Al there exists a Af small
enough so that the cumulative effect of all perturbations will not exceed ¢, during the
observation period, and the order of events will be the same in the nominal and
perturbed paths. Assumption AIP will then be implied by Al. Now, because of the
definition of dy/df in §1, we see that we are only interested in infinitesimal perturba-
tions anyway, so the analysis becomes exact for this finite observation period. (Formal
arguments, for a general discrete event system, are in Suri 1987.)
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A potential criticism of this perturbation analysis approach is that such an estimate
may be biased because of the following argument. For any A6 “small enough” for the
above argument, there exists a new time ¢ “large enough” so that the probability that the
order of events will change becomes arbitrarily close to unity. Thus the estimate
dT)/db).s may not be accurate ““in the long run”, i.e. its limiting value may not equal the
true value of d7/df. This argument is more formally stated by Cao (1985a), who also
sheds some light on the issues involved, and gives examples of cases where perturbation
analysis both is, and is not, biased (see also Heidelberger et al. 1987).

For these reasons, it is important for us to establish whether the perturbation analysis
estimate is unbiased for those systems that are analytically tractable. In the following
section we will establish the unbiasedness of these estimates for one of the simplest,
analytically tractable discrete event systems, the A//G/1 queue.

6. Behavior of Estimates for Service Parameter Sensitivities

Now let us consider the perturbation analysis algorithm applied to the service time
parameter (i.e. ) of an M/G/1 queue. In order to do that, we focus our attention on the
mth busy period. For ease of notation, we will drop the subscript m throughout this
section, and count customers from 1 on. So, during this busy period there are n
customers served, C;is the ith customer, and X; the service time of C;. Also, as in (5.4),
the contribution that this busy period makes to the sensitivity estimate is

i B(x;)s (6.1
j=1

M=

n i dX'
h: ==
Y

i=1
the second equality following from A2.
Let us consider (5.6) again. From Kleinrock (1975) we have E[n] = 1/(1 — \X), and
thus
. dT -
lim 7] = (1 — \X)E[Ah] w.p. 1. (6.2)
est

M-

So the problem reduces to computing, for a busy period, the value of

i=1j=

E[é 21 #(x)]- (6.3)

Unfortunately, the difficulty of the problem now becomes apparent. First, each ¢(x;)
depends on each x; (as shown in §4), and second, » depends on the entire sequence of x;’s
in a complicated fashion. So the evaluation of the above expectation is not straight-
forward.

We proceed by using three devices to simplify our task. The first, well known in
queueing theory, is to decompose the busy period into sub-busy periods. The advantage
of doing this is that the sub-busy periods are statistically independent, and identically
distributed. The second device, unique to our approach, is to derive a recursion in two
r.v.’s associated with the busy period. The final device is to note that since we are
interested only in expected values and not distributions, we can considerably simplify
our task by taking expectations at an appropriate point in the analysis.

We follow the approach in Kleinrock (1975, p. 209) for busy period analysis. Let k
customers arrive during the service time of C;. Since we are interested only in mean
system time, we can use LCFS service discipline, and as explained in Kleinrock (1975)
each of C; through C. initiates a sub-busy period statistically identical to the “parent”
busy period initiated by C;. Furthermore, these sub-busy periods are statistically inde-
pendent.
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Let us define the quantity
g= Zl B(x1). (6.4)

Notice that g and 4 are the values of DXSUM and DTSUM obtained from Algorithm 1
executed for only one busy period.

Now we will number the sub-busy periods in the order that they occur, and we will
number the customers in the order that they are served using the LCFS discipline. Let
m, be the number of customers in the rth sub-busy period and define m® = 1 + m,
+ + + + + m, with m©® = 1. Then C,-ns, through C, are the customers that belong to
the rth sub-busy period. Now consider the quantities

g" = Z' (X141 with g9 = ¢(x1) and (6.5)
i=1

my i

h" = Zl El D Xmo-1+ ). (6.6)
i=1j=
Notice that g and 4 are the values of g and / that would be obtained if Algorithm 1
was applied only to customers of the rth sub-busy period. For this reason we will refer to
g and A" as the stand-alone values for the rth sub-busy period.
Next we derive some relations between the above quantities: From (6.4) and (6.6)
follows that

X

k m, k

1 () = d(x1) + 2 2 d(tmo-nai) = 2 8. (6.7)

r=1i=1 r=0

8=
1

This can also be seen from the fact that the value of DXSUM at the end of the busy
period is the sum of ¢(x;) plus the stand-alone values of DXSUM for all the sub-busy
periods.

Now let us derive a corresponding expression for 4. The contribution of the rth
sub-busy period to the final value of the register DTSUM in Algorithm 1 consists of two
parts: the first part is the stand-alone value 4, while the second is due to the fact that
when the contribution of C,-n4; (i.e. of the customer who initiates the 7th sub-busy
period) is taken into account, DXSUM does not equal zero (as it would for the stand-
alone value). In fact it has the value

m(r=1) r—1

;l dx) =2 g¥. (6.8)

5=0

The quantity in (6.8) will be added to DTSUM as many times as there are customers in
the rth sub-busy period. Hence the contribution of the rth sub-busy period to # is

r—1
O+ ml> g 6.9)
5s=0

Summing (6.9) over all sub-busy periods (and taking into account the contribution of
C, who initiates the busy period) we get

k r—1
h=¢x)+ 2 [+ m, 2 g¥]. (6.10)
r=1 5=0

(This relation can also be verified by simple rearrangement of the RHS of the above
equation.)

Now we wish to derive the expected values of g and 4 from (6.7) and (6.10). (In the
Appendix we show that these expected values exist and are finite.) Let us first consider
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2. On the RHS of (6.7) we have a sum of the r.v. ¢(x;) with a random number k of r.v.’s
g®. Now, the power of sub-busy periods lies in exploiting the independence of these
r.v.’s. We note first that k is the number of arrivals during the service of C;, and so
depends only on x; and is independent of the g values for r = 1. Also, the g are
distributed identically to g. So taking expectations in (6.5) we get

E(g) = E(¢(x1)) + E(K)E(g). (6.11)
Noting that E(k) equals Ax and solving for E(g) gives
_ E(¢(x1))
Eg = T 5 (6.12)

Now we turn to 4 in (6.10). Clearly, the 4 terms are independent and distributed as
h. The interesting point to note is that each term such as mJ{¢(x;) + g+ « « - + g" V)
involves the product of the number of customers arriving in a given sub-busy period,
with quantities accumulated through the preceding sub-busy periods, but not including
the current sub-busy period. Thus again, these r.v.’s are independent. Let us now take
expected values in (6.10) conditioned on x,; and k.

k k r—1
E(hlxy, k) = ¢(x,) + 2 E[W”|xy, k] + 2 Elm, 3 g¥xy, k]
r=1 . r=1 5=0
Taking into account the fact that quantities referring to different sub-busy periods are
independent from each other and from x; and k and identically distributed to the
parent busy period and also that m, is independent of g for s < r, we get

E(hlxy, k) = ¢(x1) + kE(h) + KE(m,)$(x,)
+ (E[ma] + 2E[ms] + - - - + (k — DE[my])E(g)
= ¢(x1) + k[E(h) + E(m)$(x,)] + E(m)E(g)(k* — k)/2.  (6.13)

(Here ¢(x;) is known when x; is given.) Now let us take expectations with respect to kin
the above equation conditioned on x,. Then E(kl|x,) is the average number of Poisson
arrivals in an interval of length x; and so it is equal to Ax;. Similarly, E(k?|x,) is equal to
Ax; + (Ax;)? Taking also into account that m, is identically distributed to # (the number
of customers in the parent busy period) and thus E(m,) = E(n) = 1/(1 — Ax), and using
the expression for E(g) already derived, we get

E(hlxi) = ¢(x1) + MalER) + ¢(c)/(1 = MO + () 2E(@(x1))/2(1 — A0)%. (6.14)
For the next step, we take expectation w.r.t x; to get

E(h) = E(@(x)) + ATE(h) + NE(x¢(x))/(1 = AX) + NxZE($(x))/2(1 — A\Z? (6.15)
(the subscript on x is no longer necessary). Hence solving (6.15) for E(%) gives

E(h) = E($())/(1 = M%) + ME(x¢(x))/(1 — NE)? + Nx2E(¢(x))/2(1 — \X)*.  (6.16)

Substituting values from (4.4), using A3, and multiplying by 1 — \Xx, we get for (6.2) the
value
S Y T
do 2(1—Xx) d0  2(1 =X’ db’

6.17)

Voila! This is exactly the value obtained by differentiating the P-K formula earlier (3.2).
We consolidate and summarize what we have proved in the following.
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THEOREM 1. The perturbation analysis algorithm (Algorithm 1) gives strongly con-
sistent estimates for the sensitivity of the steady state mean system time of a customer,
with respect to an admissible service time parameter, for an M|G/1 queue.

PROOF. Our busy period analysis proved that E[4,,)/E[n,,] = dT/d6. Since the busy
periods are independent and identically distributed, and since E|,,| exists (see Appen-
dix), the strong law of large numbers then implies that our estimate

M nym i

[2 2 > (Xt ,)]/[ Z Ny, —> —Z with probability 1 (6.18)

m=1 i=1 j=1
asM — oo.

THEOREM 2. The perturbation analysis estimate obtained from Algorithm 1 for the
sensitivity of the steady state mean system time of a customer with respect to an admis-
sible parameter is asymptotically unbiased.

The proof of this statement is given in the Appendix.

COROLLARY 1. For a customer entering an M/G/1 queue in steady state, let AW be
the perturbation in this customer’s system time calculated by perturbation analysis due
to a parameter change A, considered infinitesimal. Then AW/AG is an unbiased esti-
mator of dT/db.

Since the arrivals are Markovian, they also find the system in steady state (Kleinrock
1975), and the corollary follows by straightforward application of the strong law of large
numbers, so the details are omitted here. This result says that if we start in steady state,
then the average of dWW/df observed over any N customers will be an unbiased estima-
tor of dT/db (as opposed to asymptotically unbiased when we started our algorithm at
the beginning of a busy period).

7. Perturbation Analysis for Parameter of Arrival Distribution

7.1.  Algorithm for GI/G/1 Queue

In the same vein as §5, we can estimate the derivative of mean system time w.r.t. an
admissible parameter of the (general) arrival distribution for a GI/G/1 queue. For this
section, let A denote this more general parameter, and let G(a, \) be the (cumulative)
probability distribution for interarrival times (a is the dummy variable for the interar-
rival time).

In order to use infinitesimal perturbation analysis, we will need assumption (AIP).
Let a; denote interarrival time between C;_; and C;, and let Ag; be the perturbation in
this time due to AX (C; arrives Ag; later relative to C;_;). Consider the busy period
consisting of Cy,+; through Ci,+,,,. (We are using the same notation as in §5.) Then the
change in system time for Cy,+; is

ATkm+,-=—zAakm+,-=—2d“"'"*’m\ if 2<i<n, and0 if i=1.
j=2 j=2 d\
(7.1)

The minus sign in (7.1) is due to the fact that a customer who arrives at the system a
little later will have to wait less. Notice in particular that there is no change in the
system time of the customer who initiates a busy period, and that perturbations are not
propagated from one busy period to the next. Let us now define

-3 3 W,

257 a (7.2)
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Then the perturbation analysis estimate based on M regenerative periods is, for this
case,

daTr M np day, day,.; M
—_— = — m " - o 7.3
d)\]est mzuzl,zz 7B\ Eln mzlq /2 n (7.3)

with notation as in (5.3), and with the further understanding that g,, = 0 when n,, = 1.
An algorithm similar to Algorithm 1 is easily written to calculate (7.3) for an observed
sample path. Also note that we can extend Algorithm 2 to simultaneously calculate
gradients with respect to several arrival and service parameters.

7.2. Behavior of Estimates for Arrival Parameter Sensitivity

We now study the above perturbation analysis estimate (7.3) in the case of an M/G/1
queue. Since the interarrival times are exponentially distributed, with G(a, \) =
— exp(—\a), the arrival time parameter is admissible (see Example 4.2—note however
that A here is the inverse of the mean, and this gives rise to a negative sign in (7.4) below
as compared to dx/df in Example 4.2).

With G(a, \) as above, we have from the analog of (4.7) that

dakm+,- _ dG/aN _ Qe+ j
dx 0G/da |4, ;n A (7.4)
Hence, (7.1) becomes
AN ¢ . . . .
ATka = T z Ayt j if 1=0, and 0 if i=1. (75)
j=2

Now let .

Zoti = 2 Aoyt j if i=2 and 0 if i=1. (7.6)

j=2
Notice that z;,,.; is the time that has elapsed from the beginning of the mth busy period

till the arrival of the ith customer of that busy period. From (7.2), (7.4) and (7.6) we

have
_1
Z ka+1 (77)
Thus from (7.3), using the strong law of large numbers, we have
. dT . E[Ch]
lim —| =1 - - D 1. 7.8
)\Lt 1m[ Zq/]um1 ] w.p. 1 (7.8)

Moo M- E[”l]

Notice that E[q,] exists since ¢; is nonnegative and in fact it can be shown that E[q;]
is finite: if we denote by y, the length of the first busy period, then z; < y, for i = 1, 2,
« n;. Hence g, < n;y;/\, which implies that

1 1
EMJ<XEMJJSXHﬁWWWW@

But E[#n?] and E[y?] are finite since we have assumed the queue to be stable and the
second moment of the service time finite (e.g. see Kleinrock 1975, pp. 214-218). Thus

1 M
Elgq\] = X E[X z] < . (7.9)

i=1
The process zx, kK = 1, 2, - - - is clearly a discrete time regenerative process with
regeneration points the integers k,, + 1, m = 1, 2, - + - which correspond to customers

who initiate busy periods. From a standard result in regenerative processes (Crane and
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Iglehart, 1975) follows that as k goes to infinity, z; converges in distribution to a
random variable z with expected value

E[E:’Ll Zl]
E[Z] = Elm] (7.10)
Hence, from (7.8), (7.9) and (7.10) follows that
. dT 1
Iim —| =— p. 1. 7.11
Jim d)\]cst )\E[z] w.p. | (7.11)

To verify that our estimate is strongly consistent, it is sufficient to show that E[z]/\ is
equal to the true value of the derivative. (The reason for transforming (7.8) into (7.11) is
that E[z] is much easier to compute than E[q;].)

To compute E[z] we will make use of the fact that Poisson arrivals take a “random
look” into the system (Wolff 1982). We can regard the sample path of an M/G/1 queue
as an alternating renewal process consisting of busy and idle periods. Let us suppose
that this process is in steady-state and let us make a random observation. Define the
random variable Z as follows. Z = 0 if the observation point falls on an idle period
whereas Z = 7 if the observation point falls on a busy period that has started = time units
ago. Since customers arriving according to a Poisson process see the system in the same
way as an observer who arrives at a “random instant” we have

E[z] = E[Z]. (7.12)
(In fact, as it was pointed out by a referee, (7.12) does not follow directly from Wolff
(1982). A proof of (7.12) is included in the Appendix.) But E[Z] can be computed very
easily from a standard result in the theory of continuous time regenerative processes
(Crane and Iglehart 1975). In fact,

E[f:;l 7d7]
Ely] + E[5]
where y; is again the length of the first busy period and 7, is the length of the first idle
period. Hence,

E[Z] = (7.13)

. Eyi]
B =5 + B0

Taking into account that E[y;] = X/(1 — Ax), E[y3] = x2/(1 — \x)? and E[I;] = 1/\ (e.g.
see Kleinrock 1975), we get

(7.14)

Ax?
]l =———. 7.1
Bl =50 %p (7.15)
So from (7.11), (7.12) and (7.15) follows that
. dT —
lim —| =x%/2(1 — \X)? 7.16
dim = . x2/2(1 — Ax) (7.16)

which is the value in (3.3). Thus we have proved

THEOREM 3. The perturbation analysis estimate of the derivative of the mean re-
sponse time of an M/G/1 queue with respect to the arrival rate is strongly consistent.

One can also very easily establish the following

THEOREM 4. Perturbation analysis gives asymptotically unbiased estimates of the
derivative of the mean response time of an M/G/1 queue with respect to the arrival rate.

The proof is given in the Appendix.
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8. Experiments with Some M/G/1 and GI/G/1 Queues

This section contains results of experiments to estimate the gradient d7T/df for some
single server queues, from one sample path. It concludes with an interesting optimiza-
tion experiment, also conducted on a single sample path.

First we validate our analytical results with simulation experiments on M/G/1
queues. Then we use perturbation analysis on some GI/G/1 queues. In the GI/G/1
cases, analytic expressions are not available for 7 and d7/df. Nevertheless, the experi-
mental results are encouraging. More usefully, we show how perturbation analysis
enables surprisingly efficient optimization of GI/G/1 systems.

Given that we are using experimental observations here, it is appropriate to remark
on the use of confidence intervals with perturbation analysis. Since the estimates ob-
tained by perturbation analysis are just some functions of observations on a sample
path, the usual techniques can be applied to get confidence intervals for these gradient
estimates, as would be used for any other conventional estimates (e.g. mean system
time) obtained from a sample path. In particular, we can use independent replications,
or batch means, or regenerative methods (Fishman 1978). The use of regenerative
methods is a particularly appropriate choice with perturbation analysis, since they too
operate by observing a single sample path, and so we have chosen to work with regener-
ative techniques here.

In using the regenerative approach, we also used the bias reduction technique sug-
gested by Meketon and Heidelberger (1982). To implement this, one first chooses a
stopping criterion, which is a number N. At the end of busy period k, let N(k) be the
total number of customers served since the start of the experiment. Their approach
terminates the experiment when N(k) = N. All simulations below used N = 100,000 and
all confidence intervals shown are at the 95% level.

8.1. Numerical Validation of Perturbation Analysis Estimates

EXAMPLE 8.1: An M/M/1 Queue. We simulated an M/M/1 system with A = 0.01
(mean interarrival time = 100). The service time parameter is § = x. Three different
cases were tried namely, light traffic (6 = 20, p = AxX = 0.2), medium traffic (¢ = 50,
p = 0.5), and heavy traffic (§ = 80, p = 0.8). The experimental results are in Table 1,
where they are also compared with the known analytic values.

EXAMPLE 8.2: An M/U/1 Queue. Here the service time distribution, and its param-
eters, are as in Example 4.3. Again, the system was simulated for three different traffic
intensities. For all cases A was fixed at 0.01, and we chose for light traffic: § = 20, 6 = 16;
for medium traffic: § = 50, 6 = 40 and for heavy traffic: # = 80, 6 = 64. In this example,
we simultaneously estimated three gradients, w.r.t. the parameters 6, 6, and A, from one
simulation at each traffic intensity. Experimental results are compared with analytically
derived values in Table 2.

EXAMPLE 8.3: A GI/G/1 Queue. In this case the service time density f(x, 0) is
triangular with

x/6? if O0=<x<¥,
fix,0)={2/0 —x/6> if 6=<x<20, 8.1
0 elsewhere,

and the interarrival times are uniform in [0, 200]. Analytic expressions are not available
for this queue. We will estimate d7/df at the value § = 70.61, using both perturbation
analysis and by a finite difference method with additional experiments at § = 73.61.
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TABLE 1
Gradient Estimates for M/M/1 Queue
Quantity Estimated
Traffic - - _
Intensity p Method Used T dT/de dT/d\
0.2 Experiment 25.00 £0.23 1.562 + 0.021 623 + 22
’ Theory 25.00 1.563 625
0.5 Experiment 99.98 +1.78 3.95+0.12 9,816 + 487
’ Theory 100.00 4.00 10,000
0.8 Experiment 403 + 22 25.6 3.0 165 X 10° = 21 X 10°
’ Theory 400 25.0 160 X 103
Note. See §8 and Example 8.1 for details of the experiments.
TABLE 2
Gradient Estimates for M/U/1 Queue
Traffic Quantity Estimated
Intensity Method _ _ ~
p Used T dT/db dT/ds dT/dx
02 Experiment 23.05+£0.10 1.288 + 0.007 0.066 + 0.005 377 £ 11
’ Theory 23.03 1.288 0.067 379
0.5 Experiment 80.3+0.8 2.58 +0.05 0.262 + 0.015 5893 + 215
’ Theory 80.8 2.61 0.267 6067
08 Experiment 273 £ 13 153+1.9 1.09 +£0.12 102 + 15 X 103
’ Theory 274 14.7 1.07 97 X 103
Notes.

1. P/A stands for perturbation analysis.
2. See §8 and Example 8.3 for details of the experiments.

TABLE 3
Gradient Estimates for G/G/1 Queue
Quantity Estimated
Parameter B
Value 0 Method Used T dT/do
70.61 Experiment including P/A 111.70 £ 0.78 3.54 £0.07
73.61 Experiment including P/A 123.35 £ 0.96 4.29 +0.10
Average of P/A Estimates 3.91 £0.06
Finite Difference Estimate 3.88 £0.21
Notes.

1. P/A stands for perturbation analysis.
2. See §8 and Example 8.3 for details of the experiments.

(The reason for choosing the points 70.61 and 73.61 is to compare the result with
another experiment that follows.) Results are in Table 3. Note that we used perturba-
tion analysis to estimate the derivative at both points, and the two values compare well
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with the difference estimate. The difference estimate is actually estimating the slope of
the secant connecting the two points, while perturbation analysis is estimating the two
tangent slopes. In fact, it can be shown that, to second order, the secant slope is the
average of the two tangent slopes (Cao 1983). The average of the two perturbation
analysis estimates is also shown, which now compares very well with the difference
estimate, giving us additional confidence in the method. Also notice that the perturba-
tion analysis estimates give tighter confidence intervals. We have shown elsewhere that
this is always the case for certain queueing systems (Zazanis and Suri 1986a).

8.2. Single-Run Optimization

Now we come to a very interesting use of perturbation analysis, suggested indepen-
dently by Ho (1982) and Meketon (1983), for optimization of discrete event systems.
Our method is a further modification of that of Meketon (1983). In view of our
preceding results, an obvious optimization approach would be to conduct an experi-
ment (on a simulation or real system), get an estimate of the sensitivity(ies) using
perturbation analysis, then use this to improve the parameter value(s), and repeat. Since
each experiment is stochastic, we would use a stochastic approximation algorithm to
update the parameter values. Such an approach was used successfully by Ho and Cao
(1983) for several queueing network examples.

However, it seems that we can do considerably better than this first approach. The
new idea, suggested by Ho (1982) and Meketon (1983), is that, since the perturbation
analysis estimate is available as the experiment is being observed, why not use this
estimate to improve the parameter value while the system is evolving and thus optimize
the system during a single experiment! We should note that this keeps introducing
transient phenomena into the system, and therefore, none of our analytic results are
applicable, and as yet no other analysis is available on the convergence of this scheme.
(Standard stochastic approximation results do not apply either.) On the other hand,
from a practical point of view, our experimental results, and also those of Meketon
(1983) are exciting and worth mentioning, even if this technique is still in a ““heuristic”
stage. The excitement is basically due to the fact that we have observed convergence at
very fast rates.

The general optimization problem that we solve, for a GI/G/1 queue, can be stated as
follows: find * to minimize some cost function J(7,, #). Note that T is itself a function
of 6, to be estimated experimentally. We assume J is differentiable in its arguments.
Then

aJ = —a~J= ar a-J 8.2)
dé  oT do a0
We will use perturbation analysis to estimate d7/d6. Hence we can get d.J/df from (8.2),
and use this to update the value of 6.

Our modification of Meketon’s method for updating 6, is to use an algorithm analo-
gous to Kesten’s (1958) accelerated version of the Robbins-Monro procedure. The idea
is to estimate the gradient dJ/db for a fixed number of customers, say L, using pertur-
bation analysis as explained. Then the value of 6 is adjusted by a step size proportional
to the gradient. We then re-start the gradient estimation for the next L customers. Every
time there is a reversal in the sign of the dJ/df estimate, the step size proportion is
decreased. The algorithm stops after the step size proportion becomes smaller than a
given value. The procedure is summarized in Algorithm 3. (The usual stochastic ap-
proximation approach would update K, in Algorithm 3, at each iteration. This can lead
to very slow convergence if 6 is started far from the optimal value.) Our procedure is
now tested against some queueing systems.
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Algorithm 3.

0. INPUTS
A = starting step-size proportion
AMIN = stopping step-size proportion
THETA = starting value of parameter
L = number of customers per iteration

1. INITIALIZE
K=1

2. GRADIENT )
Obtain EST = perturbation analysis estimate of d7/d6
over next L customers

3. UPDATE THETA
NEWGRAD = (8J/dT)*EST + 4J/30
THETA = THETA + (4/K)*NEWGRAD

4. UPDATE K
if K = 1 then OLDGRAD = NEWGRAD
if sign(OLDGRAD) # sign(NEWGRAD) then K = K + 1
OLDGRAD = NEWGRAD

5. STOPPING CRITERION
if (4/K) = AMIN go to step 2
stop

EXAMPLE 8.4: Optimization of M/M/1 Queue. We start with this analytically tract-
able system, with notation as in Example 8.1. Our objective is to find 6* to minimize
coT + ¢1/8, where ¢, is the cost per unit of time spent by a customer in the system, while
¢, is the cost per unit speed of a server. The analytic solution is 6* = Ve,/(Veo + M/c_l).
With ¢, = 1, A = 0.01, and ¢, = 22500, the theoretical optimum is 6* = 60 with
corresponding objective value J(0*) = 525. We implemented our algorithm for two
cases, L = 5 and L = 10. The results are in Table 4. The value 6, is the final value of §
attained by our algorithm. The interesting point is that we obtained near-optimal
behaviour in under 1000 customers in both cases. If we measure optimality in terms of
cost (J) rather than parameter value, it is seen the algorithm arrives very close indeed.
The reason that 1000 customers can be considered as “fast” convergence is that it
typically takes 100,000 customers to get reasonable confidence intervals just for the
mean system time in this queue (e.g. Table 1, and also Meketon and Heidelberger
1982). Also, since the first version of this manuscript was written, Suri and Leung

TABLE 4
Single-Run Optimization of M/M/1 Queue
Initial Values Final Values
Error Error

Update in in Run
Freq L 0 J(9) A AMIN 0a 0a J(0,2) J(0,0) Length

5 20 1150 1 0.02 59.55 0.75% 525.05 0.01% 975

10 20 1150 1 0.05 59.47 0.88% 525.07 0.01% 610

Notes.
1. Run Length is the total number of customers served.
2. See §8 and Example 8.4 for details of the experiments.
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TABLE 5
Single-Run Optimization of G/G/1 Queue (Experiments to Test for Local Minimum)
Quantity Estimated
Parameter
Value 8 Method Used J dJ/de
70.61 Experiment including P/A 430.36 = 0.78 —0.977 £ 0.067
73.61 Experiment including P/A 429.02 + 0.96 0.134 £ 0.098
76.61 Experiment including P/A 431.31 £ 1.31 1.405 £ 0.140
Notes.

1. P/A stands for perturbation analysis.
2. See §8 and Example 8.5 for details of the experiments.

(1986) have performed an extensive experimental study which clearly shows the speed
of this algorithm compared with other approaches.

EXAMPLE 8.5: Optimization of GI/G/1 Queue. Now we consider the same cost
function as in Example 8.4, but the system is the one from Example 8.3. We choose
L=35,4=1, AMIN = 0.02. Starting at § = 20, our algorithm converged at 6,, = 73.61,
after serving 1145 customers. In order to check whether this is indeed a (local) mini-
mum or not, we used additional simulations to estimate the cost at 8, and two neigh-
bouring points. The results are shown in Table 5. Now we illustrate another interesting
point. Although the mean value of J, estimated at 6,,, is lower than its neighbors in
Table 5, the confidence limits are wide enough that we cannot derive a conclusion
about 6, being superior to its neighbors. (More experiments would be required.) How-
ever, we also used perturbation analysis to estimate the gradient of J at each of the three
points, while conducting the same simulations. If we believe the perturbation analysis
estimates, then the experiment is conclusive at the 95% confidence level, since the
gradient at 70.61 is conclusively negative, while that at 76.61, positive. So this assures
us that these two points bracket the minimum, and ,, is a reasonable stopping point for
our algorithm. Here we see a side benefit of perturbation analysis, as it gave us addi-
tional information, and in fact tighter confidence intervals, by which to judge the
outcome of some experiments.

9. Extensions

The main aim of the current paper was to study the behaviour of perturbation
analysis applied to the M/G/1 queue. Under additional restrictions, we have recently
been able to show similar results for GI/G/1 systems as well (Zazanis and Suri 1986b).
We were also able to show that perturbation analysis gives unbiased estimates for higher
moments of the response time as well, in the case of an AM/M/1 queue (Zazanis 1986).
As illustration of some uses of perturbation analysis, we gave here experiments on
GI/G/1 queues, as well as a fast optimization algorithm. In a similar way, we can apply
these methods to the case where a vector of parameters needs to be optimized. In this
case the efficiency gained through perturbation analysis can be substantial.

Some other interesting issues arise out of this work. It turns out that we can also
estimate second derivatives for a GI/G/1 queue, using perturbation analysis on a single
sample path (Zazanis and Suri 1986b). Also, as mentioned, we can show that whenever
perturbation analysis estimates for gradients are unbiased, the corresponding confi-
dence interval are always tighter than those obtained by doing a second experiment
(Zazanis and Suri 1986a). Finally, we have considered here a classic, but simple, system
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and it would be useful to see similar results for other practical systems. Steps in this
direction are Cao (1985b) and Zazanis and Suri (1986b).!

! This work was partly supported by the U.S. Office of Naval Research Contracts N00014-75-C-0648 and
N00014-79-C-0776, and by NSF Grant ENG82-13680 while the authors were at Harvard University. We
would like to thank Arnold Buss of Cornell University and especially an anonymous referee for comments
that led to improved proofs and stronger results.

Appendix

Here we will establish the integrability of the random variables 4 and g and we will supply the proof of
Theorem 2.

LEMMA 1. The random variables h and g, defined in (6.1) and (6.4), are integrable, i.e. E\h| and E|g| exist
and are finite.

PROOF. First we will establish the integrability of 4. We start with the inequality
n i n i n n
|| = IZl Z“ o) = 2 Zlox)l = Z Zlox)l  or
i=1j= i=1j=1 i=1j=1

Ihl < n éw(xm. (App. 1)

Let us set |¢(x;)| = {; for convenience. Now we will show that the expectation of the r.v. on the RHS of (App. 1)
is finite. Indeed,

B 3, 8) = Bn 3 [~ B + wEG)
= BR)E) + B 3 1~ @D, (App.2)
Using the Cauchy-Schwartz inequality we get
B 5 15~ B = (B {EC, 1~ B (App. 3)
Now notice that {;, i = 1,2, - - - arei.i.d. random variables with E[{;] < co and E[{3] < oo (the finiteness of
the first two moments of {; = |¢(x;)| is postulated in A3). Also n, the number of customers in the busy period,

is a stopping time with E[n] < oo (the finiteness of this expectation is guaranteed by the stability of the system).
Hence we can apply one of Wald’s identities (Shiryayev 1984) to the RHS of (App. 3) and conclude that

E(Z1 & — E(5))* = Var (§)E(n) < co. (App. 4)
=
Hence, from (App. 2), (App. 3) and (App. 4) it follows that
E(n Zl [6(x)l) = E(mP)E(px)) + [E(m?) Var (I6(x))E(n)]"* < co. (App. 5)
=

(The fact that the system is stable and that X< implies the finiteness of E(n) and E(n?), e.g. see Kleinrock
1975.) From (App. 1) and (App. 5) we have finally that

E(|A)) < E(n 21 lp(x)]) < oo. (App. 6)
j=
The integrability of g is an immediate consequence of the inequalities
n n
lel < 21 lpCe) < n 21 loCo)l
Jj= j=

and of the integrability of n 27, |¢(x;)| which was established above.

Now we give the proof of Theorem 2 which establishes the asymptotic unbiasedness of the perturbation
analysis estimates.

PROOF OF THEOREM 2. We need to show that

. Mo hm) _dT
1 =r- Pl=__
a E{ Z',‘,Ll n,,,} do

M

w.p. 1. (App. 7)



62 RAJAN SURI AND MICHAEL A. ZAZANIS

We note that, since n,, is the number of customers in the nth busy period, n,, = 1. Hence,

z%=l hm 1 el
S = » ’El |2l (App. 8)

m=1"tm

Since E|h,,| exists, as we showed in the lemma above, by the strong law of large numbers
l M
W7 > |l = Eliy| w.p. L. (App. 9)
m=1

So we see that the sequence 2., h,,/ M., n,, is dominated by the sequence of random variables

1 M
RM(“)) = A_l 2_:1 Ihm|

Now E{Ry(w)} = E|h|, and combining this with (App. 9) we see that
Al{i_r.n E{Ry(w)} = E{ &im Ruy(w)}  wp. L (App. 10)

Hence we can apply a generalization of the Lebesgue Convergence Theorem (Royden 1968) and conclude that

lim E{z”’ fim ] {hm =1 ] (App. 11)

M- m=1Hm M- Zm_1 Am
But (6.18) establishes the strong consistency of the perturbation analysis estimates, hence we have

M hm dT
lim =7—— = — p. 1. App. 12
WS =g WP (App. 12)
From (App. 11) and (App. 12) the asymptotic unbiasedness of the estimates is established.
Next we give a sketch of the
PROOF OF THEOREM 4. We need to show that

Mg M., gm] _ dT
1 Ei m ml| _ Ell m=14Ym App. 13
M {anﬁ, nm} [Ml-ri, M, nm] ax’ (4pp- 13)

The proof is exactly the same as that of Theorem 2. The argument here is further simplified by the fact that
gm = 0 and E[g,,] < co as was shown in §7.2. Hence a counterpart of Lemma 1 is not needed here.

Finally a proof for equation (7.12) is presented. This proof was given by an anonymous referee.

PROOF OF (7.12). Let

M
Su=2 Ym+In, M=z1, (S=0), (App. 14)
m=1

denote the ending of the Mth busy cycle of the M/G/1 queue, and let
»() =max {M:Sy,<t}, =0, (App. 15)
denote the number of busy cycles that are completed up to time ¢. Thus,

. t— S,,(t), t< S,,(t) + Y,,(,)+1 s
20 = { , (App. 16)
0, otherwise,

denotes the age of the busy period in progress at time ¢. Given a fixed £ = 0, we can use the standard renewal
argument to show that

}_i»m P(2(t) > £) = E[max (0, Y, — £))/(E[Y,] + E[11]) for all £=0. (App. 17)

If we let Z denote a random variable whose complementary cumulative distribution function is given by the
right-hand side of (App. 17), then we have 2(¢) = Zas t = oo, where of course = designates weak convergence,
a continuous-time version of the discrete-time result z; = z as k — oo that was established prior to (7.10).
Then, the ergodicity of the M/G/1 queue when AX < 1 ensures that

lim — f liggopds =P(Z>£) wp.l  and (App. 18)
:..w A(t)f LigopydA(s) = P(z>§)  w.p. 1 (App. 19)
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where A(f) is the number of Poisson arrivals to the system in [0, ¢] (see also equation (A.8) of Crane and
Iglehart 1975). Now Theorem 1 of Wolff (1982) ensures that the left-hand sides of (App. 18) and (App. 19) are
equal with probability 1 and since ¢ was selected arbitrarily, we see that P(Z > £) = P(z> §) forall £ > 0. It
follows immediately that

Elz] = fo " P> Bt = fo " Pz > p)dt = EI2)

E[Y]

" BT + BT (Aop-20
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